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I. VECTORS

We are already familiar with the concept of a vector, but let’s review vector properties to refresh ourselves. A
3-component Cartesian vector is

v = vxex + vyey + vzez. (1)

Operationally, what makes this a vector is the way it transforms under rotations. General rotations can be specified
by Euler angles, but for the sake of simplicity we will consider a rotation by θ around the z-axis, which is represented
in the Cartesian basis by the matrix

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (2)

We use this matrix to rotate v into a the new, rotated vector denoted by v′ = v′xex + v′yey + v′zez. We will use the
explicit for of the rotation matrix to write the elements of v′ in terms of those of v and the angle θ.

v′ = Rz(θ)v =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 vx
vy
vz

 =

 cos θvx + sin θvy
− sin θvx + cos θvy

vz

 =

 v′x
v′y
v′z

 . (3)

By definition, the components of a vector transform like

v′i =
∑
j

Rijvj . (4)

Let’s verify that according to this definition our v is a vector:

v′x =
∑
j

Rxjvj = Rxxvx +Rxyvy +Rxzvz (5)

= cos θvx + sin θvy (6)

and one can similarly check the other components to verify that indeed v is a vector. In quantum mechanics, the
rotation operator is

D(n, θ) = e−iĴ·nθ (7)

where n is the unit vector about which the rotation occurs, and Ĵ is the angular momentum vector operator, which
has operator components that transform according to Eq. (4). A vector operator V̂ is rotated in the following way

D(n, θ)†V̂D(n, θ) =
∑
j

Rij V̂j (8)

To evaluate this, we make use of a property of vector operators

[V̂i, Ĵi] = iεijk~V̂k (9)

and the Hadamard lemma

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] + ... (10)

Writing out a couple terms in the series for the instructive case of n · Ĵ = Ĵz, we recognize quickly that

eiĴzθV̂xe
−iĴzθ = cos θV̂x + sin θVy (11)

with similar, expected transformations for the other components of V̂.
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II. TENSORS

Classically, tensors are defined by the way they transform under rotations. We are primarily concerned with tensors
of rank 0 (scalars), rank 1 (vectors), and of rank 2 and we will restrict the discussion to this subset. Scalars do not
transform under rotations, vectors transform according to Eq. (4), and rank 2 tensors transform according to

T ′ij =
∑
i′j′

Rii′Rjj′Ti′j′ . (12)

Rank 2 tensors have two sets of indices each which runs from 1 to 3, so there are nine components. For this reason,

they are often represented as matrices. Given a rank 2 tensor T
↔

, let’s compute an element of a rotated tensor T
↔′

where the rotation matrix is around the z-axis as above.

T ′xx =
∑
i′j′

Rxi′Rxj′Ti′j′ (13)

=RxxRxxTxx +RxxRxyTxy +RxxRxzTxz

+RxyRxxTyx +RxyRxyTyy +RxyRxzTyz

+RxzRxxTzx +RxzRxyTzy +RxzRxzTzz

= cos2 θTxx + cos θ sin θ(Txy + Tyx) + sin2 Tyy (14)

Clearly, calculating all 9 elements would be exhaustive but exhausting.

A. Cartesian Tensors

Two vectors, v and w, expressed in the Cartesian basis (ex, ey, ez) can be used to create a rank 2 Cartesian tensor

T
↔

. It is formed as the dyad of the two vectors

Tij ≡ viwj (15)

and can be expressed as a 3× 3 matrix

T
↔

=

 vxwx vxwy vxwz
vywx vywy vywz
vzwx vzwy vzwz

 . (16)

Dyadic Cartesian tensors, such as T
↔

, can be decomposed into irreducible representations in the following way

Tij = T
(0)
ij + T

(1)
ij + T

(2)
ij (17)

=
(v ·w)

3
δij +

(viwj − vjwi)
2

+

(
viwj + vjwi

2
− v ·w

3
δij

)
. (18)

Each of these irreducible representations has particular properties.

T
↔

(0) is a rank 0 tensor and transforms under rotations like a scalar. In our matrix representation, it can also be

written as the trace of the full, reducible tensor T
↔

T (0) =
1

3
Tr(T
↔

) · 1 =
1

3

 v ·w 0 0
0 v ·w 0
0 0 v ·w

 (19)

where v ·w = vxwx + vywy + vzwz. T
↔

(0) has only one independent component.

T
↔

(1) is a rank 1 tensor and transforms under rotations like a vector. It can be represented as a vector (cross)

product T
(1)
ij = 1

2εijk(v ×w)k and has a matrix representation

T
↔

(1) =
1

2

 0 (vxwy − vywx) (vxwz − vzwx)
−(vxwy − vywx) 0 (vywz − vzwy)
−(vxwz − vzwx) −(vywz − vzwy) 0

 . (20)
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T
↔

(1) has three independent components. T
↔

(2) is a rank 2 tensor and transforms according to Eq. (12). It has the
following form in our matrix representation

T
↔

(2) =

 vxwx − v·w
3

(vxwy+vywx)
2

(vxwz+vzwx)
2

− (vxwy+vywx)
2 vywy − v·w

3
(vywz+vzwy)

2

− (vxwz+vzwx)
2 − (vywz+vzwy)

2 vzwz − v·w
3

 . (21)

Due to the fact that they are antisymmetric and traceless, Tr(T
↔

(2)) = 0, irreducible rank 2 tensors have 5 independent
entries.

