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1. Introduction. Science involves investigating the properties of the real world and process-
ing and using what we know about the world. To make progress, it is crucial to separate
what’s really out there (ontology) from what we know about what’s really out there (epis-
temology). The language for dealing with our (necessarily incomplete) knowledge of the
world is Bayesian probability theory, which holds that probabilities are subjective, based
on what we know. Here I contrast the Bayesian view of probabilities with other interpreta-
tions and consider two natural applications of Bayesian probabilities in physics: statistical
physics and quantum theory.

Because physicists believe their science is the most fundamental, they have an ingrained
tendency to attribute ontological status to the mathematical objects in their theories,
including probabilities. Statistical physics provides a cautionary example of the hazards of
this tendency: it leads to the notion that thermodynamic entropy is an objective quantity
and thus to fruitless efforts to derive the Second Law of Thermodynamics from the time-
symmetric laws of physics. It is now well established—though still not accepted by many
practitioners—that entropy is a subjective quantity, based on what one knows. This leads
to effortless derivations of the Second Law and also to a deep understanding of the operation
of intelligent agents (Maxwell demons) whose objective is to circumvent the Second Law.
Quantum theory is tougher: the cut between ontology and epistemology is notoriously
hard to identify, because of the intrinsic indeterminism of quantum mechanics. For this
reason, we believe that it is in quantum theory that a consistent application of Bayesian
probabilities has the most to offer.

2. Interpretations of probabilities.

a. Empirical (actual) frequentism, i.e., defining probability as the frequency of occurrence
in an actual sequence of trials or real ensemble. There are immediate problems with
this approach. How does one deal with probabilities for single cases, e.g., Laplace’s de-
termination of the mass of Saturn or the openness vs. closedness of the Universe, where
a real ensemble doesn’t exist? Even in cases where a real ensemble can be identified,
why should the probability for an individual member depend on what other members
of the ensemble do? Moreover, there are serious problems with finite ensembles: What
about irrational probabilities? How big an ensemble does one need to get the proba-
bility? These problems force one to infinite ensembles, but they present insuperable
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problems: there being no real infinite ensembles, this approach floats free from its
initially attractive empiricism, and the frequency is ultimately undefinable (ordering
problem).

b. Mathematical frequentism (law of large numbers), i.e., defining probability as the limit-
ing occurrence frequency in an imaginary (hypothetical) sequence (an ensemble). This
is the mathematical way of trying to do frequentism; the emphasis here is entirely on
mathematical rigor, with no reference to empiricism (i.e., actual ensembles). Despite
its rigor—more precisely, because of its rigor—this approach has fundamental flaws.
Because the infinite ensemble is purely hypothetical, one must introduce additional
mathematical structure to characterize the ensemble. What is introduced, right from
the start, is the notion of probability. One uses the notion of probability for each mem-
ber of the ensemble and the notion of the statistical independence of different members
of the ensemble to provide the mathematical structure of the i.i.d. (distribution that
independent and identically d istributed). Thus this approach is circular since it relies
on the notion of probability to define the limiting frequency, which is supposed to define
probability.

Moreover, what is proved is that the “right frequency” occurs with probability-
one in the infinite ensemble. This result cannot be interpreted without reference to
probabilities. The frequentist hopefully asserts that probability-one means certainty,
which would allow him to escape reference to probabilities in interpreting the result.
Yet this identification can’t be justified. Though probability-one does mean certainty
for finite sets, this strict connection can’t be maintained in the infinite limit. To see this,
imagine deleting a set of measure zero from the right-frequency set; the modified set
still has probability-one, so are we to think that the deleted sequences are certain not
to occur? This is not very reasonable, since any particular sequence with the “right
frequency” could be deleted in this way, so we would be forced to conclude that all
sequences are certain not to occur. (Another way of saying the same thing is that each
infinite sequence has probability zero; should one then conclude that each sequence is
certain not to occur?) What this demonstrates is that the only way to interpret what
probability-one means in the infinite limit is to have already at hand a notion of the
meaning of probability and to apply that notion to a limit as the sequence becomes
infinitely long.

Finally, suppose one could define probability as a limiting frequency in a hypo-
thetical ensemble. One would still be left without the ability to make any quantitative
statements about finite (real) ensembles. One would not be able to say, for example,
that in 1,000 tosses of a fair coin, the number of heads will be near 500 with high
probability, for this probability would mean nothing without referring it to yet another
hypothetical infinite ensemble, each member of which is a sequence of 1,000 tosses.

One lesson taught by the above two approaches is that it is very important in any
discussion of probabilities to determine whether one is discussing real or hypothetical
ensembles, because the problems with the two approaches are different. The problem
with real ensembles is that usually we don’t have them and we certainly don’t want to
be required to have them. The problem with hypothetical ensembles as fundamental,
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rather than derived objects is that one must use the probability measure provided by the
i.i.d. to give structure to the ensemble, so one can hardly be using the ensemble to define
probabilities.

A more important lesson is that trying to define probabilities in terms of frequencies
is hopeless. One ends up referring probabilities to an unempirical limit that is undefinable
and uninterpretable unless one already has the structure of probability theory in hand.
One is trying to define probabilities in terms of concepts derived from probabilities. To
make progress, one must get serious about defining probability for a single trial, since we
evidently use probabilities in that situation. The leading objectivist candidate is propensity
(objective chance).

c. Propensity or objective chance, i.e., a probability that is asserted to be an objective
property of a physical system or situation. Yet how can propensity be an objective
property of a coin when the chance of heads clearly depends on the method of tossing?
The Bayesian has no trouble admitting that the probability assignment depends on
what one knows. This could include what one knows about the physical properties of
the coin, the method of tossing it, the properties of the medium through which the coin
passes, the properties of the surface on which it lands, and any other relevant factors,
or it could mean knowing nothing about any of these or anything else, except that the
coin has two faces. Any rational observer, asked to make a bet on the toss of a coin,
can see that the probability assignment on which he bases his bet ought to depend on
what he knows about all these factors. The propensitist is thus backed into a corner:
which of the Bayesian probabilities deserves to be the propensity, and what should one
do in those situations where the propensity is not the best probability assignment?

From a Bayesian perspective, the question of what propensitists are talking about is
easy to answer and depends on what one knows about a sequence of trials. A propensity
is a single-trial probability that arises from a robust prior on probabilities, or in other
words, a situation where the probabilities on the multi-trial hypothesis space are well
approximated by an i.i.d. for a very large number of trials, or in yet other words, where
one’s probabilistic predictions for future trials change from the original i.i.d. predictions
based on the propensity only after one has gathered data from a very large number of
trials.

d. Principal principle, i.e., use ignorance probabilities till objective ones are identified.
This is a desperate retreat in the face of the logic of Bayesianism, hoping against hope
that some basis for objective probabilities will eventually emerge even as one admits
that most probabilities are Bayesian.

In the example of the coin, if one knows everything about the coin and its en-
vironment, then given that a classical, deterministic description is sufficient, there is
no chance at all; the outcome of the toss can be predicted with certainty using the
laws of classical mechanics. This conclusion is quite general; as Giere (1973a) notes,
there are no objective probabilities, except 0 or 1, in a realistic/deterministic world.
All probabilities in a realistic/deterministic world are Bayesian probabilities, reflecting
ignorance of the exact conditions that hold in such a world.
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Despite the inescapability of this conclusion, cunning attempts are made to get
around it. Such attempts should always be examined by asking what happens when
one has complete information. For example, it is asserted that for two successive coin
flips the probability for head-tail is objectively the same as the probability for tail-
head. These equal probabilities are then used to build up “objective” probabilities of
any magnitude. There has to be something wrong with the conclusion that head-tail
and tail-head probabilities are objectively the same, independent of what one knows,
for if one knows everything about the two coin tosses, then one can say with certainty
what the outcomes of the tosses will be; the head-tail and tail-head probabilities are
the same only if both are zero. So what gives? The equality of the head-tail and
tail-head probabilities follows from assuming the exchangeability of the two tosses, a
condition that is violated in the case of complete, but opposite knowledge for the two
tosses. Exchangeability is clearly a part of the state of knowledge on which a Bayesian
bases a probability assignment; it is not an objective property of the world. The equal
“objective” probabilities are thus an example of assigning Bayesian probabilities based
on what one knows, in this case, that one’s state of knowledge is symmetric under
exchange of successive tosses.

e. The Bayesian view, i.e., that probabilities are not a state of the world, but are based on
one’s state of knowledge. A simple, but compelling argument that probabilities are not
objective properties is that one cannot determine them by addressing the alternatives
(no multiple trials here: we’ve seen that that’s a dead end, because it requires another
probability assignment on the bigger multi-trial hypothesis space); to find out what
probabilities have been assigned, you have to ask the assigner.

The mathematical foundations for the Bayesian view come from (i) the Dutch-book
argument, which shows that if probabilities are regarded as betting odds that determine
one’s willingness to place bets, consistency in placing the bets yields the probability
rules; (ii) the Cox analysis, which shows that if probabilities are measures of credible
belief, then consistency with deductive logic gives the probability rules; (iii) decision
theory, which is the application of Bayesian, single-case probabilities to rational deci-
sion making (a generalization of betting odds); and (iv) the de Finetti representation
theorem (Caves, Fuchs, and Schack 2001a), which shows that probabilities on prob-
abilities are in one-to-one correspondence with exchangeable probability assignments
on infinite sequences. The de Finetti theorem banishes the concept of an unknown
probability in favor of a primary probability assignment on infinite sequences.

