Homework Problem 4.1

Neumark extension of a rank-one POVM. Consider a POVM for a D-dimensional quantum system, which consists of $N \geq D$ rank-one POVM elements (i.e., operators proportional to one-dimensional projectors). One way to think of this POVM is as a measurement of one-dimensional orthogonal projectors (an ODOP) on an N-dimensional space. This problem develops this way of thinking, which is called the Neumark extension.

Let the (rank-one) POVM elements be denoted by $E_{\alpha} = |\overline{\psi}_{\alpha}\rangle\langle\overline{\psi}_{\alpha}|, \ \alpha = 1, ..., N$, where the vectors $|\overline{\psi}_{\alpha}\rangle$ are subnormalized, i.e., $0 < \mu_{\alpha} = \langle\overline{\psi}_{\alpha}|\overline{\psi}_{\alpha}\rangle \leq 1$. The corresponding normalized vectors are $|\psi_{\alpha}\rangle = |\overline{\psi}_{\alpha}\rangle/\sqrt{\mu_{\alpha}}$. The POVM satisfies a completeness relation

$$P = \sum_{\alpha=1}^{N} E_{\alpha} = \sum_{\alpha=1}^{N} |\overline{\psi}_{\alpha}\rangle\langle\overline{\psi}_{\alpha}| = \sum_{\alpha=1}^{N} \mu_{\alpha}|\psi_{\alpha}\rangle\langle\psi_{\alpha}|,$$

where P denotes the identity operator on the D-dimensional Hilbert space.

(a) Show that by adding N-D dimensions to the Hilbert space, you can find an orthonormal set of vectors $|\hat{\psi}_{\alpha}\rangle$, $\alpha=1,\ldots,N$, that project to the POVM elements in the original D dimensions, i.e., $P|\hat{\psi}_{\alpha}\rangle=|\overline{\psi}_{\alpha}\rangle$. (Hint: Expand the POVM elements in an arbitrary orthonormal basis, and show that the expansion coefficients form part of a unitary matrix.)

The original D-dimensional Hilbert space is a subspace of the extended Hilbert space, and P is the projector onto that subspace. The N-dimensional Hilbert space is called the $direct\ sum$ of the original Hilbert space and the Hilbert space of the added dimensions, both of which are subspaces of the N-dimensional Hilbert space.

The orthonormal set $|\hat{\psi}_{\alpha}\rangle$ is a *Neumark extension* of the POVM. The support of a system state ρ is confined to the original *D*-dimensional space, i.e., $P\rho P = \rho$. For such states the POVM measurement statistics are the same as the statistics of a measurement of the Neumark extension, i.e.,

$$\begin{split} \langle \hat{\psi}_{\alpha} | \rho | \hat{\psi}_{\alpha} \rangle &= \operatorname{tr}(\rho | \hat{\psi}_{\alpha} \rangle \langle \hat{\psi}_{\alpha} |) = \operatorname{tr}(P \rho P | \hat{\psi}_{\alpha} \rangle \langle \hat{\psi}_{\alpha} |) = \operatorname{tr}(\rho P | \hat{\psi}_{\alpha} \rangle \langle \hat{\psi}_{\alpha} | P) \\ &= \operatorname{tr}(\rho | \overline{\psi}_{\alpha} \rangle \langle \overline{\psi}_{\alpha} |) = \operatorname{tr}(\rho E_{\alpha}) = p_{\alpha} \; . \end{split}$$

We can thus regard a measurement of a rank-one POVM as an ODOP measurement on a higher-dimensional space.

It is worth noting that the vectors $(1 - P)|\hat{\psi}_{\alpha}\rangle = |\tilde{\psi}_{\alpha}\rangle$, which are subnormalized vectors in the added dimensions, can be used to form a POVM in the added dimensions, i.e.,

$$1 - P = \sum_{\alpha} |\tilde{\psi}_{\alpha}\rangle \langle \tilde{\psi}_{\alpha}| .$$

The orthonormal vectors $|\hat{\psi}_{\alpha}\rangle$ are also a Neumark extension of this POVM.

