
Physics 531: Atomic Physics 
Problem Set #5 

Due Wednesday, November 2, 2011 
 

Problem 1:  The ac-Stark effect 

Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ωL   

E(t) = Ez cos(ωLt)ez  (such as from a linearly polarized laser), rather than the dc-field studied in 

class.  We know that such field can be absorbed and cause transitions between the energy levels; 

we will systematically study this effect later in the semester.  The laser will also cause a shift of 

energy levels of the unperturbed states, known alternatively as the “ac-Stark shift”, the “light 

shift”, and sometimes the “Lamp shift” (don’t you love physics humor).  In this problem, we will 

look at this phenomenon is the simplest case that the field is near to resonance between the 

ground state g  and some excited state e ,   ωL ≈ ωeg ≡ Ee − Eg( ) /  , so that we can ignore all 

other energy levels in the problem (the “two-level atom” approximation). 

 

(i) The classical picture.   Consider first the “Lorentz oscillator” model of the atom – a charge 

on a spring – with natural resonance ω0. 

E cos(    t)Lω

ω0

-e, m

 
The Hamiltonian for the system is H =

p2

2m
+
1
2
mω0

2 z2 − d ⋅E(t) , where d = –ez is the dipole. 

(a) Ignoring damping of the oscillator, use Newton’s Law to show that the induced dipole 

moment is 

dinduced (t) = αE(t) = αEz cos(ωL t) ,  

where α =
e2 / m

ω0
2 − ωL

2 ≈
−e2

2mω 0Δ
 is the polarizability with Δ ≡ ω L − ω0  the “detuning”. 

(b) Use your solution to show that the total energy store in the system is H = −
1
4
αEz

2 . 

Note, the factor of 1/4 arise because energy is required to create the dipole and we are taking the 

time average. 



(ii) Quantum picture.  We consider the two-level atom described above. The Hamiltonian for 

this system can be written in a time independent form (equivalent to the time-averaging 

done in the classical case) 
ˆ H = ˆ H atom + ˆ H int , 

where   
ˆ H atom = −Δ e e  is the “unperturbed” atomic Hamiltonian, and 

  

� 

ˆ H int = −
Ω
2 e g + g e( ) is the dipole-interaction with   Ω ≡ e d g ⋅E . 

 

(a) Find the exact energy eigenvalues and eigenvectors for this simple two dimensional Hilbert 

space and plot the levels as a function of Δ.  These are known as the atomic “dressed states”. 

 

(b) Expand your solution in (a) to lowest nonvanishing order in Ω to find the perturbation to the 

energy levels.  Under what condition is this expansion valid? 

 

(c) Confirm your answer to (b) using perturbation theory.  Find also the mean induced dipole 

moment (to lowest order in perturbation theory), and from this show that the atomic 

polarizability, defined by d = αE  is 
  
α =

− e d g 2

Δ
, so that the second order perturbation 

to the ground state is Eg
(2) = −

1
4
αEz

2  as in part (b). 

 

(d) Show that the ratio of the polarizability calculated classical in (b) and the quantum 

expression in (c) has the form 

f ≡
αquantum

αclassical

=
e z g 2

Δz2( )SHO
, where Δz2( )SHO  the SHO zero point variance. 

This ratio is known as the oscillator strength. 

Lessons: 

• In lowest order perturbation theory an atomic resonance look just like a harmonic oscillator, 

with a correction factor given by the oscillator strength. 

• Off-resonance harmonic perturbations cause energy level shifts as well as absorption and 

emission.



Problem 2:  Light-shift for multilevel atoms  

 
    We found the AC-Stark (light shift) for the case of a two-level atom driven by a 
monochromatic field.    In this problem we want to look at this phenomenon in a more general 
context, including arbitrary polarization of the electric field, and atoms with multiple sublevels. 
     Consider then a general monochromatic electric field E(x,t) = Re E(x)e−iω Lt( ) , driving an 
atom near resonance on the transition, g; Jg → e;Je , where the ground and excited manifolds 
are each described by some total angular momentum J with degeneracy 2J+1.  The 
generalization of the AC-Stark shift is now the light-shift operator acting on the 2Jg +1  
dimensional ground manifold: 
 

  
ˆ V LS(x) = −

1
4
E*(x) ⋅

 ˆ α ⋅E(x) . 

Here 
  

 ˆ α = −
ˆ d ge ˆ d eg
Δ

 is the atomic polarizability tensor operator, where ˆ d eg ≡ ˆ P e ˆ d ˆ P g  is the dipole 

operator, projected between the ground and excited manifolds;  the projector onto the excited 

manifold is, ˆ P e = e;Je, Me e;Je, Me
Me = − J e

J e

∑ , and similarly for the ground. 

 
(a)  By expanding the dipole operator in the spherical basis, show that the polarizability operator 
can be written, 
 

  

 ˆ α = ˜ α CMg

Mg +q 2  e q
q,M g

∑ g; Jg, Mg g;Jg ,Mg
 e q

* + CM g +q − ′ q 
M g +q CMg

Mg + q  e ′ q g; Jg ,Mg + q − ′ q g; Jg, Mg
 e q

*

q ≠ ′ q , Mg

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

 

where 
  
˜ α ≡ −

e; Je d g;Jg
2

Δ
 and CMg

Me ≡ Je Me 1q Jg Mg . 

Explain physically, using dipole selection rules, the meaning of the expression for   
 ˆ α . 