3. Application of the Bayesian view to statistical physics.

a. Entropy is subjective, defined relative to a probability assignment that is based on
what one knows about a system. The subjectivity of entropy lies in the fact that it is
the “missing information” required to specify a system’s microstate. The relation to
physics is that entropy—more precisely, free energy—quantifies available work: each
bit of missing information reduces the available work by kBT ln 2. The subjectivity
of entropy is natural in this context, for different observers, knowing different things
about a system and thus assigning different entropies, will devise different procedures
that extract different amounts of work from the system. Anyone who thinks entropy is
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objective should be asked how to extract work from a Szilard engine before observing
which side the molecule occupies; there is no chance of success in such an endeavor, of
course, because success would violate the Second Law.

b. How does entropy change? Since entropy represents the amount of information missing
toward a maximal description of a system, it changes only when information about
the system is obtained or discarded. Entropy does not change under Hamiltonian
dynamical evolution, because Hamiltonian evolution is the rule for updating maximal
information.

Thermodynamics is the science of macrostates, i.e., states specified by system prob-
ability distributions defined by consistently discarding all information about a system—
most importantly, information about a system’s past—except information about a few
macroscopic parameters that determine the system’s macroscopic behavior. Jaynes’s
(1957a,1957b) derivation of the Second Law is based on discarding everything but the
values of a few macroscopic parameters and then maximizing the entropy relative to
the constraints imposed by the macroscopic parameters. Indeed, like Jaynes’s deriva-
tion, all derivations of an increase in entropy proceed by discarding information about
the system: (i) Boltzmann’s H-theorem is based on discarding information about two-
particle correlations; (ii) projection-operator techniques throw away information about
the microscopic probability distribution, replacing it with a coarse-grained distribu-
tion; (iii) master equations are based on discarding information about the correlation
between the system and a heat bath or environment.

c. Entropy decreases when one observes a system. Though this increases the available
work, the increase is offset by the energy required to erase the record of the observation.
This Landauer erasure cost, amounting to kBT ln 2 per bit, is required, from the inside
view, for consistency with the Second Law and is, from the outside view, simply the
free energy that must be dissipated to reduce the entropy of a demon/memory as it is
returned to a standard state.

The Landauer erasure cost leads to the notion of total entropy, the sum of the
system entropy and the information required to specify the system state. When a
demon/memory observes the system and stores a record of its observation, the total
entropy does not change; likewise, if the demon/memory discards its record, the total
entropy again remains constant. Thus the process of observing and discarding informa-
tion can be done at no thermodynamic cost. Since the erasure requires the Landauer
cost, however, there is no overall thermodynamic cost only if the demon/memory ex-
tracts the work made available by its observation before discarding its record.

Under Hamiltonian evolution the total entropy is nearly constant: the system en-
tropy remains exactly constant, but the information needed to specify the system state
increases by the amount of information, log t, needed to give the time t in some ap-
propriate units. Another way of saying this is that the evolved state does not become
much more complex than the initial state as a system evolves under Hamiltonian evolu-
tion, because the information needed to specify the evolved state consists of the initial
state and Hamiltonian—these are background information—and the time. The near
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constancy of the total entropy means that one does not lose available work as a system
evolves. One way to extract the work is to time reverse the system—this is usually
difficult to do physically (but note spin echo), but is easy to describe and thus is simple
algorithmically—and then use the log t bits of information to tell one how much time t
to wait before extracting the work from the initial state.

d. Why does one discard any information at all, since it always has a cost in available
work? In particular, why does one discard information about a system’s past? The
standard explanations fall into three classes: (i) Coarse graining. One discards fine-
grained information because it is irrelevant to the future behavior of the coarse-grained
macroscopic parameters of interest; (ii) Complexity of evolved state. The evolved
state is so complex that it requires an increasing amount of information about the
initial conditions keep track of it; (iii) Leakage of information to an environment. The
information about the system’s initial state leaks into an environment, where it is lost.
All of these putative justifications deserve discussion.

(i) Coarse graining. This is a powerfully good explanation, which underlies all
methods for justifying the increase of entropy in isolated systems. It leads to an entropy
increase in the following way: divide phase space into coarse-grained cells j, with phase-
space volume Γj ; at each coarse-grained time tn ≡ nτ , where τ is a macroscopic coarse-
graining interval, replace the evolved phase-space distribution from the previous step
with a coarse-grained one, smeared out to be uniform on each coarse-grained cell, with
probabilities pj(n); the resulting coarse-grained (Gibbs) entropy at the nth time step is

S(n) = kB


−

∑

j

pj(n) log pj(n) +
∑

j

pj(n) log Γj


 ,

where the first term is the information needed to specify which cell the system is in
and the second term is the average over cells of the information needed to specify a
point (microstate) within the cell. This entropy increases monotonically as information
about the fine-grained distribution is discarded and, for a mixing system, approaches
the microcanonical entropy on the accessible region of phase space. The chief ques-
tion to be investigated in this approach is whether the behavior of the macroscopic
parameters of interest is indeed insensitive to the coarse graining. Though this is a
very reasonable approach, it begs the deeper question of why entropy increases, be-
cause it discards information for convenience in describing the behavior of macroscopic
parameters without addressing why one is willing to accept the corresponding decrease
in available work.

(ii) Complexity of evolved state. Even though this explanation is the most widely
accepted one for isolated systems undergoing Hamiltonian evolution, it is wholly mis-
guided. These days it is usually phrased in terms of chaotic dynamics: to predict
the trajectory of a chaotic system requires an exponentially increasing amount of in-
formation about the system’s initial conditions. Where this explanation goes wrong
is in thinking that trajectories are the relevant concept for entropy. Entropy has to
do with phase-space distributions, made up of many trajectories, not with individual
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trajectories. It does not require an exponentially increasing amount of information
to predict the evolved phase-space distribution. Indeed, as we have already seen, the
complexity of phase-space distributions increases hardly at all under Hamiltonian evo-
lution. Another way of saying this is that phase-space distributions evolve according to
the Liouville equation, which is linear and preserves overlaps between distributions. A
small error in the initial distribution remains a small error in the evolved distribution.

(iii) Leakage of information to an environment. This is the best explanation for the
increase of entropy, because no system that we have access to is completely isolated
from its environment. Nonetheless, it also begs the deepest question, for it simply
posits, with no ultimate justification, that the environment is somehow so compli-
cated that information which leaks into it is unrecoverable. The ultimate question is
avoided: why does one discard information that leaks into the environment? This leads
to the Schack-Caves hypersensitivity-to-perturbation program (Caves 1994a, Caves and
Schack 1997a): a system is hypersensitive to perturbation when the environmental infor-
mation required to reduce the system entropy far exceeds the entropy reduction; when
a system is hypersensitive to perturbation, the discarding of information in the envi-
ronment can be justified on strict grounds of relative thermodynamic cost. Schack and
Caves have shown that classical chaotic (mixing) systems have an exponential hypersen-
sitivity to perturbation, in which the environmental information required to purchase
a system entropy reduction increases exponentially with time, and they have accumu-
lated numerical evidence that quantum versions of classically chaotic systems display
a similar exponential hypersensitivity to perturbation. Perhaps the most succinct way
to describe the Schack-Caves program provides a way to rescue explanation (ii): the
evolved phase-space distribution (or quantum state) is not itself algorithmically com-
plex, but for chaotic (mixing) systems it lies close to highly complex distributions into
which a perturbing environment can easily push it.

e. Ergodicity. Though ergodicity has nothing to do with the approach to thermodynamic
equilibrium, since the exploration of all of accessible phase space occurs on too long a
time scale to be relevant for the approach to equilibrium, it nonetheless plays a central
role in the application of Bayesian probabilities to dynamical systems. If one knows
only the energy of a system and that it is constrained by certain external parameters,
then one should assign a time-invariant distribution since one’s state of knowledge is
time-invariant. Ergodicity and the conservation of phase-space volume under Hamil-
tonian evolution imply that the only time-invariant distribution is the microcanonical
distribution.

f. Why does the canonical distribution lead to predictions of frequencies, such as the an-
gular distribution of effusion of gas through a small hole, when the Bayesian view does
not assert any necessary connection between probabilities and frequencies? Imagine
drawing sequences from a probability distribution p. In N trials the number of se-
quences whose probability exceeds some threshold is proportional to eNH(p). Thus,
of all the probability distributions consistent with the mean-value constraints, the
canonical (MAXENT) distribution is the one that generates the most high-probability
sequences; indeed, for many trials, the high-probability sequences generated by the
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MAXENT distribution are essentially all the sequences that are consistent with the
constraints. If the constraints that went into the MAXENT distribution are truly the
only thing you know about the system, then an i.i.d. based on the MAXENT distribu-
tion is your most unprejudiced way of predicting frequencies.

This idea can be used to put MAXENT in a broader context, where instead of
assigning the MAXENT distribution, one weights the probability on probabilities by the
number of high-probability sequences in some number of trials that one contemplates
doing; i.e., one assigns an exchangeable multi-system distribution whose probability on
probabilities is chosen to be proportional to eNH(p) times delta functions that enforce
the mean-value constraints. In this formulation, the parameter N characterizes one’s
confidence in the MAXENT predictions, which can be overridden by conflicting data
in a sufficiently large number of trials.

g. The Lebowitz program (Lebowitz 1999a). Lebowitz explains the increase of entropy
using what he characterizes as a modern presentation of Boltzmann’s approach. He
divides phase space into coarse-grained cells j, with volume Γj . The cells are defined by
the values of some macroscopic parameters and are not of equal size, there being one
cell that dominates, the one that has equilibrium values for the macroscopic parame-
ters. He associates with each microstate (point) within cell j a “Boltzmann entropy”
SB = log Γj . The dominant cell has a Boltzmann entropy that approximates the ther-
modynamic equilibrium entropy. His argument is that if the system is initially confined
to a cell M , defined by some macroscopic constraints, then “typical” initial conditions
within that cell end up after a short while in the dominant cell, thus leading to the
entropy given by thermodynamic equilibrium.

