Homework Problem 2.6

Normal operators for qubits. Consider an arbitrary qubit operator

$$A = A_{\alpha}\sigma_{\alpha} = A_0 1 + \mathbf{A} \cdot \boldsymbol{\sigma} .$$

where the coefficients A_{α} are arbitrary complex numbers. We can write $\mathbf{A} = \mathbf{B} + i\mathbf{C}$, where \mathbf{B} and \mathbf{C} are the real and imaginary parts of \mathbf{A} .

- (a) Show that the condition for A to be a normal operator is that $0 = \mathbf{A} \times \mathbf{A}^* = -2i\mathbf{B} \times \mathbf{C}$, i.e., that $\mathbf{C} = \mu \mathbf{B}$, for some (real) constant μ .
- (b) Find the conditions on A_0 and \mathbf{A} for A to be (i) a Hermitian operator and (ii) a unitary operator.
 - (c) Show that A has a spectral decomposition if and only if A is normal.