 
(b)  Consider a polarized plane wave, with complex amplitude of the form,   E(x) = E1

 
ε L e

ik⋅x  
where E1 is the amplitude and   

 
ε L  the polarization (possibly complex).  For an atom driven on the 

transition g; Jg =1 → e;Je = 2  and the cases (i) linear polarization along z, (ii) positive helicity 
polarization, (iii) linear polarization along x, find the eigenvalues and eigenvectors of the light-

shift operator.  Express the eigenvalues in units of V1 = −
1
4

˜ α E1
2 .  Please comment on what you 

find for cases (i) and (iii).  Repeat for g; Jg =1 / 2 → e;Je = 3 / 2  and comment. 
 
(c)  A deeper insight into the light-shift potential can be seen by expressing the polarizability 
operator in terms of irreducible tensors.  Verify that the total light shift is the sum of scalar, 
vector, and rank-2 irreducible tensor interaction, 
 



ˆ V LS = −
1
4
E(x) 2 ˆ α (0) + (E*(x) × E(x)) ⋅ ˆ α (1) + E* (x) ⋅ ˆ α (2) ⋅E(x)( ), 

where 
  
ˆ α (0) =

ˆ d ge ⋅ ˆ d eg
−3Δ

, 
  
ˆ α (1) =

ˆ d ge × ˆ d eg
−2Δ

, 
 
α̂ ij
(2) =

d̂ge
i d̂eg

j + d̂ge
i d̂eg

j

−2Δ
− α̂ (0)δ ij . 

 
(d)  For the particular case of g; Jg =1 / 2 → e;Je = 3 / 2 , show that the rank-2 tensor part 
vanishes.  Show that the light-shift operator can be written in a basis independent form of a 
scalar interaction (independent of the sublevel), plus an effective Zeeman interaction for a 
fictitious B-field interacting with the spin 1/2 ground state,  
 

  
ˆ V LS = V0 (x) ˆ 1 + B fict(x) ⋅

 ˆ σ  
 
where 
 

 
V0 (x)=

2
3
V1
εL (x)

2  (proportional to field intensity) and  

 

 
B fict (x)=

1
3
V1
εL
* (x) × εL (x)

i
⎛
⎝⎜

⎞
⎠⎟

, (proportional to the field ellipticity), 

 
and I have written   E(x) = E1

 
ε L(x) .   Use this form to explain your results form part (b) on the 

transition g; Jg =1 / 2 → e;Je = 3 / 2 . 
 
(e)  Extra Credit: For g; Jg =1 / 2 → e;Je = 3 / 2 , explicitly show that 
 

 
V0 (x)=

2
3
V1
εL (x)

2  (proportional to field intensity) and  

 
B fict (x)=

1
3
V1
εL
* (x)× εL (x)

i
⎛
⎝⎜

⎞
⎠⎟

, (proportional to the field ellipticity), 

 
and I have written   E(x) = E1

 
ε L(x) .   Use this form to explain your results from part (b) on the 

transition g; Jg =1 / 2 → e;Je = 3 / 2 . 



Problem 3:  Lorentz Classical Model of Absorption and Emission  
 
Suppose we were to model an atom as an electron on a spring - i.e. a damped simple harmonic 
oscillator of mass m, with resonance frequency ω0 , and damping constant Γ.  Consider driving 
the oscillator with a monochromatic plane wave, of frequency ω L .  

E cos(    t)Lω

 
(a)  Show that rate at which the dipole absorbs energy from the field,  given by the rate at which 
the field does work on the charge averaged over one period, is 
 

 

� 

dWabs

dt
=
πe2 |E |2

4m
g(ωL ) ,  where g(ω) = Γ / (2π)

(ω − ωeg)
2 + Γ2 / 4

 is the line shape. 

Assume near resonance so that 

� 

Δ = ωL −ω0 << ωL ,ω0. 
 
(b)  The absorption cross section, σabs, is defined as the rate at which energy is absorbed by an 
atom, divided by the flux, Φ, of photons incident on the atom,   Φ ≡ I / ω L  (i.e. the rate of 

photons incident on the atom per unit area), where I = c
8π
|E0 |

2   is the incident intensity (CGS 

units). Show that the classical model of absorption gives, 
 

σclassical=
2π 2e2

mc
g(ωL ) , 

Evaluate this on-resonance, for a the parameters associated with Na, where the excitation 
wavelength is 589 nm and the linewidth (Full width at half-maximum) is 10 MHz. 
The ratio of the integrated cross section an atomic transition and that given by the classical 
model to the quantum mechanical expression with equal resonance frequency and line width is 
known as the oscillator strength of the transition.   
 

(c)   From standard texts we have 
  
σquantum = 4π

2 e2

c
e x g 2

ωL g(ω L) , where e x g  is the 

matrix element of the electron position relative to the nucleus for the resonant transition.   Show 
that  on resonance, 

  
f =

σquantum
σclassical

=
2mω0


e x g 2
.    



Note that    / 2mω0  is the square of the characteristic length scale of a quantum simple harmonic 
oscillator .  Thus, the oscillator strength measures the ratio of dipole oscillation amplitude for a 
two level atom as compared to a simple harmonic oscillator. 
 
    Let us now assume that our spring has no intrinsic damping associated with it.  Consider the 
scattering of an electromagnetic wave by this oscillating charge. As the charge radiates, the 
electromagnetic field will carry away energy.  This energy must come from the kinetic energy of 
the accelerating charge.  Thus the very act of radiating should "damp" the motion of the charge.  
This is known as radiation reaction, and will determine a classical decay rate Γclass for the 
oscillator.  In steady state the power radiated by the charge (given by the classical Larmor 
formula) is equal to the power absorbed.   
 
(d) Assume that the oscillator is damped as Γclass, and show that 

Pabs = Pradiated⇒Γclass =
2
3
e2

mc3
ω 2 =

2
3
k rcω ,where rc is the classical electron radius. 

 
(e)  Show that the quantum mechanical decay rate is related to the classical formula by  
   Γquantum= f Γclass,   where f is the oscillator strength. 
 