Probabilities are introduced to characterize “typical” initial conditions—i.e., al-
most all initial conditions selected randomly from an initial probability distribution
that is uniform on M with respect to the standard phase-space measure. Even though
it is recognized that probabilities are absolutely essential for this purpose—“any mean-
ingful statement about probable or improbable behavior of a physical system has to
refer to some agreed upon measure (probability distribution)”—they are introduced
apologetically, with a defensive tone, because the system is at all times actually in a
particular microstate, or as Boltzmann is quoted as putting it, “The applicability of
probability theory to a particular case cannot of course be proved rigorously.” Indeed,
the probabilities are never spelled out precisely—they are “ a measure which assigns
(at least approximately) equal weights to the different microstates consistent with the
‘initial’ macrostate M”—and are never given a symbol, for to do so would give too
much legitimacy to what are obviously Bayesian probabilities based on one’s lack of
knowledge of the exact initial conditions within M .

A Bayesian sees through this smokescreen immediately. The initial uniform prob-
ability distribution does apply to an individual system and is justified on the grounds
stated above. The Lebowitz program is a species of coarse graining [(i) above], the
problem being that the refusal to use Bayesian probabilities renders the coarse grain-
ing unnecessarily mysterious and the explanation of what is going on nearly nonsensical.
The Boltzmann entropy of a microstate has no physical meaning, in contrast to the
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Gibbs entropy of a distribution, which quantifies the amount of available work. Indeed,
the Boltzmann entropy is not a property of the microstate at all, but a property of
the coarse graining. For a particular trajectory, the Boltzmann entropy bobs up and
down like a cork as the trajectory moves from one coarse-grained cell to another, but
this bobbing up and down has no physical meaning whatsoever. To take advantage of
a decrease in the Boltzmann entropy, say to extract additional work, you would need
to know what trajectory the system is on, but you don’t know that and if you did
know it, you wouldn’t be messing around with the coarse graining, because you would
know exactly what the system is doing at all times. The Lebowitz program is a perfect
example of the contortions that come from insisting that physics is only about what’s
really out there, when it is evident here that what one can do depends on what you
know about what’s really happening.

A Bayesian, asked to fix the Lebowitz program, might do so in three steps. First,
he would point out that since one doesn’t know which trajectory the system is on, if the
program is to make any sense at all, it must deal with the average Boltzmann entropy

S̄B ≡
∑

j

pj(t) log Γj ,

where pj(t) is the probability to be in cell j at time t, given an initial uniform distribu-
tion on M . Lebowitz’s refusal to use the average Boltzmann entropy and his insistence
on using the Boltzmann entropy for individual trajectories are probably based on his
distrust of probabilities for a single system, which after all does have a particular
trajectory. Second, since the average Boltzmann entropy is only part of the missing
information, the Bayesian would replace it with the closely related Gibbs entropy of
the coarse-grained distribution, which quantifies the total missing information and is
directly related to the available work:

S(t) = kB


−

∑

j

pj(t) log pj(t) +
∑

j

pj(t) log Γj


 .

Third, the Bayesian would notice that the procedure used to get pj(t) and, hence,
S(t) does not consistently discard information: pj(t) comes from coarse graining at
each time t the exact distribution that evolves from the initial distribution, instead of
coarse graining the distribution that comes from the coarse graining at the preceding
time step. As a result, S(t) occasionally decreases. Although the bobbing up and
down of S(t) is very much suppressed relative to the bobbing up and down of the
Boltzmann entropy for a particular trajectory, a decrease of S(t), no matter how small,
describes a decrease in the missing information, even though one has not acquired
any new information about the system. This doesn’t make any sense, so a Bayesian
would replace pj(t) with the probability pj(n) that comes from consistently discarding
fine-grained information. The resulting coarse-grained Gibbs entropy,

S(n) = kB


−

∑

j

pj(n) log pj(n) +
∑

j

pj(n) log Γj


 ,
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is the one introduced earlier to describe coarse graining. It increases monotonically and
has a direct physical interpretation in terms of available work.

The result of a fix of the Lebowitz program is to disenthrone the Boltzmann entropy
and to replace it with the coarse-grained Gibbs entropy that lies at the heart of any
coarse-graining strategy. What an irony it is that Lebowitz heaps scorn on the Gibbs
entropy, saying that it can’t be the right entropy for nonequilibrium situations, because
unlike the Boltzmann entropy, it “does not change in time even for time-dependent
ensembles describing (isolated) systems not in equilibrium.”

How do people fool themselves that the Lebowitz program is sensible when its
underlying principles are so fundamentally flawed? There are two reasons. First, as
we have seen, the Lebowitz program can be placed on a sensible Bayesian founda-
tion simply by reinterpreting it as a standard coarse-graining procedure that uses the
coarse-grained probabilities pj(n) and the corresponding Gibbs entropy S(n). Second,
for the coarse graining used by Lebowitz, the first term in the coarse-grained Gibbs
entropy, which is the missing information about which coarse-grained cell the system
occupies, is negligible compared to the second term, and after a short time, the second
term is dominated by a single cell, which has nearly unity probability and nearly all the
phase-space volume. After a short time, the coarse-grained Gibbs entropy is given ap-
proximately by the Boltzmann entropy for the dominant cell, thus making the Lebowitz
program a very good approximation to a well founded Bayesian coarse graining, even
though its justification doesn’t make sense.

This means that almost all of what is done in the Lebowitz program can be given a
sensible Bayesian reinterpretation. For example, Lebowitz notes, “The microstates in
ΓMb

, which have come from ΓMa through the time evolution during the time interval
from ta to tb, make up only a very small fraction of the volume of ΓMb

, call it Γab.
Thus we have to show that the overwhelming majority of points in Γab (with respect to
the Liouville measure on Γab, which is the same as the Liouville measure on ΓMa) have
future macrostates like those typical of Γb—while still being very special and unrepre-
sentative of ΓMb

as far as their past macrostates are concerned.” When reinterpreted,
this is simply the statement that one desires that the future behavior of macroscopic
variables be insensitive to the coarse graining.

Lebowitz says that the “big question” is why are the initial conditions so special
and concludes, along with many others, that one must posit that the Universe was
originally in a much more ordered state than it is now. We have seen above that this
conclusion simply cannot be supported, but that it can be replaced by the conclusion
that the evolved state, though not complex itself, is close to very complex states.

4. Bayesian or information-based interpretation of quantum mechanics. Much of
the material in Secs. 4.a–c is contained in Caves, Fuchs and Schack (2001a, 2001b).

Let’s begin with motivation provided by E. T. Jaynes (1990a), the great physicist and
Bayesian:

Let me stress our motivation: if quantum theory were not successful pragmatically, we
would have no interest in its interpretation. It is precisely because of the enormous suc-
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cess of the QM mathematical formalism that it becomes crucially important to learn what
that mathematics means. To find a rational physical interpretation of the QM formalism
ought to be considered the top priority research problem of theoretical physics; until this is
accomplished, all other theoretical results can only be provisional and temporary.

This conviction has affected the whole course of my career. I had intended originally to
specialize in Quantum Electrodynamics, but this proved to be impossible. Whenever I look
at any quantum-mechanical calculation, the basic craziness of what we are doing rises in my
gorge and I have to try to find some different way of looking at the problem, that makes
physical sense. Gradually, I came to see that the foundations of probability theory and the
role of human information have to be brought in, and so I have spent many years trying to
understand them in the greatest generality.

. . .

Our present QM formalism is a peculiar mixture describing in part laws of Nature, in
part incomplete human information about Nature—all scrambled up together by Bohr into
an omelette that nobody has seen how to unscramble. Yet we think the unscrambling is a
prerequisite for any further advance in basic physical theory, and we want to speculate on
the proper tools to do this.

The information-based or Bayesian interpretation of quantum mechanics is founded on the
notion that quantum states, both pure and mixed, represent states of knowledge and that
all the probabilities they predict are Bayesian probabilities.

This point of view, particularly as it applies to the probabilities that arise from pure
states, seems crazy at first. The probabilities that come from a pure state are intrinsic and
unavoidable. How can they not be objective properties of a quantum system when they
are prescribed by physical law? How can they be ignorance probabilities when one knows
everything possible about the quantum system? Indeed, as Giere (1973a) notes, if one
is to find objective probabilities, one must look outside the determinism of the classical
world, and quantum mechanics, with its intrinsic indeterminism, seems to be just the place
to look. Many physicists, even Bayesian ones, have assumed instinctively that quantum
probabilities are different from the ignorance probabilities of a realistic/deterministic world.
Nonetheless, our view is that all probabilities—even quantum probabilities—are Bayesian,
i.e., based on what one knows, the Bayesian view being the only consistent way to think
about probabilities. The probabilities of quantum mechanics—even those that arise from
a pure state—are based on what the describer knows. Let’s give E. T. Jaynes (1990a)
another hearing:

For some sixty years it has appeared to many physicists that probability plays a funda-
mentally different role in quantum theory than it does in statistical mechanics and analysis of
measurement errors. It is a commonly heard statement that probabilities calculated within
a pure state have a different character than the probabilities with which different pure states
appear in a mixture, or density matrix. As Pauli put it, the former represents “ . . . eine
prinzipielle Unbestimmtheit, nicht nur Unbekanntheit”. But this viewpoint leads to so many
paradoxes and mysteries that we explore the consequences of the unified view, that all prob-
ability signifies only human information.

a. Why and how probabilities? Kochen-Specker and Gleason. We adopt the Hilbert-space
structure of quantum questions, which in its finest-grained form deals with questions
described by orthogonal one-dimensional projectors.
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The Kochen-Specker theorem says that there is no way (in three or more dimen-
sions) to assign truth or falsity to every one-dimensional projector (only finite sets of
projectors are required for the proof) in such a way that every quantum question has a
definite, predictable answer. As a consequence, quantum mechanics cannot be reduced
to certainties, but rather must deal with probabilities. The crucial assumption in the
Kochen-Specker theorem, called noncontextuality, is that the truth or falsity of a pro-
jector does not depend on which orthogonal set it is a member of. This assumption,
unreasonable for a hidden variable theory, which ought to be able to snub its nose
at the Hilbert-space structure of quantum questions, is a reasonable, even necessary
assumption for our purpose of demonstrating that quantum mechanics must deal with
probabilities. Noncontextual truth assignments ignore the Hilbert-space structure; that
being the only input from quantum mechanics, if one ignores it, one can’t hope to find
out anything about quantum mechanics.