One of the most instructive examples of a Neumark extension is provided by the canonical POVM for measuring the phase of a harmonic oscillator. The POVM elements, $E_{\phi} = |\phi\rangle\langle\phi|/2\pi$, are specified by the oscillator phase ϕ , where the "phase states,"

$$|\phi\rangle \equiv \sum_{n=0}^{\infty} e^{in\phi} |n\rangle ,$$

satisfy

$$\left\langle n \left| \left(\int_0^{2\pi} \frac{d\phi}{2\pi} |\phi\rangle \langle \phi| \right) \right| n' \right\rangle = \int_0^{2\pi} \frac{d\phi}{2\pi} e^{i(n-n')\phi} = \delta_{nn'}$$

and thus resolve the identity P according to

$$P = \int_0^{2\pi} \frac{d\phi}{2\pi} |\phi\rangle\langle\phi| = \int_0^{2\pi} d\phi \, E_\phi \ .$$

The Neumark extension consists of adding to the Hilbert space an infinite set of states corresponding to negative values of n. The resulting Hilbert space is that of a two-dimensional rotor; the states $|n\rangle$ can thought of as eigenstates of angular momentum with eigenvalue $n\hbar$. In this enlarged Hilbert space, the extended phase states,

$$|\hat{\phi}\rangle \equiv \sum_{n=-\infty}^{\infty} e^{in\phi} |n\rangle ,$$

are the "angle eigenstates." They resolve the identity in the bigger space, i.e.,

$$I = \int_0^{2\pi} \frac{d\phi}{2\pi} |\hat{\phi}\rangle\langle\hat{\phi}|.$$

In contrast to the states $|\phi\rangle$, they are also δ -normalized:

$$\langle \hat{\phi} | \hat{\phi}' \rangle = \sum_{n=-\infty}^{\infty} e^{-in(\phi - \phi')} = 2\pi \delta(\phi - \phi').$$

The resolution of the identity and the orthonormality relation are standard results from the theory of Fourier series on the interval $[0, 2\pi]$. The extended phase states are a Neumark extension because when projected down to the space of nonnegative n, they give the original phase states $|\phi\rangle$.

(b) Consider the three Bloch vectors,

$$\begin{split} &\mathbf{n}_1 = \mathbf{e}_x \;, \\ &\mathbf{n}_2 = -\frac{1}{2}\mathbf{e}_x + \frac{\sqrt{3}}{2}\mathbf{e}_y \;, \\ &\mathbf{n}_3 = -\frac{1}{2}\mathbf{e}_x - \frac{\sqrt{3}}{2}\mathbf{e}_y \;, \end{split}$$

which satisfy $\mathbf{n}_{\alpha} \cdot \mathbf{n}_{\beta} = -1/2$ for any pair $\alpha \neq \beta$ and which point to the vertices of an equilateral triangle in the equatorial plane. The corresponding Hilbert-space vectors, $|\mathbf{n}_1\rangle$, $|\mathbf{n}_2\rangle$, and $|\mathbf{n}_3\rangle$, can be used to form a three-outcome, rank-one POVM called the *trine*. Write out the trine POVM elements, and *construct* a Neumark extension for it.

(c) The four Bloch vectors,

$$\begin{split} &\mathbf{n}_1 = \mathbf{e}_3 \;, \\ &\mathbf{n}_2 = \sqrt{\frac{8}{9}} \mathbf{e}_1 - \frac{1}{3} \mathbf{e}_3 \;, \\ &\mathbf{n}_3 = -\sqrt{\frac{2}{9}} \mathbf{e}_1 + \sqrt{\frac{2}{3}} \mathbf{e}_2 - \frac{1}{3} \mathbf{e}_3 \;, \\ &\mathbf{n}_4 = -\sqrt{\frac{2}{9}} \mathbf{e}_1 - \sqrt{\frac{2}{3}} \mathbf{e}_2 - \frac{1}{3} \mathbf{e}_3 \;, \end{split}$$

satisfy $\mathbf{n}_{\alpha} \cdot \mathbf{n}_{\beta} = -1/3$ for any pair $\alpha \neq \beta$ and point to the vertices of a tetrahedron. The corresponding Hilbert-space vectors, $|\mathbf{n}_1\rangle$, $|\mathbf{n}_2\rangle$, $|\mathbf{n}_3\rangle$, and $|\mathbf{n}_4\rangle$, can be used to form a four-outcome POVM called, not surprisingly, the *tetrahedron*. Write out the tetrahedron POVM elements, and *construct* a Neumark extension for it.