Physics 566 Fall 2004
Problem Set #1
Due: Thursday Sep. 2, 2004

Problem 1: Mixed states vs. pure states and interference
A “spin-interferometer” is shown below
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Spin-1/2 electrons are prepared in a given state (pure or mixed) are separated in two paths
by a Stern-Gerlach apparatus (gradient field along z). In one path the particle passes
through a solenoid, with a uniform magnetic field along the x-axis. The two paths are then
recombined, sent through another Stern-Gerlach with gradient along x, and the particles are
counted in detectors in the two emerging ports.

The strength of the magnetic field is chosen so that Q¢ = ¢, for some phase ¢, where
Q=2u,B/# is the Larmor frequency and ¢ is the time spent inside the solenoid.

(a) Plot the probability of electrons arriving at detector B as a function of ¢ for the

following pure state inputs: (i) [T,), (i) [T,), Gii)[{,).
(b) Repeat part (a) for the following mixed state inputs
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Comment on your results.

Problem 2: Different ensemble decompositions - example spin 1/2/
(a) Suppose we have a statistical mixture of spin 1/2 particles that consists of the state |+Z)
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Find the matrix of the density operator in the basis {|+Z ),|—Z )}, and in the basis of
- )}. What is the Bloch vector that describes this state?

eigenstates of 6., {]+x ),



Problem 2 continued:
(b) Now suppose we have an mixed state with 1/2 probability to have spin along

1 1
e =—I|e_+e_) and 1/2 probability to have spin along e =—=(e_.—e_ ). Is thisa
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completely mixed state? Write the density operator in the basis {|+Z ),|—Z )}. Compare to
part (b). Please comment on your result.

(c) Show that two statistical mixtures of pure states, {|+n >} with probabilities p, , and

{

+,, >} with probabilities g,,, describe the same density operator p if
Q: an n = quem’

where Q is the Bloch vector of p. Check this with your results of parts (b) and (c).

Problem 3: Ambiguity of ensemble decompositions of density operators

We saw in Problem 2 that a density operator does not decompose uniquely into a
statistical mixture of pure states. This has profound implications for both practical
calculations of the density matrix (as we will see later in the semester) as well as for
foundational descriptions of states in quantum mechanics.

What different ensemble are possible to yield a given density operator? In this problem
we prove the following.
Hamilton-Jozsa-Wootters theorem: The two density operators

/31 = zpi|l//i><l//i| and /32 = 2q1‘¢j><¢J‘
i J
are equal if and only if the two ensembles are related by,

@‘¢j> = ZUjiW/;i|‘//i>’

where U ; are elements of a unitary matrix.

(a) Assume the relation between the ensembles is true. Prove that p, = p, .
(b) Assume p, = p,=p. Show \/qu‘(p»: ZUji\/;i|q/i>.
(Hint: Show first that \/p_l |1//l.> = z M, 2, |ea > , where A, are the eigenvalues of p and

|ea> its orthonormal eigenvectors and M ;, are elements of a unitary matrix. The same thus
holds for \/Z ‘q) j>. The proof will follow).



Problem 4: Some properties of spin 1/2 and the Bloch sphere.

Given a unit vector €,,, defined by angles 6 and ¢ with respect to the polar axis z,

V)=« +Z> + [3‘—2>, is equivalent to

+, >, defined as the spin-up state along an axis €,. What are the angles 0 and ¢?

(a) Show that every pure state for a two-level system,
a ket

(b) Show that the one dimensional projector corresponding to measurement of |+n> is,

+, )+, :%(i+én -3).

(c) Show that the inner product between any two pure states is, =co0s(©/2), where

<+n +n'>

O is the angle between the directions €, and ¢, in three dimensional space.

(d) Consider the polarization of a photon as a two state system. If we make the association,

|+Z> = right hand circular (positive helicity)

|—z> = left hand circular (negative helicity)

to what polarization states do you associate

+,) and |iy>?

The Bloch sphere description of the polarization is know as the “Poincaré sphere”, with
each point on the surface representing a possible elliptical polarization. The three Cartesian
coordinates of the Bloch vector are also known as the “Stokes parameters”. In the case of

the photon, the Bloch vector actually represents the direction of its spin angular momentum.