The rule for assigning probabilities comes from Gleason’s Theorem. A frame func-
tion assigns to each one-dimensional projector Π = |ψ〉〈ψ| a number between 0 and 1
inclusive, with the property that the function sums to 1 on orthogonal projectors. A
frame function makes a noncontextual probability assignment to all quantum questions
(noncontextual because the probability assigned to a projector does not depend on
which orthogonal set it is a member of). Gleason’s Theorem shows that (in three or
more dimensions) any frame function can be derived from a density operator ρ accord-
ing to the standard quantum rule, tr(ρΠ) = 〈ψ|ρ|ψ〉. Thus in one stroke, Gleason’s
theorem establishes that density operators provide the state-space structure of quan-
tum mechanics and gives the rule for calculating probabilities from states. For the same
reason as above, the assumption of a noncontextual probability assignment is perfectly
reasonable here (although perhaps less convincing because probability assignments can
be tweaked slightly, whereas truth assignments cannot), where we are trying to de-
termine the consequences of quantum mechanics for probability assignments. From a
Bayesian perspective, what Gleason’s theorem says is that the only way for someone to
assign probabilities to quantum questions in a way that doesn’t correspond to a density
operator is to make a contextual assignment.

In a realistic/deterministic world, maximal information corresponds to knowing
which of a set of mutually exclusive, exhaustive alternatives is the true one. It provides
a definite, predictable answer for all questions, including the finest-grained ones, i.e.,
those that ask which alternative is true. The slogan is that in a realistic/deterministic
world, “maximal information is complete,” providing certainty for all questions. Quan-
tum mechanics is different, since no density operator (quantum state) gives certainty
for all questions. Mixed states cannot provide certainty for any fine-grained question.
Only pure states—themselves one-dimensional projectors—can provide certainty for
some fine-grained questions. Thus they are the states of maximal information. The
quantum slogan is that “maximal information is not complete and cannot be com-
pleted,” thus giving rise to Bayesian probabilities even when one knows as much as
possible about a quantum system.

States of maximal information correspond to well defined preparation procedures
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both in a realistic/deterministic world and in quantum mechanics, the procedure being
the one that renders certain the answers to the appropriate questions. Other states
of knowledge do not correspond to well defined procedures. There are many different
kinds of situations where one assigns probabilities in a realistic/deterministic world or
a mixed state in quantum mechanics, but one such situation is where the describer
knows that the system has been prepared by a well defined procedure, but does not
know which procedure.

A complete theory must have a rule for assigning probabilities in the case of max-
imal information: if one has maximal information, there is no other information that
can be brought to bear on the probability assignment; thus, if the theory itself is com-
plete, it must supply a rule. In a realistic/deterministic world, maximal information
corresponds to certainty, and the Dutch book argument requires all probabilities to
be 0 or 1. In quantum mechanics, where maximal information is not complete, the
Dutch book argument only prescribes probabilities for those questions whose outcome
is certain. Fortunately, Gleason’s theorem comes to the rescue, providing the unique
rule for assigning probabilities that is consistent with the Hilbert-space structure of
questions. For this essential service, Gleason’s theorem can be regarded as the greatest
triumph of Bayesian reasoning.

Perhaps the most compelling argument for the subjectivity of quantum probabili-
ties comes from the multiplicity of ensemble decompositions of a density operator. The
ensemble probabilities are clearly Bayesian, reflecting ignorance of which pure state
in the ensemble, for all the reasons cited for classical probabilities. The probabilities
derived from the pure states in the ensemble are natural candidates for “objective
probabilities.” The problem with this idea is that the multiplicity of ensemble de-
compositions means that is impossible to separate cleanly the subjective and objective
probabilities. Here’s how Jaynes (1957b) put it long ago in one of his pioneering articles
on the foundations of statistical physics:

A density matrix represents a fusion of two different statistical aspects; those inherent
in a pure state and those representing our uncertainty as to which pure state is present. If
the former probabilities are interpreted in the objective sense, while the latter are clearly
subjective, we have a very puzzling situation. Many different arrays, representing different
combinations of subjective and objective aspects, all lead to the same density matrix, and
thus to the same predictions. However, if the statement, “only certain specific aspects
of the probabilities are objective,” is to have any operational meaning, we must demand
that some experiment be produced which will distinguish between these arrays.

The multiplicity of decompositions implies that all the probabilities must be given
the same interpretation. Since some of the probabilities are clearly subjective, one is
forced to acknowledge that all quantum probabilities are Bayesian. The mixed-state
decomposition problem in quantum mechanics tell us that in quantum mechanics, even
more than in a realistic/deterministic world, you have to have a consistent view of
probabilities and stick with it, and the only consistent view of probabilities is the
Bayesian view. Anyone who promotes an interpretation of quantum mechanics without
first declaring his interpretation of probabilities should be sent back to the starting gate.

b. Quantum states as states of knowledge. The simplest argument for why quantum states
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are states of knowledge is the same as the argument for probabilities: If you want to
know the state of a quantum system, you cannot ask the system; it doesn’t know its
state. If you want to know the state, you must ask the describer.

Given maximal information, the Dutch book argument requires assignment of a
unique pure state, so once you obtain the maximal information of the describer, you
must assign the same pure state. If the describer tells you that the state is mixed,
then you are free to assign a different mixed state based on the same information or
to acquire privileged information that permits you to assign a different state, pure or
mixed (the Dutch-book argument does require your mixed state to have support the
lies within the support of the describer’s mixed state).

The notion that a pure state corresponds to maximal information already says that
the properties whose statistics are given by quantum probabilities cannot be objective
properties of a quantum system. If they were, then the purportedly maximal informa-
tion would not be maximal and should be completed by determining the values of all
these properties.

A curious feature of this simple argument is that it doesn’t have to change at
all to accommodate hidden-variable theories. Indeed, Bayesian probabilities are the
natural way to think about quantum states in a hidden-variable theory. In a hidden-
variable theory, all the properties of the system are objective, having actual values, but
values that are determined by “hidden variables” that are for the present inaccessible.
The quantum probabilities are naturally regarded as Bayesian probabilities, but now
reflecting ignorance of the hidden variables, and the quantum state, as a summary of
those probabilities, is a state of knowledge. As long as the hidden variables remain
inaccessible, it is still not possible to determine the state by asking the system. The
only difference is that in a hidden variable theory, the purportedly maximal information
corresponding to a pure state isn’t maximal at all, even though it might be impossible
in principle to complete it. Thus the slogan for hidden-variable theories is, “Apparently
maximal information is not maximal, but might or might not be completable.”

The virtue of Bell inequalities is that they show that the hidden variables must be
nonlocal, if they are to duplicate the statistical predictions of quantum mechanics, and
that they provide experimental tests that distinguish quantum mechanics from local
hidden variable theories. For this reason, variants of the “you can’t ask the system”
argument for entangled states are perhaps more convincing. In particular, there is
Chris’s favorite: by making an appropriate measurement on one member (Alice’s) of
an entangled pair, you can make the pure state of the other member (Bob’s) be a state
chosen randomly from any orthonormal basis. This is accomplished without in any
way interacting with Bob’s particle. Different von Neumann measurements on Alice’s
particle will leave Bob’s particle in a state chosen randomly from incompatible bases.
This is a cogent argument for pure states being states of knowledge instead of states
of the world. Nonetheless, the argument can be put in the context of nonlocal hidden-
variable theories, where there would be a real nonlocal (potentially acausal) influence
of Alice’s choice of measurement on Bob’s particle. Thus the only real advantage of
this argument over the simple you-can’t-ask-the-system argument—perhaps this is a

14



considerable advantage—is that it forces the hidden variables to be nonlocal if they are
to be capable of providing an ontology underneath the quantum state.

We can summarize our position as follows: A pure state described by a state
vector corresponds to a state of maximal information, for which there is a well defined,
repeatable preparation procedure. That is the reason one assigns the product state to
many copies of a system identically prepared, for one then has maximal information
about the composite system and must assign a state that gives certainty for repeated
yes/no questions corresponding to the state. On the other hand, one shouldn’t fall into
the trap of regarding the state vector as real. It corresponds to a state of knowledge.
The proof is in the fact that even though one can prepare a pure state reliably, using
the maximal information, one can’t determine it, which one ought to be able to do
if it is real. Someone else cannot determine the state of a system, because it is not
out there, but in the mind of the describer. If you want to know the state I assign,
who do you ask? The system or me? The state vector can change as a consequence
of my obtaining information, and this also argues strongly for its subjective status. A
pure state, rather than being objective, is intersubjective, because of the reproducibility
of maximal information and the Dutch-book-enforced agreement on assigning a pure
state.

c. Principle of quantum indeterminism and the quantum de Finetti theorem. A guiding
principle that we use in assigning probabilities is that one should never make a prob-
ability assignment that prohibits learning from data, by which we mean using data
to update probabilistic predictions for situations from which data has not yet been
gathered, unless one already has maximal information, in which case there is noth-
ing further to learn. If you do not have maximal information, there is always room
for hypotheses about things you do not know, so you should allow for these hypothe-
ses in your probability assignments. When you do have maximal information, your
probability assignment should not allow learning from data.

In a realistic/deterministic world, maximal information means certainty, so all
probabilities are 0 or 1. In contrast, in a quantum world, “maximal information is
not complete and cannot be completed” and thus gives rise to Bayesian probabilities
even when one knows as much as possible about a quantum system.

