
Physics 511 
 

Problem Set #6:  Wave Propagation in Free Space 
DUE Friday March 31 

Read Jackson Chap. 7, Low 3.5-3.7 
 
 

Required:  Problem 1-2  plus your choice of ONE other (Problem  3 OR 4) 
(Extra credit for all four problems) 

 
 

(1)  Standing Waves (10 points) 
 
     Consider the superposition of two counterpropagating and plane waves with the same 
frequency, whose electric fields have the same polarization 
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              E1 = ˆ x E0 cos kz ! "t( )                   E2 = ˆ x E0 cos kz +!t( )  

 
(a)  What is the total electric field  E3 = E1 + E2? What is the total magnetic field, B3? 
       Sketch E3(z, t)  and B3(z,t)  as a function of z  over one wavelength for 
t = 0, T / 4, T / 2, 3T / 4, T , where T is the period of oscillation. 
(b)  What are the electric and magnetic energy densities as a function of z and t.,  
and time averaged?  What is the time average energy flux (intensity) - Explain you answer. 
 
Now consider now two the superposition to two counterpropagating traveling planes waves 
that are cross-polarized and 90∞ out of phase: 
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              E1 = ˆ x E0 cos kz ! "t( )                   E2 = ˆ y E0 sin kz +!t( )  

 



(Next Page) 
(c)  The polarization of this wave is not inform in space.  Show that, relative to the  
+z-direction the polarization varies over one half wavelength from positive-helicity circular 
(z=0), to linear (z=λ/8), to negative-helicity circular (z=λ/4), to linear (z=3λ/8), and back to  
positive-helicity circular (z=λ/2). 
 
(d)  Show that the total field can be written as a superposition of a positive-helicity circular, 
and a negative-helicity circular polarized standing wave.  You should find that the nodes of 
one standing wave corresponds to the anti nodes of the other. 
 
(e)  What is the intensity as a function of position? 
Note:  This field configuration is very important in  the study of "laser cooling", whereby 

laser light can be used to cool a gas of atoms. 
 

Problem 2:  Spherical Waves  (15 points) 
   Consider the  wave equation in three dimensions for a scalar field ψ(r,t). 
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We seek solutions for monochromatic wave in spherical coordinates, independent of θ and 
φ - this corresponds, e.g., to waves generated by a point source.   
 

(a)  Let ! (r,t) = ˜ ! (r)e
" i#t .  Show that 
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Show that the most general solution can be written as superpositions of 
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What is the physical difference between ψ1 and ψ2 ? 
 
(b)  In free space we know that Maxwell’s Equations imply that the waves are transverse.  
A first guess at the vector spherical wave would choose the polarization in the ˆ !  of ˆ !  

direction.  Show that E = E
0

cos(kr ! "t)

kr

ˆ #  does not satisfy Maxwell’s Equations. 

(c)  The simplest possible vector spherical wave for the electric field in free space is 
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(This corresponds to “magnetic dipole radiation” as we will see) 
Show that E obeys all four Maxwell’s equation, in vacuum, and find the associated 
magnetic field. 
 
(d)  Show that in the limit kr <<1 , the magnetic field has the instantaneous  form of a 

static dipole field B(x ,t) =
3(m(t) ! ˆ r )ˆ r "m(t)
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(e) Find the time average Poynting vector; does it point in the expected directions and 
have the expected fall off with r. 
 
(f)  Find the flux of energy through a sphere, radius R, centered at the origin, and 
comment on your result. 
 
Problem 3:  The Paraxial Wave Equation (15 Points) 
     Plane waves propagate in a unique direction, determined by the wave vector k.  
However, these waves are unphysical since they extend over all space and thus contain 
infinite energy.  We know that a laser beam travels nearly unidirectionaly, but has 
extends only over a finite diameter.  The propagation of this “pencil” like beam is 
described by the “paraxial wave equation”, which the subject of this problem. 
 

(a)  Start with the wave equation !2 "
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E(x, t) = 0 .  

Assume a monochromatic wave and an Ansatz   E(x, t) = ˆ e E(x)e
ik0 z!"t  (real part in the 

end). Here   E(x)  is known as the envelope function (for a plane wave,   E(x)would be 
constant), and eik0 z!"t  as the “carrier wave” which propagates in the z-direction (which 
will call the longitudinal direction).  Under “slowly varying envelope approximation”  
(SVEA) where the envelope varies of distances large compared to the carrier wave 
length, 
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 is the “Transverse Laplacian”, 

 

show that the envelope satisfies 
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E : the paraxial wave equation 



(b)  Show that the Fourier transform of the field is, 
  
˜ E (k,! ) = ˜ E (k " k

0
e
z
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Let q = k ! k
0
e
z
, be the wave vectors of the envelope. Show that the SVEA translates in 

the Fourier domain, into the “paraxial approximation”, i.e., all the wave vectors (rays) 
make no more than a small angle θ with respect to a main carrier wave vector k
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(c)  If the characteristic width of the beam in the transverse direction is w

0
, use the 

uncertainty principle to show that 
  
! ~ 1/ k

0
w
0
= D / w

0
 (in optics we call it the 

“diffraction angle”).   Argue qualitatively after a distance on order z ~ k
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width spreads substantially (this is known as the Rayleigh range, or diffraction length). 
 
(d)  Notice that the paraxial wave equation has the form of a Schrödinger equation for a 
free particle in two dimensions, where z plays the role of time, and (x,y) are spatial 
dimensions.  Given the transverse field profile at the input plane z=0,   E(xT ,0) , we can 
propagate the envelope forward to any other plane as we evolve a wave packet in 
quantum mechanics: 
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where   ˜ E (q

T
)  is the Fourier transform of the input beam   E(xT ,0) .  Given the initial 

profile of a Gaussian envelope: 
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(e)  Show that for z >> z

0
, the wave fronts are approximately spherical. 

 
(f)  There is a fudge in our derivation.  We started with the wave equation which assumed 
transverse waves.  Show that our Ansatz with uniform transverse polarization ˆ e  in fact 
violates !"E = 0 . How can we resolve this dilemma? 



Problem 4:  Angular momentum in electromagnetic waves (15 points)  
 (Jackson 2nd Edition: Problem 7.19). 
 
The angular momentum of the electromagnetic field is L =
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the integration is over all space. 
 
(a)  Eliminate the magnetic field in favor of the vector potential.   Show that for field 
localized to a finite region of space, 
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The second term is referent to as the "orbital" angular momentum because of the presence 
of the orbital angular momentum operator familiar in wave mechanics, Lop = !i x " #( ) .  

The first term relates to the vector nature of the filed itself as is referred to as the "spin" 
angular momentum. 
 
(b)  Consider a Fourier decomposition of the vector potential into transverse, circularly 
polarized plane waves      
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Show that the time average of the "spin" angular momentum is 
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(c) Calculate the total energy in the field using the expansion in (b).  If we associate, 
according to quantum mechanics, an energy density of 
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V
 per mode (i.e. Fourier 

component), what is the "spin" angular momentum of a positive or negative helicity 
electromagnetic mode, both in direction and magnitude?  These are the fundamental 
characteristics of "photons". 


