5 Discussion

5.1 The Quantum Monte Carlo method as a numerical tool

Averaged over a large ensemble of stochastic wave functions the QMC method yields
results in agreement with those of the density matrix treatment. With a finite number
n of wavefunctions one may thus obtain an estimate of any operator expectation value,
and as the number n increases, the uncertainty decreases as a/\/n. When the dimension
N of the system Hilbert space is large, satisfactory precision may thus be obtained more
easily from a calculation involving N - n rather than N? variables. The consideration
concerns both computing time and computer memory, and details about the computer
(scalar or vector processor ?) may well determine the competition between a density
matrix calculation and the QMC treatment,

As the numerically most demanding problem, we have considered laser cooling of
atoms in three dimensions. Laser cooling is a topic that has achieved considerable
experimental and theoretical interest, and it is an excellent example of a process where
the interplay between coherent evolution (atom-laser interaction, kinetic energy) and
dissipation (spontaneous emission, reccil) combined with the large dimension of the
problem Jends itself to a treatment based on Monte Carlo wave functions. We have
demonstrated that a time evolution towards steady state of N amplitudes, with N on
the order of 300.000, is feasible. This large number is required to describe laser cooling
of Cs on the J, = 4 — J, = 5-transition. The results are promising, and they represent
a step forward compared to dealing with a density matrix with ~ 50 - 10° elements.

A number of aspects about the method should be mentioned, and some open ques-
tions should be raised:

Simple programming: It is easier to write a routine that propagates wave functions
than density matrices because the equations are fewer and simpler. With just a few
wave functions one gets a "quick and dirty” estimate of the evolution of the system.
Furthermore, it is very easy to use this method to generalize coherent evolution prob-
lems to include dissipative effects: one only needs to make minor corrections in the
Hamiltonian in the coherent evolution routine, e.g. Eqs.(78,79) without the I'-term,
and then to add the jumps.

Symmetries and selection rules: Many density matrix problems benefit from se-
lection rules that make certain coherences Piyso vanish at all times, or from symmetries
that lead to similar reductions in the number of quantities to be considered. These re-
ductions apply to the Monte Carlo wave functions as well, so that e.g. no wave function
contains non-vanishing amplitudes ¢, and c¢;, simultaneously. They are, in fact, even
easier to identify and certainly easier to implement in the wave function formalism.

Different simulations of the same problem: We have shown that different QMC
simulations may be applied, leading to the same mean values. A continuous stochastic
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evolution was found for an atom whose fluorescence was observed in a homodyne or
heterodyne setup, and a general continuous stochastic wave function simulation of the
master equation can be derived as a limit of the simulations of jump-type. For a
numerical application it is relevant to know which simulation is the most efficient in
terms of having an uncertainty a/\/n with the smallest possible a. On beforehand, it
is usually not clear which simulation is the best one. The fluctuations in parts c) and
d} of Fig. 11 show that there is a difference.

Error bars, local and global operators: With n wave functions we obtain n opera-
tor expectation values. Their mean is an estimate of the exact density matrix average,
and their spread divided by /n is the uncertainty of this estimate. The procedure
hence provides its own error bars, a very important fact when one has to accept less
accurate results for practical reasons. The error depends on the type of operator: the
value of a global operator such as the kinetic energy of laser cooled atoms will fluctuate
less than the value of a local operator such as the population of a specific state, a 5= 0
momentum state, say. The "broader” the wave functions, the better the estimate of
the expectation value, the limit being a wave function as broad as the density matrix
so that one wave function suffices to yield the required quantity. "Broad” should be
understood in the sense of the spectrum of the operator of interest, and we may to
some extent control this width by the choice of simulation scheme.

Time averages for stationary problems: For systems approaching a stationary
state one may benefit from averaging the individual wave function results over time
before performing the statistics involving all n wavefunctions. The time-averaged quan-
tities fluctuate much less; in fact, a single wave function result averaged over a long
time is sufficient to determine the correct mean [9]. By keeping a number of wave
functions, however, we are still able to produce an error bar. For the laser cooling
problem we have been able to reduce our error bar by about a factor of two, compared
to the typical size as shown in Fig.7, corresponding to a gain in computing efficiency
of a factor of four.