The classical and quantum de Finetti theorems (Caves, Fuchs, and Schack 2001a),
which deal with exchangeable probabilities or density operators, provide a setting for
applying this guiding principle. For exchangeable sequences, i.i.d. probability assign-
ments are the unique ones that do not allow any learning. The guiding principle
implies that one should never assign the i.i.d., except when one has maximal informa-
tion. In a realistic/deterministic world, where maximal information is complete, this
means that one should assign the i.i.d. only in the trivial case of certainty. This re-
fusal to assign the i.i.d. leaves open the possibility of using frequency data from initial
trials to update probabilistic predictions for further trials. Things are different in a
quantum-mechanical world. Since maximal information is not complete, one can as-
sign (nontrivial) i.i.d.’s to exchangeable trials when all the systems are described by the
same pure state. Notice that the data gathered from such trials comes from “the bot-
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tomless quantum well of information” and is useless for updating the state assignment
for additional systems.

Since it is easy to fail to appreciate the content of our guiding principle in the
classical case, it is worth discussing that situation in some detail. Should someone
not see the point of the guiding principle, ask if he would assign equal probabilities
to further tosses of an allegedly fair coin after getting 100 consecutive heads. If he
continues to accept even bets, you’ve found a gold mine. If he doesn’t, then point out
that any time one doesn’t continue to assign probabilities based on the initial single-
trial probability, it means one didn’t assign the i.i.d. to the multi-trial hypothesis space.
This is because the data from initial trials cannot be used to update via Bayes’s rule
the probabilities for further trials when the multi-trial assignment is an i.i.d.

It is an interesting aside to note that many people react in contradictory ways—
you might want to test your own reaction—when presented with the same problem in
slightly different guises. Handed what is said to be fair coin, they will assert that one
ought to stick with 50-50 predictions for future tosses even after many consecutive tosses
give heads. On the other hand, given a coin about which they are told nothing is known,
they will assert that the the probability for heads in the (N + 1)th toss is the observed
frequency of heads, n/N , in the first N tosses, and they will heap scorn on Laplace’s
Rule of Succession, which says to use head probability (n+1)/(N +2) for the (N +1)th
toss. From a Bayesian perspective, these different attitudes reflect different probabilities
on probabilities or, using the de Finetti representation, different exchangeable multi-
trial probabilities. The desire to stick with an initial 50-50 probability comes from a
probability on probabilities that is highly concentrated near 50-50—the robust 50-50
odds are then what was called a propensity above—the consequence being an extreme
reluctance to let the data change the initial 50-50 probabilistic predictions. The use
of observed frequency to predict future tosses reflects just the opposite prejudice, i.e.,
a prejudice for letting the data dictate predictions for further trials. Laplace’s Rule
of Succession lies in between, but much closer to learning from the data than to a
stubborn insistence on an initial single-trial probability. An excellent discussion of
these questions and their relation to probabilities on single-trial probabilities can be
found in Jaynes (1986b).

Hypothesis testing and parameter estimation (continuous variable hypothesis test-
ing) are real-life situations where one uses probabilities on probabilities. Each hy-
pothesis leads to different probabilistic predictions for data that will be used to decide
among the hypotheses, and thus each hypothesis represents some state of knowledge
about the data. The state of knowledge might include knowledge of the actual value of
some objective property, but it cannot include complete knowledge, for then the data
could be predicted with certainty. Thus the prior probabilities on the hypotheses are
probabilities on probabilities, which in a Bayesian perspective should be banished in
favor of primary probability assignments on the data. The de Finetti representation
theorem shows how to do this in the case of data that is exchangeable. Notice, however,
that if the only difference between hypotheses lies in different, but unknown values of
an objective property, then the goal of collecting data is to make the best possible
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determination of that objective value.

Before returning to quantum mechanics, we have to deal with a couple of objections
to our statement that one should never assign the i.i.d. in a realistic/deterministic
world. For any exchangeable probability assignment for binary variables, if one selects
the successive occurrences of head-tail and tail-head, these occurrences have equal
probabilities and thus are governed by the 50-50 i.i.d. Recall that this scenario, which
is the simplest of many such scenarios, raised its ugly head earlier in the context of
an attempt to find objective classical probabilities; easily disposed of in that context,
it is more insidious now because within a Bayesian context, it challenges our guiding
principle that one should never assign the i.i.d. classically except when there is certainty.
The challenge is easily met, however, because the essence of our guiding principle is
that one should never assign probabilities that prohibit learning from data except in
the case of maximal information. We did not intend, for it is not true, that such a
probability assignment prohibit selecting subsets of the data from which nothing can
be learned, and that’s what happens in the head-tail vs. tail-head scenario. We don’t
need to change our statement that one should never assign probabilities that forbid
learning, except in the case of maximal information; in the case of i.i.d.’s, however,
when being utterly precise, we should say that one should never assign the i.i.d. to the
base hypothesis space, except in the case of maximal information.

There is another, more troubling objection. In the case of exchangeable multi-
trial probabilities, collecting frequency data from many trials allows one to update the
probabilities for further trials. In the limit of infinitely many trials, the probability as-
signment for further trials converges to an i.i.d. whose single-trial probabilities are given
by the measured frequencies. So what happens to our statement that you shouldn’t
assign the i.i.d. except in the case of maximal information?

There are two good answers to this question. The first, easier answer is that you
don’t converge to the i.i.d. except in the unattainable infinite limit. For finite numbers
of trials, your single-trial probabilities will become increasingly robust, but there will
always be some remaining doubt. Since we never questioned the idea that one might
make arbitrarily robust single-trial probability assignments, there is no contradiction
with our guiding principle.

The second, probably better answer takes one outside the arena of exchangeable
probabilities. If successive trials do not all yield the same result, then in a realis-
tic/deterministic world, there are undiscovered details about the trials that if known,
would give certainty for each trial. A random-number generator or a calculation of the
digits of π provides a good example of the kind of underlying realistic mechanism might
be at work in generating successive trials. Knowing all the details or some part of them
necessarily takes one outside the province of exchangeable probabilities unless all the
trials yield the same result. Learning about these details from data requires more than
frequency data—it would involve information about correlations between trials—and
updating probabilities based on this nonfrequency data requires a nonexchangeable
probability assignment. Thus the guiding principle actually says that one should never
make a strictly exchangeable probability assignment in a realistic/deterministic world,
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except in the case of maximal information, and this neatly avoids the possibility of
assigning an i.i.d. or converging to an i.i.d.

In quantum mechanics we replace the objectivist’s obsession with objective prob-
abilities with a Bayesian attention to the conditions under which one should assign
the i.i.d. We argue that one assigns the i.i.d. only in a situation corresponding to
maximal information, which can be reproduced reliably from trial to trial. In a re-
alistic/deterministic world this gives the i.i.d. only in the case of certainty, but in a
quantum world it gives the i.i.d. for pure states, i.e., maximal information.

One can argue that one never actually has maximal information about a system,
either classical or quantum mechanical, and that this means that one never does assign
the i.i.d. even in quantum mechanics. Though it is perhaps true that maximal infor-
mation is an unattainable limit of more and more refined information, the crucial point
is that this limit corresponds to certainty in a realistic/deterministic world, whereas it
corresponds to a pure state—and the consequent i.i.d.’s—in quantum mechanics.

From the Bayesian perspective, there is no necessary connection between probabili-
ties and frequencies in a realistic/deterministic world. That is the content of our guiding
principle when applied to exchangeable sequences. Nonetheless, what we have learned
is that in quantum mechanics, there can be a strict connection between single-trial
probabilities and observed frequencies. The reason is that the well defined procedure
for preparing a pure state allows one to prepare many copies of a system, all in the
same state, and this leads to the i.i.d. for repeated measurements of the same quantity
on the successive copies. This is Rüdiger’s argument, and he has dubbed the funda-
mental new quantum-based connection between probabilities the principle of quantum
indeterminism. It is the Bayesian answer to why the probabilities that come from pure
states can be used to predict frequencies.

Notice the similarity of our argument to Giere’s (Giere 1973a) view of objective
chance. Giere admits that in a deterministic world the only objective chance is cer-
tainty, but maintains that in a quantum world the quantum probabilities correspond to
objective chance. The difference is that Giere has the probabilities change character,
from subjective to objective in the limit of maximal information, whereas we regard all
probabilities as Bayesian. Even in the limit of maximal information, we think of the
probabilities as Bayesian, i.e., based on the maximal information, but we say that the
maximal information can be reproduced reliably from trial to trial.

A potential weakness of our argument is that there is no operational difference be-
tween our view—assign Bayesian i.i.d.’s only in the case of maximal information—and
Giere’s view—the only objective probabilities, which give the i.i.d., occur in the situa-
tions we call maximal information. Indeed, I think one of the responses to our view will
be that maximal information defines those situations where probabilities are objective
properties. The difficulty is that we want to retain in quantum mechanics some, but
not all of the features of classical maximal information, and there will certainly be
disagreement over the features we choose. States of classical maximal information can
be prepared and verified reliably; they provide the ontology of a realistic/deterministic
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world. States of maximal information in quantum mechanics can be prepared reliably,
but they cannot be verified (you can’t ask the system); because they cannot be verified,
we do not accord them objective reality, and we regard the probabilities they generate
as Bayesian probabilities.

d. Ontology. In the Bayesian interpretation, the states of quantum systems do not have
objective reality—they are states of knowledge, not states of the world—and the values
of the properties of microscopic systems do not have objective reality. The apparatus of
quantum states and associated probabilities is an elaborate theory of inference—a law
of thought, in Chris’s phrase—in which we put in what we know and get out statistical
predictions for things we can observe. In my version of the Bayesian interpretation,
the objective parts of the theory—the ontology—lie in the other part of quantum
mechanics, i.e., in the physical laws that govern the structure and dynamics of physical
systems. These physical laws are encoded in Hamiltonians and Lagrangians.

