
Physics 566, Quantum Optics 
Problem Set #8 

Due: Tuesday Nov. 18, 2008 
 
Problem 1:   Nonclassical light generation via the Kerr effect. (15 points) 
In the classical (optical) Kerr effect, the index of refraction is proportional to the 
intensity.  The quantum optical description is via the Hamiltonian, 

 

  

� 

ˆ H = hχ (3)

2
ˆ a †2 ˆ a 2. 

 
(a)  Suppose we inject a strong coherent state into a nonlinear fiber with Kerr response.  
Linearize  this Hamiltonian about the mean field via the substitution 

� 

ˆ a = α + ˆ b , and keep 
terms only up to quadratic order in 

� 

ˆ b  and 

� 

ˆ b †.   
Show that the resulting Hamiltonian leads to squeezing. 
 
(b)  Now let’s go beyond the linear approximation.  Show that for a long time such that 

� 

χ (3)t = π , the state becomes a Schrödinger cat,  

� 

eiπ / 4 −iα + e− iπ / 4 iα( ) / 2 . 

 
Note:  Though in principle this is the solution, in practice this is not observed because 
losses and other noise sets in long before this kind of coherence can be established. 
 
 
Problem 2:  Twin beams and two-mode squeezed states.  (15 points) 
In lecture 14 we discussed how parametric downconversion leads to correlated twin 
“signal” and “idler” beams as long as the phase matching conditions are satisfied, 
 

� 

ω p = ωs + ω i, k p = k s + k i. 

 
Considering two nondegenerate modes, 

� 

ω± = ω p /2 ± Δω , the Hamiltonian is 

 

  

� 

ˆ H = ihG ˆ a +
† ˆ a −

†e− iφ − ˆ a + ˆ a −e
iφ( ) , 

where G is the coupling constant depending on the nonlinearity, pump amplitude, and 
vacuum mode strength.  The state produced is known as a “two-mode squeezed vacuum 
state”, 
 



� 

ˆ S ± (ξ) 0 + ⊗ 0 − = exp ξ ˆ a + ˆ a − − ξ
* ˆ a +

† ˆ a −
†[ ] 0 + ⊗ 0 − , 

where 

� 

ξ = reiφ  is the complex squeezing parameter for an interaction time t, 

� 

r = Gt . 
 
(a)  Show that the generalized Bogoliubov transformations is 
 

  

� 

ˆ S ±
† (ξ) ˆ a ± ˆ S ± (ξ) = cosh(r) ˆ a ± − e− iφ sinh(r) ˆ a m

† . 
 

(b)  Show that the individual modes, 

� 

ˆ a ± , show no squeezing, but that squeezing exists in 
the correlation between the modes.  Hint:  consider quadratures,  

� 

ˆ X ± (θ) ≡
ˆ a ±eiθ + ˆ a ±

†e−iθ

2
 and then 

� 

ˆ Y (θ, ′ θ ) ≡ ˆ X + (θ) − ˆ X −( ′ θ )( ) / 2 . 

 
For the remaining parts, take ξ real. 
 
(c)  The two-mode squeezed state is an entangled state between the signal and idler as we 
know from the perturbative limit of twin photons.  Show that in the Fock basis 
 

� 

ˆ S ± (r) 0 + ⊗ 0 − = cosh(r)( )−1 tanh(r)( )n n +
n= 0

∞

∑ ⊗ n − . 

 
Hint:  Use the “disentangling theorem” (D. R. Traux, Phys. Rev. D 31, 1988 (1985) ): 
 

 

� 

er ˆ a +
† ˆ a −

†− ˆ a + ˆ a −( ) = eΓ ˆ a +
† ˆ a −

†

e−g ˆ a +
† ˆ a + + ˆ a −

† ˆ a − +1( )e−Γ ˆ a + ˆ a − . 
 

where 

� 

Γ = tanh(r), g = ln cosh(r)( ) 
The photons are produced with perfect correlations between the modes.  This is known as 
“number squeezing”. 
 
(d)  Show that the marginal density operator for each mode is a thermal state with  mean 
photon number 

� 

n = sinh2(r) . 
 
(e) This  entangled state produced in twin beam generation is very close to the form 
considered by Einstein-Podolfsky-Rosen in their famous paradox.  
 
Show that the Wigner function for our state in the two modes is, 



 

� 

W (α+,α−) = 4
π 2 exp −e−2r (x+ − x−)

2 + (p+ + p−)
2[ ] − e+2r (x+ + x−)

2 + (p+ − p−)
2[ ]{ }

→Cδ(x+ + x−)δ(p+ − p−)
 

 
where 

� 

α± = x± + ip± the final expression is the limit of infinite squeezing, 

� 

r→∞.  For 
mechanical degrees of freedom, 

� 

x± and 

� 

p±  represent position and momentum of two 
particles which are perfectly correlated.  The quantum optical implementation maps these 
onto mode quadratures which are very tightly correlated.  Violations of Bell’s inequalties 
can then be measured (see Z.Y. Ou et al., Phys. Rev Lett. 68, 3663 (1992)). 
 
(f)  Extra credit:  The Wigner function is positive, but clearly the EPR state clear has 
nonclassical features.  Your thoughts?  
 
Problem 3:  State preparation in cavity QED. (10 points) 
In the Jaynes-Cummings system, the atom and field become entangled.  By measuring 
the state of the atom at some time, we gain information about the state of the field.  
Consider the following geometry, 
 
 
 
 
 
 
 
A stream of atoms, prepared in a very long lived excited state, are sent through a very 
high-Q cavity interacting with the mode for a time τ.  After the atom emerges, it is 
measured and determined to be in either the excited or ground state.  The cavity is 
initially prepared in the vacuum before any atoms enter. 
 
(a)  Show that after m  atoms interact and are measured, the probability of having n 
photons in the cavity satisfies the recursion relation 
 

� 

Pn (m) = cos2 gτ n +1( )Pn (m −1) + sin2 gτ n( )Pn−1(m −1) . 
 

(b)  Solve numerically, and plot as a function of n for m=5,25, 50, 100.  Take gτ=0.4. 
Comment. 
 