Notice that the number of independent components of T
↔

is equal to the number of independent components of

T
↔

(0) + T
↔

(1) + T
↔

(2) : 3 × 3 = 1 + 3 + 5. In addition, each of the irreducible representations transforms like angular
momentum according to its number of independent components.

B. Spherical Tensors

The fact that Cartesian tensors are reducible prompts us to seek out an irreducible set of tensors. A useful set of
these are the spherical tensors.

1. Spherical Basis

Spherical tensors are defined on a set of basis vectors defined as follows

e± =
∓(ex + iey)√

2
, e0 = ez. (22)

and we use the letter q to designate an arbitrary spherical basis element. The fact that these are complex will lead to
some definitions that may seem strange at first, but arise only to maintain the familiar properties of Cartesian space.
The components of a vector A in the spherical basis are

Aq = eq ·A (23)

so that A may be decomposed in the spherical basis as

A =
∑
q

Aqe
∗
q =

∑
q

(−1)qAqe−q = A+e
∗
+ +A0e0 +A−e

∗
−. (24)

The dot product of two vectors has a form that seems unfamiliar, but preserves the norm of a vector |A|2:

A ·B = −A+B− +A0B0 −A−B+ =
∑
q

(−1)qAqB−q (25)

2. Spherical Harmonics

An example of irreducible spherical tensors that will prove quite useful are the spherical harmonics. Recalling the
definition of spherical harmonics as the angular representation of the |l,m〉 angular momentum eigenstates:

Y ml (θ, φ) = 〈θ, φ|l,m〉 =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ (26)

Spherical harmonics are irreducible and transform like tensors of rank k=l, where m indexes the number of unique
elements.
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C. Formal Definition of Spherical Tensor Operators

Motivated by the above discussion, we define a spherical tensor operator of rank k as a set of 2k+1 operators

T̂ (k)
q q = k, k − 1...− k + 1,−k (27)

which transform among themselves like 2j+1 angular momentum eigenstates |j = k,m = q〉 (and thus like spherical
harmonics) according to

D(n, θ)†T̂ (k)
q D(n, θ) =

k∑
q′=−k

D(k)∗
q,q′ (θ)T

(k)
q′ (28)

where

D(k)∗
q,q′ (θ) = 〈k, q′|e−in·Ĵk |k, q〉. (29)

Now, we are prepared to represent a dyad formed from two vectors v and w (written in the spherical basis) in terms
of irreducible spherical tensors:

T
(0)
0 =

−v ·w
2

=
1

3
(v1w−1 + v0w0 + v−1w1) (30)

T (1)
q =

−(v ×w)q

i
√

2
(31)

T
(2)
±2 = v±1w±1 (32)

T
(2)
±1 =

1√
2

(v±1w0 + v0w±1) (33)

T
(2)
0 =

1√
6

(v1w−1 + 2v0w0 + v−1w1) (34)

D. Wigner Eckhart Theorem

Given a spherical tensor operator T
(k)
q , the Wigner-Eckhart theorem states:

〈α′; j′,m′|T (k)
q |α; j,m〉 = 〈α′; j′||T (k)

q ||α; j〉〈j′m′|kq; jm〉. (35)

Essentially, the theorem says that it is possible to factor the matrix element into a reduced matrix element which is
independent of m (and thus of any specific geometry) and a Clebsch-Gordan coefficient. The CG coefficients determine
the selection rules

m′ = m+ q and |j − k| ≤ j′ ≤ j + k. (36)

III. THE DIPOLE OPERATOR

The motivation for the previous sections has been to arrive at a place where we are prepared to discuss the dipole

operator d̂ which shows up in the dipole Hamiltonian for the interaction between an atom and an electric field.

HAF = −d̂ ·E (37)

The dipole operator is related to the position operator r̂ through the charge of the electron:

d̂ = −er̂. (38)
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we write down those corresponding to l = {0, 1, 2} as they are irreducible representations of corresponding rank:

Y 0
0 =

1

4π
(39)

Y 0
1 =

√
3

4π
cos θ (40)

Y ±11 = ∓
√

3

8π
sin θe±iφ (41)

Y 0
2 =

√
5

16π
(3 cos2−1) (42)

Y ±12 = ∓
√

5

16π
sin θ cos θe±iφ (43)

Y ±22 =

√
5

32π
sin2 θe±2iφ. (44)

Now, we see that the position vector

r = rxex + ryey + rzez (45)

= r sin θ cosφex + r sin θ sinφey + r cos θez (46)

can be written in the spherical basis (and thus as spherical harmonics):

r = − r√
2

sin θeiφe∗+ + r cos θe0 +
r√
2

sin θe−iφe∗− (47)

= r

√
4π

3
(Y 1

1 e
∗
+ + Y 0

1 e0 + Y −11 e∗−) (48)

with individual components

rq = r

√
4π

3
Y q1 . (49)
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