What is the evidence that Hamiltonians have ontological status. The most com-
pelling argument is the following: whereas you can’t ask a quantum system for its state,
you can ask it for its Hamiltonian. By careful experimentation, you can deduce the
Hamiltonian of a quantum system—that’s what physics is all about.

A second argument comes from dynamics. It is possible to argue that the only kind
of dynamics consistent with the convex structure of density operators is given by posi-
tive superoperators (linear maps on operators). Among these positive superoperators,
a special place is occupied by those maps that preserve maximal information, and it is
possible to show that the only positive maps that preserve maximal information and
are connected continuously to the identity are generated by Hamiltonians. If you have
maximal information about a quantum system and you want to retain such maximal
information, you must know the system’s Hamiltonian. Where does that Hamiltonian
come from? I think it must be an objective property of the system.

What does it mean to say that Hamiltonians are objective? Does it mean that the
formula written on a page is real? That’s silly. Does it mean that the positions and
momenta and spins in it are real? Certainly their values don’t have objective status,
but their appearance in the Hamiltonian does determine the kind of Hilbert space that
applies to the system and thus dictates the structure and—this is important—to some
extent the meaning of the quantum questions that began our discussion of quantum
probabilities. Moreover, the form of the Hamiltonian in terms of positions, momenta,
spin, and so forth together with the parameters in the Hamiltonian—masses, charges,
coupling constants—determines the physical properties of systems. If microscopic sys-
tems are to have any real properties, it is these physical properties that are the best
candidates, and their objective status is equivalent to the objective status of at least
some part of the Hamiltonians governing microscopic systems.

Again we run up against the question of which aspects of maximal information are
to be promoted to objective status. In a realistic/deterministic world, where maximal
information leads to certainty, we regard as objective the alternatives that correspond
to maximal information. In quantum mechanics, we do not grant objective status to the
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pure states that correspond to maximal information. Fundamentally, this is because
maximal information not being complete, pure states lead to probabilities, and we
know that the only consistent way to interpret probabilities is the subjective, Bayesian
interpretation. How could the pure state be objective if the probabilities it predicts
aren’t? When we come to Hamiltonians, which provide the rule for updating maximal
information, we face a choice. Classically they can naturally be regarded as objective,
but what should we do in quantum mechanics? The choice is by no means clear, but the
choice made in this document is to say that they are objective properties of the system
being updated. Fundamentally, this choice comes down to the fact that Hamiltonians
aren’t directly associated with probabilities, so we are free of the prejudice to declare
them subjective. The slogan is that quantum systems know what they’re doing, but we
often don’t. The hope is that this point of view can be an ingredient in constructing
the effective reality that emerges from quantum mechanics.

Quantum computation provides some support for the notion that Hamiltonians
are objective. The standard description of an ideal quantum computation is something
like the following. The computer is prepared initially in a pure state in the computa-
tional basis; this input state might encode input information. The computer then runs
through a prescribed set of unitary steps that leave it in a computational basis state
that stores the result of the computation. A measurement reveals the result. The user
doesn’t know the output state—otherwise he wouldn’t need to do the computation—so
he assigns a density operator to the output. In a Grover-type search algorithm, the
user doesn’t know the output state because he is trying to discover the actions of an
“oracle,” which prepared the output state. In a Shor-type algorithm, however, the user
doesn’t know the output state even if he knows the prescribed sequence of unitaries,
because the consequences of the unitary steps are too complex too be simulated. In
this case the output tells the user something objective about the input—the factors in
Shor’s algorithm—and the unitary steps act as a sort of guarantee that the answer can
be trusted. For a quantum computer, even if one knows the Hamiltonian, one cannot
retain maximal information, but nonetheless trusts that the computer will output the
right answer. This is truly an example where “the system knows what it is doing, even
though the user doesn’t.”

e. Emergent effective reality. The realistic/deterministic reality of everyday experience
is an emergent property in the Bayesian interpretation. It arises in sufficiently com-
plicated, “macroscopic” systems in which one is able to observe only “macroscopic”
variables. The mechanism for its emergence is Zurek-style (1998a) decoherence that
comes from not having access to the microscopic variables (formally, one traces over the
microscopic variables). The result is hoped to be the “effective reality” of our everyday
experience. An important question is the extent to which the properties of the effective
reality are dictated by the laws of physics—Hamiltonians and Lagrangians—as opposed
to depending on the quantum state of the microscopic variables. It would be nice if
the character of the effective reality came mainly from the microscopic ontology, i.e.,
Hamiltonians, with only minimal dependence on the subjective quantum state.

There is some reason to think this is true. One argument is that since the physical
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laws involve local interactions, natural selection would favor a local reality, not nonlocal
superpositions, which would be difficult to follow because of decoherence unless one had
the ability to monitor the details of the environment. This, or some other argument,
perhaps not involving natural selection, gives the separation between the ontology and
the epistemology in the Bayesian interpretation: the Hamiltonians are the ontology,
giving rise to the effective reality, and the structure of quantum states provides rules
of inference for making predictions in view of what we know. Even without the whole
Bayesian apparatus of quantum inference, active agents can take advantage of the
predictability within the almost realist/almost deterministic effective reality.

We are now in a position to be more specific about quantum states as states of
knowledge—knowledge about what?—and quantum probabilities as ignorance proba-
bilities—ignorance of what? The probabilities of quantum mechanics—even those that
arise from a pure state—are based on what the describer knows. They do not reflect ig-
norance of some underlying reality, as in a hidden-variable theory, but rather ignorance
of results of possible observations. They are ultimately probabilities for “macroscopic”
alternatives in the emergent effective reality of the “macroscopic” world. They are
ignorance probabilities because the describer cannot predict which of the macroscopic
alternatives is realized. They are based on what the describer knows about “micro-
scopic” systems that intervene between himself and the ultimate alternatives, micro-
scopic systems that cannot be described within the approximately realistic, approxi-
mately deterministic effective reality, but must be described by quantum mechanics,
thereby introducing uncertainty into the ultimate predictions.

This kind of effective reality is the best we can hope for. Einstein emphasized that
there are not two presentations of reality: one out there and one constructed from
our theories that are tested against what’s out there. Rather there is a single reality
constructed from our perceptions and our theories about them. This is just what the
effective reality provides. It is the reality that is relevant for avoiding a predator,
catching prey, or playing baseball and for making statistical predictions about the
behavior of microscopic systems whose behavior lies outside the almost-realistic/almost-
deterministic world of everyday experience.

The notion of an effective reality is clearly a program that is mainly not even
started, but it builds on the considerable work already done on decoherence and deco-
herent histories. There is an important consistency issue in constructing the effective
reality from physical law applied to quantum systems and then using that same effective
reality as the backdrop for our investigations of quantum systems.

Two further comments on Hamiltonians: (i) Non-Hamiltonian (i.e., nonunitary)
evolutions inevitably involve a state assignment to another system that interacts with
the primary system, and thus they include a subjective component. Evidence for the
subjectivity of nonunitary evolutions thus has no bearing on the reality of Hamiltonians.
(ii) Most Hamiltonians are emergent in some sense. The Hamiltonians of classical
mechanics, for example, take as given parameters that ultimately come from a quantum
description of atomic systems; these Hamiltonians are thus a part of the effective reality,
not an ontological input to it. As another example, the Hamiltonians of atomic physics

21



and condensed-matter physics take as input the masses and charges of electrons and
protons, which come as input from a more fundamental description like QCD.

A final point before moving on. The Bayesian interpretation takes as given that par-
ticular events happen in the effective reality. The almost-realistic/almost-deterministic
flow of events that occur wholly within the effective reality can only be pushed so
far into the microscopic level; pushed farther, it fails. Even though we operate wholly
within the macroscopic level, our description of what happens there sometimes requires
us to dip into the quantum world and thus to introduce uncertainty into the conse-
quences within the effective reality; under these circumstances, the responsibility of the
theory is to provide probabilities for events that cannot be predicted with certainty.
Quantum theory gives us a reliable method for predicting the probabilities of these un-
certain events, and with that accomplished, its job is finished. In particular, a detailed
explanation of how a particular event is actualized out of the several possibilities is, we
contend, outside the provenance of quantum theory.

f. Other issues.

We have a Dutch-book argument for why two observers, sharing the same maximal
information, cannot assign different pure states. This argument ought to be tested in
a variety of circumstances where there seems to be no pure state or there seems to be
more than one pure state: (i) two-time situations where there is no consistent state-
vector assignment (measure x spin and later z spin; in between, measurements of x
and z spin are both determined, when conditioned on pre- and post-measurements; no
state vector has these statistics); (ii) relativistic situations where two observers assign
different state vectors (not really a problem, because they never run into any betting
contradictions); (ii) pure-state assignments in the situation where one observer is part
of the state vector of another super-observer (one can get contradictory wave function
assignments, although the super-observer will be unable to assign a wave function to
the system being considered by the subobserver).

What is a measurement? It is the acquisition of information that is used to update
the quantum state (collapse of the wave function, to use less neutral terms). Can dogs
collapse the wave function? This is a dumb question, since dogs don’t use wave func-
tions. What they do use is the emergent reality, in which they and other agents gather
and process information and make decisions based on the results. What we are now
doing in quantum information science is getting beyond information processing that
occurs entirely within the effective reality of our everyday experience, even though it
uses the structures of quantum systems; instead we are doing rudimentary information
processing part of which occurs in the quantum world, where the realism of everyday
experience doesn’t apply. The power of quantum information lies in the fact that it
allows us to escape the constraints of realistic classical information. This is something
a dog can’t do, so it might be said that just as we are beginning to understand the
complex operations of our own genome, we are also leaving dogs behind for the first
time.

