Physics 566: Quantum Optics Problem Set #6 Due Monday Oct. 20, 2008

Problem 1: Boson Algebra (10 Points)

This problem is to give you some practice manipulating the boson algebra. A great source is the classic "Quantum Statistical Properties of Radiation", by W. H. Louisell, reprinted by "Wiley Classics Library", ISBN 0-471-52365-8.

(a) Gaussian integrals in phase-space are used all the time. Show that

$$\int \frac{d^2\beta}{\pi} e^{-A|\beta|^2} e^{\alpha\beta^*-\beta\alpha^*} = \frac{1}{A} e^{-|\alpha|^2/A}.$$

(b) Prove the completeness integral for coherent states

 $\int \frac{d^2 \alpha}{\pi} |\alpha\rangle \langle \alpha| = \hat{1} \text{ (Hint: Expand in number states).}$

(c) The "quadrature" operators in optics are the analogs of Q and P, $\hat{a} = \hat{X}_1 + i\hat{X}_2$. Show $\hat{U}^{\dagger}(\theta)\hat{X}_1\hat{U}(\theta) = \cos\theta \hat{X}_1 + \sin\theta \hat{X}_2$, where $\hat{U}(\theta) = e^{-i\theta\hat{a}^{\dagger}\hat{a}}$. $\hat{U}^{\dagger}(\theta)\hat{X}_2\hat{U}(\theta) = \cos\theta \hat{X}_2 - \sin\theta \hat{X}_1$,

Interpret in phase space.

- (d) Prove the group property of the displacement operator $\hat{D}(\alpha)\hat{D}(\beta) = \hat{D}(\alpha + \beta)\exp\{i\operatorname{Im}(\alpha\beta^*)\}$
- (e) Show that the displacement operators has the following matrix elements

Vacuum: $\langle 0|\hat{D}(\alpha)|0\rangle = e^{-|\alpha|^2/2}$ Coherent states: $\langle \alpha_1|\hat{D}(\alpha)|\alpha_2\rangle = e^{-|\alpha+\alpha_2-\alpha_1|^2/2}e^{i\operatorname{Im}(\alpha\alpha_2^*-\alpha_1\alpha^*-\alpha_1\alpha_2^*)}$ Fock states: $\langle n|\hat{D}(\alpha)|n\rangle = e^{-|\alpha|^2/2}\mathsf{L}_n(|\alpha|^2)$, where L_n is the Laguerre polynomial of order n

Problem 1: Properties of the Wigner function (10 Points)

A standard form of the Wigner function (in accordance with what Wigner wrote down originally) is (see Scully for derivation)

$$W(X_1, X_2) = \int \frac{dX'}{\pi} e^{-2iXX_2} \langle X_1 - X' | \hat{\rho} | X_1 + X' \rangle = \int \frac{dX'}{\pi} e^{-2iXX_2} \psi(X_1 - X') \psi^*(X_1 + X')$$

where the last form applies only for a pure state.

(a) In standard statistics, given a joint probability distribution on many random variables, one defines the "marginal distributions" by integrating out the others.

$$P(X_1) = \int dX_2 W(X_1, X_2) \quad P(X_2) = \int dX_1 W(X_1, X_2).$$

Show that these marginal are in fact the *correct* true marginals predicted by quantum mechanics (here QM gives true probability distributions).

(b) Suppose we have operators which are functions only of the quadratures $\hat{f}_1 = f_1(\hat{X}_1), \ \hat{f}_2 = f_2(\hat{X}_1)$. Show that

$$\left\langle \hat{f}_{1} \right\rangle = \int dX_{1} dX_{2} W(X_{1}, X_{2}) f_{1}(X_{1}), \left\langle \hat{f}_{2} \right\rangle = \int dX_{1} dX_{2} W(X_{1}, X_{2}) f_{2}(X_{2}),$$

and thus show, for example, the quantum uncertainties ΔX_1 and ΔX_2 are the respective rms widths of the Wigner function.

(c) Generalize these results to the case of the rotated quadratures,

$$\hat{X}_1(\theta) = \cos\theta \, \hat{X}_1 + \sin\theta \, \hat{X}_2$$
$$\hat{X}_2(\theta) = \cos\theta \, \hat{X}_2 - \sin\theta \, \hat{X}_1$$

Epilog: Given the marginals, we can invert to find the joint distribution. This process is well known in medical imaging – tomography. It turns out one can perform the same procedure here to use the marginals to obtain the *Wigner function*. This process is known as "quantum tomography", see e.g. M. G. Raymer *et al.*, Phys. Rev. Lett. **72**, 1137 (1994).

Problem 3: A "Schrödinger cat" state. (10 Points)

Consider a superposition state of two "macroscopically" distinguishable coherent states, $|\psi\rangle = N(|\alpha_1\rangle + |\alpha_2\rangle), |\alpha_1 - \alpha_2| >> 1$, where $N = \left[2(1 + \exp\{-|\alpha_1 - \alpha_2|^2\})\right]^{-1/2}$ is normalization. This state is often referred to as a "Schrodinger cat", and is very nonclassical.

(a) Calculate the Wigner function, for the simpler case $|\psi\rangle = N(|\alpha\rangle + |-\alpha\rangle)$, with α real, and plot it for different values of $|\alpha_1 - \alpha_2| = 2\alpha$. Comment please.

(b) Calculate the marginals in X_1 and X_2 and show they are what you expect.

Problem 4: Thermal Light (15 points)

Consider a single mode field in thermal equilibrium at temperature *T*, Boltzmann factor $\beta = 1/k_B T$. The state of the field is described by the "canonical ensemble", $\hat{\rho} = \frac{1}{Z} e^{-\beta \hat{H}}$, $\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a}$ is the Hamiltonian and $Z = Tr(e^{-\beta \hat{H}})$ is the partition function.

- (a) Remind yourself of the basic properties by deriving the following:
 - $\langle n \rangle = \frac{1}{e^{\beta h \omega} 1}$ (the Planck spectrum) • $P_n = \frac{\langle n \rangle^n}{\left(1 + \langle n \rangle\right)^{n+1}}$ (the Bose-Einstein distribution). Plot a histogram for various $\langle n \rangle$.
 - $\Delta n^2 = \langle n \rangle + \langle n \rangle^2$. How does this compare to a coherent state?
 - $\langle \hat{a} \rangle = 0 \Rightarrow \langle \vec{E} \rangle = 0$. How does this compare to a coherent state?

(b) Find the *P*. *Q*, and *W* distributions for this field, and show they are *Gaussian* functions. For example, you should find $P(\alpha) = \frac{1}{\pi \langle n \rangle} \exp\left(-\frac{|\alpha|^2}{\langle n \rangle}\right)$. Show that these three distributions give the proper functions in the limit, $\langle n \rangle \rightarrow 0$, i.e. the vacuum.

(c) Calculate Δn^2 , $(\Delta X_1(\theta))^2$, $(\Delta X_2(\theta))^2$ using an appropriate quasi-probability distribution. Interpret Δn^2 as having a "particle" and a "wave" component.