5.2 Insights gained from applications to simple systems

The QMC method may also be applied to simple systems for which density matrix
solutions may readily be obtained. In this way one may get additional insight in the
mechanisms leading to certain phenomena. It is of course a personal matter whether
a certain description adds to one’s understanding of a phenomenon or not. I felt much
more comfortable with the simple decay of a two-level atom after having appreciated the
mechanisms described in Section 3.1.2, and also for slightly more complicated systems
it may be useful to confront the density matrix results with simulations.

Dark states and velocity selective coherent population trapping. The evolu-
tion of an effective three level A system as the one shown in Fig.10 towards a dark state
is obtained very easily with the density matrix. A question is: how can the system ap-
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proach a coherent superposition of the two ground states, when spontaneous emission
does not feed the corresponding coherence, and when the laser light is not coupled to
the state 7 As we saw in Section 4.2.2 the "no-jump” evolution does the job, the same
way as it brings the ground state fraction of two-level atoms into the ground state
without emission of photons. In problems with dissipation this emphasizes a dynamics
towards the least dissipating states (the other wave function components decay away
faster due to the non-hermitian part of the effective Hamiltonian). The dark state
appears in the phenomenon of velocity selective coherent population trapping, yielding
very narrow velocity distributions of atoms in laser fields, and the dynamics has been
studied with the QMC approach providing further information about this process [52].
Also very recently simulations have been applied in numerical tests of a new treatment
of this process [53].

Quantum jumps. The experimentally observed quantum jumps [54] are difficult to
account for by density matrices, since the elements of p are averages, describing large
ensembles or many measurements, whereas the experimental situation refers to a single
system being watched "here and now”. Applying the quantum regression theorem it
is possible to show that the expected intensity correlations of fluorescence light are in
agreement with the observed signal, consisting of periods of fluctuating duration with
either no light at all or a fairly constant intensity [55]. A simulation with a single
atom, yields directly a fluctuating signal (number of emission events per unit time)
as in the experiments, but it should be noticed that our simulations are equivalent to
an experiment detecting all fluorescence photons and the real experiments only detect
within a small solid angle.

Quantum Zeno effect. The quantum Zeno effect experiment in which the evolution of
a system away from or towards a certain state is prevented by frequent measurements of
the corresponding population {56], can be reproduced by density matrix calculations.
As in the case of quantum jumps, we have in the QMC method a picture of the
evolution, close to the one applied in a qualitative explanation of the phenomenon, but
this one is exact in an average sense or under the assumption of the complete detection
of the light emitted from the system.

Hegerfeldt [10] actually developed the stochastic wave functions to deal with pre-

cisely this kind of phenomena. His approach is equivalent to our jump treatment when
applied to these systems.

Lasing without inversion. For certain ratios between incoherent and coherent pump-
ing parameters in the dynamics of three-level atoms, one has observed the possibility
of lasing without inversion [57]. The demonstration of this phenomenon by means of
solutions to the master equation has been supplemented by a QMC approach [58]
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~ which, apart from giving the proper mean values, also provides dynamical mechanisms

(atoms enter this state by absorption of an incoherent pump photon and thereafter,
via that state, they transfer their population to this level through stimulated emission
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in the lasing mode ...}.

Photon detection and evolution of cavity fields. In his beautiful lecture notes de-
scribing the evolution of stochastic wave functions, “quantum trajectories” [6}, Carmichael
considers a number of applications to situations where the quantum system involves a
quantized field mode, e.g. in a cavity. In particular the question of shot noise reduc-
tion in connection with squeezed light, which he poses as a riddle, is a good example
of insight rather than numerical information obtained from the wave function ideas.

Of course, these examples of additional insights have to be seen in the light of the
simulation/“detection” scheme applied, however, taking this into consideration, one
may obtain an even more profound understanding of the system dynamics.

5.3 The mathematical development of theory, independent
of quantum optics

In Eq.(18), the relaxation terms in the master equation were postulated to be of the
Lindblad form. This form is actually the result of a mathematical derivation, a Theorem
in Lindblad’s paper [19]. A number of master equations for different physical systems
bad already been derived, when Lindblad proved his theorem, and they could all be
brought on this form. For our applications this expression makes it possible to infer
the generality of the simulation approach to dissipative systems, and it even provides
an automatic way of implementing this treatment.

