Physics 511

Problem Set \#1: DUE Wed. Jan. 25, 2006

Read: Jackson: Chap. 1, Appendix on units; Low: 1.1, Appendix on tensors; Supplementary notes on tensors.

Problem 1. Vector identities

Use tensor notation and the Einstein summation convention to prove the following:
(a) $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$
(b) $\nabla \times(\psi \mathbf{A})=\psi(\nabla \times \mathbf{A})-(\mathbf{A} \times \nabla) \psi$
(c) $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$

For part (c), show this the "old fashion way", by explicitly expressing both sides of the equation in Cartesian coordinates (i. e., take the curl, gradient, and divergences)

Problem 2. Irreducible tensors

Generally, a tensor in Cartesian coordinates of rank K can be decomposed into a sum of so called irreducible tensors which transform in a simple way under rotations. As we will see, the components of ther irreducible tensor are closely realted to the components of the spherical harmonics.

For example, a rank 2 Cartesian tensor $U_{i j}$ can be decomposed as

$$
U_{i j}=U_{i j}^{(0)}+U_{i j}^{(1)}+U_{i j}^{(2)}
$$

where $U_{i j}^{(0)}=\frac{\operatorname{Tr}(U)}{3} \delta_{i j}$, is the "scalar" part with 1 component.

$$
\begin{aligned}
& U_{i j}^{(1)}=\frac{1}{2}\left(U_{i j}-U_{j i}\right), \text { is the "vector" part with } 3 \text { independent components. } \\
& U_{i j}^{(2)}=\frac{1}{2}\left(U_{i j}+U_{j i}\right)-\frac{\operatorname{Tr}(U)}{3} \delta_{i j}, \text { is the "tensor part" with } 5 \text { independent }
\end{aligned}
$$ components

In general, the l th irreducible tensor will have $2 l+1$ independent components. (continued next page)
(a) For a tensor formed from the outer product of two vectors, $U_{i j} \equiv A_{i} B_{j}$, show that

$$
U_{i j}^{(0)}=\frac{\mathbf{A} \cdot \mathbf{B}}{3} \delta_{i j} \quad U_{i j}^{(1)}=\frac{1}{2} \varepsilon_{i j k}(\mathbf{A} \times \mathbf{B})_{k} \quad U_{i j}^{(2)}=\frac{A_{i} B_{j}+A_{j} B_{i}}{2}-\frac{\mathbf{A} \cdot \mathbf{B}}{3} \delta_{i j} .
$$

(b) Show that the "contraction" of two Caretsian tensors decompose as

$$
U_{i j} W_{i j}=\operatorname{Tr}\left(U W^{T}\right)=U_{i j}^{(0)} W_{i j}^{(0)}+U_{i j}^{(1)} W_{i j}^{(1)}+U_{i j}^{(2)} W_{i j}^{(2)}
$$

This is a kind of projection between "orthogonal spaces".
(c) In general, for $l \geq 2$, the irreducible tensors are symmetric with respect to exchange of any two indices, and zero when "traced" (or "contracted") over any two indices. For example,
$U_{i_{1} i_{2} \ldots i_{l}}^{(l)}=U_{i_{2} i_{1} \ldots i_{i}}^{(l)}$ (Exchanging the first two indices), $U_{i_{1} i_{1} \ldots i_{l}}^{(l)}=0$ (set $i_{1}=i_{2}$ and sum).
Show that the $l=3$ part of the of the following outer product satisfies these properties,

$$
\left[x_{i} x_{j} x_{k}\right]^{(3)} \equiv x_{i} x_{j} x_{k}-\frac{1}{5}\left(x_{i} \delta_{j k}+x_{k} \delta_{i j}+x_{j} \delta_{k i}\right) r^{2}
$$

(Extra credit: Explicitly give the $2 l+1=7$ independent components of this tensor)

Problem 3. Helmholtz's theorem.

Any vector field can be decomposed into $\mathbf{V}(\mathbf{x})=\mathbf{V}_{T}(\mathbf{x})+\mathbf{V}_{L}(\mathbf{x})$, where:
$\mathbf{V}_{T}(\mathbf{x})$ is the "transverse" or "solenoidal" component, satisfying $\nabla \cdot \mathbf{V}_{T}(\mathbf{x})=0$, and $\mathbf{V}_{L}(\mathbf{x})$ is the "longitudinal" or "irrotational" component, satisfying $\nabla \times \mathbf{V}_{L}(\mathbf{x})=0$. Vector calculus then implies $\mathbf{V}_{T}(\mathbf{x})=\nabla \times \mathbf{A}(\mathbf{x}), \quad \mathbf{V}_{L}(\mathbf{x})=-\nabla \phi(\mathbf{x})$, where \mathbf{A} and ϕ are the "vector potential" and "scalar potential". According to Helmholtz's theorem,

$$
\phi(\mathbf{x})=\frac{1}{4 \pi} \int \frac{\nabla^{\prime} \cdot \mathbf{V}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} \mathbf{x}^{\prime}, \quad \mathbf{A}(\mathbf{x})=\frac{1}{4 \pi} \int \frac{\nabla^{\prime} \times \mathbf{V}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} \mathbf{x}^{\prime}
$$

where ∇^{\prime} means that the derivatives are with respect to the "primed variables"

Prove it!

Hint: Consider $\nabla \times\left(\nabla \times \int \frac{\mathbf{V}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} \mathbf{x}^{\prime}\right)$
A corollary to this theorem is that the divergence and curl completely define the vector field.