There is a misconception about applying the conclusions of quantum mechanics—
that the properties of microscopic systems do not have objectively real values, loosely
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stated as there being no objectivity at the microscopic level—to the wider world around
us. The founders of quantum mechanics—Bohr, Heisenberg, and Pauli—sometimes
hinted that their thinking about quantum mechanics could be applied to cultural,
political, historical, and social questions. Postmodernists can make the same mistake
in a different way: to the extent that they pay any attention to quantum mechanics,
they might look at the subjective features of quantum mechanics and say that cultural,
political, historical, and social questions inherit the same subjectivity. This is nonsense.
It is, ironically, the basic mistake of reductionism—thinking that what occurs at lower
levels in the hierarchy of our description of the world is happening at higher levels,
when in fact the microscopic, quantum level provides the effective, realistic structure
in which the higher levels operate. The objectivity of events is an emergent property,
which applies in the effective reality, but this doesn’t make them any less objective.
The theory provides the stage of an emergent effective reality, and culture, politics,
history, and sociology act on that stage.

5. The four questions. There are four questions that should be addressed in thinking about
any interpretation of quantum mechanics.
• Probabilities. What is the nature of probabilities (ignorance or Bayesian probabilities

vs. frequentist or ensemble probabilities)? In particular, what is the nature of quantum
probabilities?

• Ontology vs. epistemology. Does the interpretation posit an ontology (underlying
objective reality), or is it wholly epistemological? If there is an ontology, what is it?

• Which basis and which alternative? How does the interpretation explain which
basis (i.e., which observable) is to be used and how a particular alternative is actualized
within that basis?

• Classical reality. How does the interpretation explain the world we observe around
us? Does its ontology aid in this explanation?

For theories that go beyond quantum mechanics, we should include a fifth question:
• Different predictions. How do the the statistical predictions of the new theory differ

from the predictions of quantum mechanics? At Växjö in 2001 June, Lucien Hardy
suggested to me that this fifth question should be expanded to something like: How
much can the theory be tweaked so as to provide a range of alternatives to quantum
mechanics? Such theories are extremely valuable even if they turn out to be wrong, be-
cause they provide a way of getting at which features are special to quantum mechanics
and which are only incidental.

For the Bayesian interpretation outlined in Sec. 3, the answers to these questions—or
at least the hope for an answer—should be clear. It is worth emphasizing that the Bayesian
interpretation places actualization outside its provenance. The reason for emphasizing this
point is that much pointless wrangling over interpretations comes from repeated accusa-
tions that an interpretation doesn’t deal with actualization. It is best to explicitly eschew
actualization if your interpretation doesn’t deal with it. Then, though it is a perhaps dev-
astating criticism that your interpretation doesn’t deal with actualization, it is a criticism
that only needs to be made once.
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6. Other interpretations.

a. Copenhagen interpretations. The Copenhagen interpretation has acquired so much
baggage—classical apparatuses, classical language, quantum/classical cuts, necessity
of a classical world, complementarity, uncertainty-principle limits, forbidden questions,
Bohrian obscurity—that it is next to impossible to sort out what it is. At this stage
in history, it is probably best just to wipe the slate clean and give the Copenhagen
interpretation a new, more informative name that highlights its essential feature. The
information-based interpretation, with its insistence that quantum states are states of
knowledge, is the new Copenhagen interpretation.

b. Ensemble interpretations. These aren’t really interpretations. They are misconcep-
tions about probabilities that are taken directly over into quantum mechanics because
quantum mechanics necessarily deals with probabilities. If you believe in an ensem-
ble interpretation, you need first to get your notion of probabilities straight before
proceeding to quantum mechanics. Again quoting E. T. Jaynes (1986a):

We think it unlikely that the role of probability in quantum theory will be understood
until it is generally understood in classical theory and in applications outside of physics.
Indeed, our fifty-year-old bemusement over the notion of state reduction in the quantum-
mechanical theory of measurement need not surprise us when we note that today, in all
applications of probability theory, basically the same controversy rages over whether our
probabilities represent real situations, or only incomplete human knowledge.

The traditional ensemble interpretation, mainly encountered in old quantum me-
chanics texts, means the idea that the wave function must be interpreted as describing
a real ensemble of identical systems. It has fallen out of favor because we apply the
wave function (more generally, the density operator) routinely (in quantum optics, for
example) to individual systems subjected to repeated measurements. But the real
problem is that it takes a misconception about probabilities—that they can’t be ap-
plied to single cases and thus must be referred to a real ensemble—and infects quantum
mechanics with the same misconception. The right approach, as Jaynes says, is to get
the interpretation of probabilities straight before proceeding to quantum mechanics.

What about hypothetical ensembles? Here the main candidate is the Hartle (1968a)
approach to getting quantum probabilities as limiting frequencies. Hartle argues from
the perspective of a (mathematical) frequentist who believes that probabilistic state-
ments acquire meaning as limiting frequencies in an infinite ensemble. He attempts to
show, by taking limits as the number of systems goes to ∞, that an infinite product
of a given state is an eigenstate of the frequency operator, with eigenvalue given by
the usual quantum probability. He uses the eigenstate hypothesis to conclude that
a measurement of the frequency operator must yield the quantum probability, thus
establishing the quantum probability law as a consequence of the weaker eigenstate
hypothesis. In this quantum derivation, one does have an advantage over trying to get
classical probabilities as limiting frequencies, because the inner-product structure of
Hilbert space provides a measure. Nonetheless, one still has the probability-one prob-
lem: even though an infinite-product state is an eigenstate of the frequency operator,
this doesn’t mean that the limiting frequency occurs with certainty (i.e., the eigenstate
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hypothesis fails for continuously infinite sets). Thus one can’t escape the need to have a
preëxisting notion of probability to interpret that being an eigenstate of the frequency
operator means that the eigenvalue occurs with probability-one. Furthermore, one still
has the problem of making quantitative statements about finite (actual) ensembles,
since each finite ensemble will require yet another infinite hypothetical ensemble.

Note that Zurek’s (1998a) objection to the Hartle argument misses the mark. Zurek
contends that the frequency operator is a collective observable whose measurement has
nothing to do with frequencies of “events” for the individual systems (I believe this
was Chris’s original objection). Zurek’s conclusion applies to a direct measurement of
the frequency operator on the joint system. The result of such a measurement is a
particular frequency, and the measurement projects the joint system into the subspace
corresponding to that frequency. In such a measurement there are no measurement
results for the individual systems: it isn’t known how the individual systems are ordered
so as to give rise to the observed frequency. This is not, however, the only way to
measure the frequency operator. Suppose one measures the individual systems in the
relevant basis; in this case, if the state of the system is a frequency eigenstate, but not
necessarily a product state in the relevant basis, then the frequency constructed from
the measurement results will definitely be the frequency eigenvalue. Measurements
on the individual systems provide more information than a direct measurement of the
frequency operator—they give an ordered sequence of results, not just the frequency—
but this should not obscure the fact that the frequency operator has a direct connection
to frequencies of “events” on the individual systems. Formally, what is going on is that
the frequency operator commutes with the product observable for the joint system;
measuring the product observable removes the degeneracies in the frequency operator,
thus giving more information than a direct measurement of the frequency operator, but
certainly providing a measurement of the frequency operator.

c. Consistent-histories and decoherent-histories interpretations. Consistent histories (Om-
nès 1992a) and decoherent histories generalize the third question from being about
which basis and which alternative in a basis to being about about which set of histo-
ries and which history within the set. As such, they are not interpretations so much
as useful and instructive generalizations of the framework in which interpretations are
considered. They generalize the incompatible bases that go with different sets of com-
muting observables to the different, incompatible sets of consistent histories.

Consistent- and decoherent-histories interpretations don’t provide compelling an-
swers to any of the four questions, particularly the third, which is just generalized
from bases to histories. The consistent historians, Griffiths and Omnès, seem to grant
simultaneous existence to all the incompatible sets of consistent histories and to hold
that one history within each of the sets is realized. They explicitly eschew the need
to explain actualization, and they don’t seem to care whether all the sets of consistent
histories correspond to worlds like our classical experience, being content to know that
some set of consistent histories corresponds to a world like ours. The decoherent his-
torians, Gell-Mann and Hartle, originally thought that decoherence would be sufficient
to restrict decoherent histories to those that match our experience. When it didn’t,
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they were left a bit out at sea, with no clear answer to any of the questions.

d. Realistic, deterministic, causal interpretations. The Bohm interpretation. In Bohmian
mechanics, the phase of the wave function defines trajectories for particle position;
these trajectories obey a Hamilton-Jacobi equation that is modified from the classical
equation by the addition of a “quantum potential” that is determined by the magnitude
of the wave function. This is just a re-write of wave mechanics. The Bohm interpreta-
tion promotes particle position to ontological status as the (hidden) reality underlying
quantum mechanics, with the absolute square of the wave function giving probabilities
for particle position.

The interpretation of probabilities presents a problem for the Bohm interpretation.
As discussed above, the natural probability interpretation for hidden-variable theories
is the Bayesian interpretation, but then you have to explain how probabilities that are
states of mind can push particles around via the quantum potential. A frequentist
(ensemble) interpretation has the same problem: how is it that other members of the
ensemble affect the motion of a particle through the action of the quantum potential?
Notice that there are problems whether the ensemble is thought to be real or a the-
oretical construct, although they are different in the two cases. These problems have
led Bohmians to speculate about how the “actual” probabilities might “relax” to the
quantum probabilities, much as in relaxation to thermodynamic equilibrium, but these
efforts have not been very convincing and, from a Bayesian perspective, are wholly
misguided anyway. The best strategy for a Bohmian might be to adopt the idea that
the probabilities are objective propensities; then they could push particles around.