In the mathematical literature on Hilbert space theory, C*-algebra, and semigroups,
the ideas developed further, and the idea of realizing the evolution with stochastic wave
functions came up quite early. After the publication of our first paper {3}, Gisin drew
our attention to his work [11], and his applications of the equation (111) to very different
aspects of physics, and to parts of the more extensive literature with contributions by
Barchelli [59], Belavkin [60] and Dioisi [61] (I am not familiar with the chronology
or the milestones in this research, so I give some recent references to these authors
from which the interested reader may backtrack through the original developments).
Unfortunately the lack of communication between the apparently well-separated fields
of mathematical physics and quantum optics, prevented the parties from profiting at a
much earlier stage from the insight and practical means which were readily available .

5.4 “Classical” quantum mechanics questions in new light

This work confronts two very different definitions of the density matrix: (i) a reduction,
via a trace, of the state of the combined system--reservoir which cannot be described
by a pure state in the small system, and (i) a statistical description of an ensemble
of systems populating different states with some probability law. The two are joined,
if we by ensemble understand a large number of realizations of an experiment, rather
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than a large number of simultanecusly existing systems. The density matrix is then
the average over the different detection sequences {with weight factors inferred from
the wave functions attached to each sequence).

In this spirit stochastic approaches have also been introduced in the context of stan-
dard [62, 63] or quantum non demolition {64, 65, 66] measurements of photon numbers
in cavities. A sequence of quantum jumps resulting from successive measurements,
e.g. on atoms leaving the cavity, leads to a reduction of the field state, sometimes
into a Fock state [n). The interest of these stochastic approaches is to give explicit
individual histories of the quantum field state in a measurement sequence, and this is
particularly valuable if one wants to optimize the measurement sequence in order to
get complete information on the field state with a minimum number of measurement
processes [65, 67]. It is noteworthy that in these cavity problems the evolution may be
unitary when the atom traverses the cavity, the dissipative element is the projection of
the field state when the final atomic state is detected. Instead of considering the state
of the field conditioned on the detection process, one may determine the density ma-
trix, and in some cases its evolution may even be approximated by a master equation
as the one discussed here, see e.g. Ref.[13}.

It is an important aspect of quantumn mechanics how wavefunctions relate to obser-
vations. You may consider two components evolving in parallel: the quantum sysem,
represented by a wavefunction |¢), which is propagated according to Schrodinger’s
equation, and the detector which “clicks” and gives numbers in a classical manner.
These two components are coupled: the detector readings are determined in a random
manner, following probabilities determined by the current value of |3); every reading
of the detector (also a null-measurement) causes a change of the wavefunction, a col-
lapse on some appropriate eigenstate. As a result of this, one cannot observe a system
without modifying its evolution. The reason that the QMC method works, is that
the system is already being “observed” by the quantized field before we enter our hy-
pothetical detectors: the atom-field coupling causes the same average decoherence of
atomic properties as we enforce by the simulated detection. In this respect the QMC
method does not add anything new to our interpretation of quantum mechanics, it only
brings in some tools in the discussion of dissipative effects. These effects, however, play
important roles in any real detector, and a better understanding may help demystify-
ing part of the collapse postulate of quantum mechanics. Gisin and Percival [12] and
Carmichael [41] have by means of examples studied how dissipative elements cause
localization of wavefunctions, and how, for example, superpositions of “macroscopic”
states choose between the components. By such a study of the so-called Schrodinger
cat states (superpositions of coherent states of the harmonic oscillator) Carmichael
[41] has shown that the elementary collapses introduced at the level of single photon
events, as in the QMC method, are sufficient to make a macroscopic superposition state
chose betweeen its “classical” components on a very fast time scale. The Macroscopic
collapse has been explained, the elementary collapse, however, remains as an essential



and unexplained ingredient of the theory.

A real advantage of the QMC method: We can be sitting there discussing its philo-
sophical implications and the deep questions of quantum physics while the computer is
cranking out numbers which we need for practical purposes and which we could never
obtain in any other way. What more can we ask for ?
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