
Physics 566, Quantum Optics
Problem Set #8

Due: Thurs. Nov. 4, 2004

Problem 1:  Twin beams and two-mode squeezed states.  (15 points)
In lecture 14 we discussed how parametric downconversion leads to correlated twin
“signal” and “idler” beams as long as the phase matching conditions are satisfied,

� 

ω p = ωs + ω i, k p = k s + k i.

Considering two nondegenerate modes, 

� 

ω± = ω p /2 ± Δω , the Hamiltonian is

  

� 

ˆ H = ihG ˆ a +
† ˆ a −

†e− iφ − ˆ a + ˆ a −e
iφ( ) ,

where G is the coupling constant depending on the nonlinearity, pump amplitude, and
vacuum mode strength.  The state produced is known as a “two-mode squeezed vacuum
state”,

� 

ˆ S ±(ξ) 0 + ⊗ 0 − = exp 1
2
ξ ˆ a + ˆ a − −ξ

* ˆ a +
† ˆ a −

†( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 0 + ⊗ 0 − ,

where 

� 

ξ = reiφ  is the complex squeezing parameter for an interaction time t, 

� 

r = Gt .

(a)  Show that the generalized Bogoliubov transformations is

  

� 

ˆ S ±
†(ξ) ˆ a ± ˆ S ±(ξ) = cosh(r) ˆ a ± − eiφ sinh(r) ˆ a m

† .

(b)  Show that the individual modes, 

� 

ˆ a ± , show no squeezing, but that squeezing exists in
the correlation between the modes.  Hint:  consider quadratures,

� 

ˆ X ±(θ) ≡
ˆ a ±eiθ + ˆ a ±

†e−iθ

2
 and then 

� 

ˆ Y (θ, ′ θ ) ≡ ˆ X + (θ) − ˆ X −( ′ θ )( ) / 2 .

For the remaining parts, take ξ real.

(c)  The two-mode squeezed state is an entangled state between the signal and idler as we
know from the perturbative limit of twin photons.  Show that in the Fock basis

� 

ˆ S ±(r) 0 + ⊗ 0 − = cosh(r)( )−1 tanh(r)( )n n +
n= 0

∞

∑ ⊗ n − .



Hint:  Use the “disentangling theorem” (D. R. Traux, Phys. Rev. D 31, 1988 (1985) ):

� 

er ˆ a +† ˆ a −†− ˆ a + ˆ a −( ) = eΓ ˆ a +† ˆ a −†e−g ˆ a +† ˆ a + + ˆ a −† ˆ a − +1( )e−Γ ˆ a + ˆ a − .

where 

� 

Γ = tanh(r), g = ln cosh(r)( )
The photons are produced with perfect correlations between the modes.  This is known as
“number squeezing”.

(d)  Show that the marginal density operator for each mode is a thermal state with  mean
photon number 

� 

n = sinh2(r) .

(e) This  entangled state produced in twin beam generation is very close to the form
considered by Einstein-Podolfsky-Rosen in their famous paradox.

Show that the Wigner function for our state in the two modes is,

� 

W (α+,α−) = 4
π 2 exp −e−2r (x+ − x−)

2 + (p+ + p−)
2[ ] − e+2r (x+ + x−)

2 + (p+ − p−)
2[ ]{ }

→Cδ(x+ + x−)δ(p+ − p−)

where 

� 

α± = x± + ip±  the final expression is the limit of infinite squeezing, 

� 

r→∞ .  For
mechanical degrees of freedom, 

� 

x± and 

� 

p±  represent position and momentum of two
particles which are perfectly correlated.  The quantum optical implementation maps these
onto mode quadratures which are very tightly correlated.  Violations of Bell’s inequalties
can then be measured (see Z.Y. Ou et al., Phys. Rev Lett. 68, 3663 (1992)).

(f)  Extra credit:  The Wigner function is positive, but clearly the EPR state clear has
nonclassical features.  Your thoughts?



Problem 3:  Coupled Simple Harmonic Oscillators and Entangled States (15 Points)

Consider two simple Harmonic oscillators, each with a natural frequency ω, linearly
coupled together.  The Hamiltonian describing such a system can be written:

 ˆ H = ˆ H 0 + ˆ H int

  
ˆ H 0 = hω ˆ a † ˆ a + hω ˆ b † ˆ b ,   

  
Hint = hκ ˆ a † ˆ b + ˆ b † ˆ a ( ) ,

where a  and b  are the annihilation operators for the two oscillators satisfying the
commutation relations,

ˆ a , ˆ a †[ ] = 1 ,     ˆ b , ˆ b †[ ] =1 ,   ˆ a , ˆ b [ ] = [ ˆ a , ˆ b †] = 0 ,

and κ is the coupling constant.

Recall the "interaction picture", defined by performing the unitary transformation on the
states and operators in the Schrödinger picture,

ψ (I) = ˆ U 0
† ψ (S) ,   ˆ A ( I) = ˆ U 0

† ˆ A (S) ˆ U 0 , with 
  

ˆ U 0 = exp −i
h

ˆ H 0t
⎛ 
⎝ 

⎞ 
⎠ .

(a)  Show that in the interaction picture, the state vector evolves according to

  
ih ∂
∂t

ψ ( I) = ˆ H int
(I ) ψ (I) ,

and for the Hamiltonian above,  ˆ H int
( I)  is time independent so that, the state vector in the

Schrödinger picture

  
ψ (t) (S) = ˆ U 0  exp −i

h
ˆ H int

(I)t⎛ 
⎝ 

⎞ 
⎠  ψ (0) (I )     (Note that ψ (0) (S) =  ψ (0) (I ) )

(b)  Show that in this picture, ˆ a ( t) = ˆ a cos(κt) − i ˆ b sin(κt) , where ˆ a , ˆ b  are the
Schrödinger picture operators.

(c)  Suppose that the initial state (in either the Schrödinger or Interaction picture) has
oscillator "a" in the first excited state, and oscillator "b" in the ground state:



ψ (0) (S) = 1 a⊗ 0 b = a
† 0 a ⊗ 0 b .

Show that the state vector for the total system at some later time t>0 is,

ψ (t) (S ) = e−iωt cos(κt) 1 a ⊗ 0 b + i e
−iωt sin(κt ) 0 a⊗ 1 b

Explain what this result means physically.

(d)  Find the density matrix for the total system as a function of time.  Is it a pure state?

(e)   Show that the reduced density matrix for the state of oscillator "a" alone is,

ρreduced
(a) = cos2 (κt) 1 a 1 a + sin

2(κt) 0 a 0 a
       Is it normalized.

(f) Show that ρreduced
(a)  oscillates between a pure state and a mixed state with a frequency,

      

� 

Ω = 2κ .  Explain this result.

Problem 3:  State preparation in cavity QED. (10 points)
In the Jaynes-Cummings system, the atom and field become entangled.  By measuring
the state of the atom at some time, we gain information about the state of the field.
Consider the following geometry,

A stream of atoms, prepared in a very long lived excited state, are sent through a very
high-Q cavity interacting with the mode for a time τ.  After the atom emerges, it is
measured and determined to be in either the excited or ground state.  The cavity is
initially prepared in the vacuum before any atoms enter.

(a)  Show that after m  atoms interact and are measured, the probability of having n
photons in the cavity satisfies the recursion relation

� 

Pn (m) = cos2 gτ n +1( )Pn (m −1) + sin2 gτ n( )Pn−1(m −1) .

(b)  Solve numerically, and plot as a function of n for m=5,25, 50, 100.  Take gτ=0.4.
Comment.