Though the ontology of the Bohm interpretation is superficially attractive, the re-
alistic particle trajectories in the case of many interacting particles are highly nonlocal
(they must be nonlocal for Bohmian mechanics to agree with the predictions of quan-
tum mechanics for entangled states). The nonlocal influences will be along spacelike
separations in a relativistic version of the theory and thus acausal. The whole world is
thus connected together in an acausal web. This is Eastern reality stretched to night-
marish proportions—a reality that is completely disconnected from the reality of our
everyday perceptions. Though this picture is inherent in the Bohmian reality, it re-
mained an abstraction whose impact was not fully appreciated till the work of Englert,
Scully, Süssmann, and Walther (1992a) [for me the most accessible version of these
ideas has been given by Aharonov and Vaidman (1996a)]. They showed conclusively,
for a simple example of two interacting systems, that the nonlocality of Bohmian me-
chanics means that the Bohmian trajectories have nothing whatsoever to do with the
reality of everyday life.

Now the Bohmian has a problem. The initially attractive ontology turns out to
be useless for understanding everyday experience, so he will have to do as much hard
work as anybody else—probably more to give an actual Bohmian account—to construct
an emergent reality for the macroscopic world. In fact, he must carefully exclude the
nonlocal, acausal aspects of the ontology from the emergent reality. Far from being
an aid, the underlying trajectories are a serious nuisance, for he has to wipe out any
trace of them and substitute in their place something that looks like the macroscopic
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world. In the Bayesian interpretation the problem is how to get an effective reality
to emerge from a microscopic theory that doesn’t have the objective properties of our
everyday experience, whereas in the Bohm interpretation the problem is how to get a
local, causal reality to emerge from the nonlocal web of Bohmian trajectories.

The Bohm interpretation accords position a special ontological status because our
perceptions are so closely connected to location, but once one realizes that the Bohmian
trajectories are irrelevant to our perceptions, the choice of position begins to smell like
an arbitrary choice. Bohm-type theories can be constructed in other bases, e.g., the
momentum representation (Brown and Hiley 2001a). As a result, Bohmian mechan-
ics is far from unique as a foundation for a realistic interpretation, and the Bohm
interpretation becomes just one possibility out of many.

The Bohmian trajectories are an example of what I call a gratuitous reality : they are
pasted onto the theory because of an ingrained need for an ontology and the resulting
habit of näıvely assigning reality to mathematical objects in the theory, but they are
irrelevant to constructing and understanding the reality of our everyday experience.
The defenses of Bohmian mechanics against the attack of Englert et al. (Englert 1992a)
have focused on pointing out that the statistical prediction of Bohmian mechanics agree
with those of quantum theory, but this misses the point. The point is that Englert et
al. demonstrate that the ontology of Bohmian trajectories is a gratuitous reality that
helps not at all in constructing the emergent effective reality of everyday experience.

e. Many-worlds interpretations (Vaidman 1999a, Wallace 2001a). Find wave-function
collapse distasteful, so banish it. Make the most näıve realistic assumption: declare
the wave function to be objectively real, and then—damn the torpedos!—plow straight
ahead, undaunted by the mind-boggling consequences (well, actually, revel in them a
bit; they make good press and great science fiction). That’s the spirit of many-worlds
interpretations. If you want to be perceived as a deep thinker without actually having
to do any thinking, this is your interpretation.

The many-worlds interpretation posits a single, objective wave function for the
entire Universe. Superpositions within some (arbitrarily chosen) basis correspond to
branchings into different worlds, all of which are actualized. Fundamentally there are
no probabilities in the theory, since all possibilities are actualized, but for subsystems
where quantum probabilities are used to make predictions, there are attempts to derive
those probabilities objectively from the Universal wave function. The world of everyday
experience is the way it is because that’s the way it is (thanks, Walter) on the branch
we’re on.

Talk about a gratuitous reality! This is the granddaddy of them all. To avoid a
physical wave-function collapse, the many-worlds interpretation pastes onto quantum
theory an unobserved and unobservable infinity of worlds that explains nothing about—
it simply posits—the world we actually live in. As far as I can see, many-worlds
interpretations provide no insight into any of the four questions, particularly the third,
because the branching occurs in a basis chosen for no other reason than to give worlds
that mirror our our macroscopic experience (Vaidman 1998a, Steane 2000a). Many-
worlds interpretations, far from providing deep insights into the nature of quantum
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reality, are really founded on an inability to imagine anything except a näıve realistic
world view, which is to apply in each branch.

Let’s not be be too negative. There are deep thinkers who work on the many-worlds
interpretation, and it has led to important insights, notably David Deutsch’s idea of the
quantum parallelism that is thought to provide the power behind quantum computers.*
Still, I think that much of the current popularity of many-worlds is an example of what
Richard Dawkins calls an “argument from personal incredulity”: “I thought about it
for a little while and couldn’t figure out how to reconcile wave-function collapse with
the Schrödinger equation, so I signed up with the many-worlders.”

The attitude of many physicists might be summarized in the following way. Schrö-
dinger formulated his equation, which is the essence of quantum mechanics; Born intro-
duced the probability rule, and then von Neumann tacked on his ugly “collapse of the
wave function,” which interrupts the beautiful flow of Schrödinger evolution. We are
taught that there are two kinds of evolution in quantum mechanics: the pristine evo-
lution governed by Schrödinger’s differential equation, and the ad hoc and unjustified
collapse introduced by von Neumann. Phrased in these ways, our job as physicists is
clear: find a way to get rid of the collapse. The Bayesian interpretation offers a useful
corrective. From the Bayesian view the apparatus of quantum probabilities, including
the updating that results from observation and that goes under the name of collapse,
lies at the very heart of quantum mechanics. It’s not the ugly part; it’s the main part
of the theory and certainly a beautiful part. Schrödinger’s equation tells us how to up-
date maximal information when a system is isolated from the rest of the world. That’s
important, too, as the place where physical laws find expression and thus perhaps as
the objective part of the theory, but certainly not more important than the extraordi-
narily successfully quantum prescription for reasoning when “maximal information is
not complete.”

f. Other interpretations. Comments on other interpretations will be added as I learn
enough about them to make the comments sensible.

7. Actualization and indeterminism vs. determinism. Which is better? An indeter-
ministic world is certainly more interesting than a deterministic one, whose history is just
a progressive revelation of the initial conditions. Moreover, if the world is intrinsically
indeterministic, it means that the problem of actualization must lie outside the province
of our theories. Omnès (1992a) provides a powerful and poetic account of this:

Perhaps the best way to see what it is all about is to consider what would happen if
a theory were able to offer a detailed mechanism for actualization. This is, after all, what
the advocates of hidden variables are asking for. It would mean that everything is deeply

* To be fair, one should note that quantum parallelism might be a misleading way to think about
quantum computation (Steane 2000a) and also that the other great advances in quantum computation—
the Shor factoring algorithm, the Cirac-Zoller proposal for a semirealistic quantum computing system
involving trapped ions, and the Shor-Steane realization that quantum error correction is possible—don’t
seem to have been motivated by a many-worlds perspective.
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determined. The evolution of the universe would be nothing but a long reading of its initial
state. Moreover, nothing would distinguish reality from theory, the latter being an exact
copy of the former. More properly, nothing would distinguish reality from logos, the time-
changing from the timeless. Time itself would be an illusion, just a convenient ordering index
in the theory. . . . Physics is not a complete explanation of reality, which would be its insane
reduction to pure unchanging mathematics. It is a representation of reality that does not cross
the threshold of actuality. . . . It is wonderful how quantum mechanics succeeds in giving
such a precise and, as of now, such an encompassing description of reality, while avoiding
the risk of an overdeterministic insanity. It does it because it is probabilistic in an essential
way. This is not an accident, nor a blemish to be cured, since probability was found to be
an intrinsic building block of logic long before reappearing as an expression of ignorance, as
empirical probabilities. Moreover, and this is peculiar to quantum mechanics, theory ceases
to be identical with reality at their ultimate encounter, precisely when potentiality becomes
actuality. This is why one may legitimately consider that the inability of quantum mechanics
to account for actuality is not a problem nor a flaw, but the best mark of its unprecedented
success.

8. A final note. Why even a statistical order in an indeterministic world? The Bayesian
version of this question might be the following: Why should an intrinsically indeterministic,
but supposedly complete theory—i.e., one in which maximal information is not complete—
supply a unique rule for assigning probabilities in the case of maximal information? One
can argue that it would be very unsatisfactory to have an indeterministic, but complete
theory that failed to supply such a probability rule in the case of maximal information,
there being no place outside the theory—it’s complete!—to look for the rule. Unsatisfactory
though it might be, however, it is hard to see why all theories would have this property.

Quantum mechanics, of course, obliges with the standard quantum probability rule,
which follows just from applying Dutch-book consistency to probabilities that are faith-
ful (i.e., noncontextual) to the Hilbert-space structure of quantum questions. The fact
that the Hilbert-space structure so tightly constrains quantum probabilities that it gives
a unique rule in the case of maximal information is certainly trying to tell us something
very basic. Perhaps this tight constraint is the key feature of quantum mechanics, indeed
the key to unlocking the ontology of quantum mechanics. In the Bayesian interpreta-
tion, there is a quantum reality that we are describing, in the best way possible, using
the rules of quantum mechanics, but that reality is more subtle than the realist’s direct,
one-to-one correspondence between the theory (our model) and reality (what’s out there).
Perhaps the surprisingly constrained quantum probability rule is the first element of this
Bayesian reality. The emergent effective reality would then be the second aspect. Demon-
strating the emergence and consistency of the effective reality is a long-term goal of the
Bayesian program.
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My two heroes of Bayesian probabilities are Bruno de Finetti and, especially, Edwin
T. Jaynes, the former a fascist and the latter a very conservative Republican. I certainly
don’t equate the two, but this does give me pause, though it probably shouldn’t. It just
confirms that a person’s politics are a very poor guide to a his/her value as a scientist or even
as a person. To those concerned, Fuchs, Schack, and I offer Bayesian role models from other
parts of the political spectrum.
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