
Physics 566, Quantum Optics
Problem Set #7

Due: Tues Oct 26, 2004

Problem1:  The beam splitter and other linear transformations (25 points)
We’re all familiar with classical linear optics.  This problem explores the quantum
description.

Consider a symmetric beam splitter
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(a) Show that 

� 

t 2 + r 2 =1, 

� 

Arg(t) = Arg(r) ± π
2

, so that a possible transformation is,

� 

Ea
(out ) = T Ea

(in ) + i 1−T Eb
( in ),  

� 

Eb
(out ) = T Eb

(in ) + i 1−T Ea
( in ), where 

� 

T = t 2 .

Classically, if we inject a field only into one input port, leaving the other empty, the field
in that mode will become attenuated,  e.g., 

� 

Ea
(out ) = T Ea

(in ) < Ea
( in ).

(b)  Consider now the quantized theory for these two modes, 

� 

Ea ⇒ ˆ a , 

� 

Eb ⇒ ˆ b .  Suppose
again that a field is injected only into the “a-port”.  Show that

� 

ˆ a (out ) = T ˆ a (in )  is inconsistent with the quantum uncertainty.
(c) In order to preserve the proper commutation relations we cannot ignore vacuum
fluctuations entering the unused port.  Show that if the “in” and “out” creation operators
are related by the scattering matrix,
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(d)  Suppose a single photon is injected into the a-port, so that the “in-state” is

� 

ψ (in ) = 1 a ⊗ 0 b .   The “out-state” is 

� 

ψ (out ) = ˆ S ψ ( in )  where 

� 

ˆ S  is the “scattering

operator”, defined so that 

� 

ˆ S ̂  a (in )† ˆ S † = ˆ a (out )†and 

� 

ˆ S ̂  b (in )† ˆ S † = ˆ b (out )†  .

Show that 

� 

ψ (out ) = t 1 a ⊗ 0 b + r 0 a ⊗ 1 b .

(e)  Suppose a coherent state is injected into the a-port 

� 

ψ (in ) = α a ⊗ 0 b . Which is the
output,  

� 

ψ (out ) = tα a ⊗ rα b  or 

� 

ψ (out ) = r α a ⊗ 0 b + t 0 a ⊗ α b ?  Explain the

difference between these.

 (f)  We can model a photon counter with a finite quantum efficiency η as perfect
detector preceded by a beam splitter of with transmission coefficient η.

Show that the photon counting statistics, i.e. the probability to detect m photons is
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∑ ηm (1−η)n−m , where 

� 

pn  is the distribution before the beam-splitter.

Explain the meaning of this expression.

(g)  A general linear optical system consisting, e.g., of beam-splitters, phase shifters,
mirrors, etalons, etc. can be described by a unitary transformation on the modes

� 

Ek
(out ) = uk ′ k E ′ k 

( in )

′ k 
∑ .

In the quantum description the mode operators transform by the scattering transformation

� 

ˆ a k
(out ) = ˆ S ̂  a k

( in ) ˆ S † = uk ′ k ˆ a ′ k 
(in )

′ k 
∑ , where 

� 

uk ′ k  is a unitary matrix.

η



Show that if we start with a multimode coherent state 

� 

ψ (in ) = αk
( in ){ } , the output state is

ALSO a coherent state, 

� 

ψ (out ) = αk
(out ){ } , with 

� 

αk
(out ) = uk ′ k α ′ k 

( in )

′ k 
∑ .

(i)  The previous part highlights how linear transformations are essentially classical.  This
was true for exactly one photon inputs or coherent states.  However, this is not true for
more general inputs.  Suppose we send one photon into both ports, of a 50-50 beam-
splitter T=1/2, 

� 

ψ (in ) = 1 a ⊗ 1 b . Show that  the output state is,

� 

ψ (out ) =
1
2
2 a 0 b + 0 a 2 b( ).

This says that the two photons “bunch”, both going to port-a or to port-b, but never one in
port-a and one in port-b.  This is an effect of Bose-Einstein quantum statistics.  Explain
in terms of destructive interference between indistinguishable processes.

Problem 2:   Nonclassical light generation via the Kerr effect. (15 points)

In the classical (optical) Kerr effect, the index of refraction is proportional to the
intensity.  The quantum optical description is via the Hamiltonian,

  

� 

ˆ H = hχ (3)

2
ˆ a †2 ˆ a 2.

(a)  Suppose we inject a strong coherent state into a nonlinear fiber with Kerr response.
Linearize  this Hamiltonian about the mean field via the substitution 

� 

ˆ a = α + ˆ b , and keep
terms only up to quadratic order in 

� 

ˆ b  and 

� 

ˆ b †.
Show that the resulting Hamiltonian leads to squeezing.

(b)  Now let’s go beyond the linear approximation.  Show that for a long time such that

� 

χ (3)t = π , the state becomes a Schrödinger cat,  

� 

eiπ / 4 −iα + e− iπ / 4 iα( ) / 2 .

Note:  Though in principle this is the solution, in practice this is not observed because
losses and other noise sets in long before this kind of coherence can be established.


