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Physics 566:  Quantum Optics
Introduction to Quantum Field Theory

The need for a quantum field theory

     So far we have treated the interaction of matter with light as the interaction of a quantized
two-level atom with a classical electromagnetic field.  This description allowed us to derive
Fermi's Golden rule for the transfer of population from the ground state to the excited state
in the short time limit, and coherent Rabi-flopping between these states for longer times.  At
the end of lecture #5, we added phenomenological damping terms to our optical Bloch
equations in order to account for dissipative processes.  Foremost among these is the
process of spontaneous emission.  Given an atom initially in the excited state, in the absence
of any light, we know from experience that it will eventually decay to the ground state and
"spontaneously" emit light (that is to say, it was not "stimulated" to do so by any light
present at the position of the atom).  However, according to the Hamiltonian that we've used
up to now, in the absence of any light, if the atom starts in the excited state it will remain
there forever since the excited state is a stationary state.  In order to properly account for
the phenomenon of spontaneous emission we must go to a more complete description of
atom-light interactions.
     The missing ingredient in our description so far is that we have treated the
electromagnetic field classically.  As quantum mechanics is supposed to be the fundamental
theory of physics, the field must too have a quantum description.  In such a theory the
uncertainty principle will limit the observables we can know simultaneously about the field,
even in principle with ideal measuring devices.  This uncertainty can be thought of as
fluctuations in the electromagnetic field which effect the dynamics of the atom.  Thus, even
in the absence of light, i.e. the "vacuum", the atom will evolve; this is the basis of
spontaneous emission.
     The quantum mechanical description of a field requires a Hamiltonian formulation of the
field dynamics.  When one does this we will find that the field is equivalent to an infinite
collection of harmonic oscillators, each oscillator representing a normal mode of the field
with the appropriate boundary conditions.  Quantizing the field is then equivalent to
quantizing each of the normal mode oscillators.  Thus, it is crucial to understand the
quantum mechanical description of a simple harmonic oscillator, perhaps the most
ubiquitous problem in physics.
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The Classical Simple Harmonic Oscillator

     The paradigm of a simple harmonic oscillator is a mass m on a spring, with "spring
constant" κ, and resonant frequency  ω = κ / m .

q
m

κ

The dynamical coordinate q, represents the displacement of the mass from its equilibrium
position.  The kinetic energy T and potential energy V of the system are

T =
1
2

m ˙ q 2 ,    V =
1
2
κq2 = 1

2
mω 2q2 .

The Lagrangian is then,

L ≡ T − V =
1
2

m ˙ q 2 − 1
2

mω 2q2 .

The canonical momentum, conjugate to q is defined p ≡
∂L
∂ ˙ q 

= m ˙ q , and the Hamiltonian

H(q, p) ≡ T ( ˙ q = p / m) + V(q) = p2

2m
+

1
2

mω2q2 .

Let us define characteristic scales for the position, momentum, and energy, q0 , p0,  E0 ,
respectively, so that Q ≡ q / q0  and  P ≡ p / p0  are dimensionless phase space coordinates.

If we choose the scales so that p0
2

2m
=
1
2
mω2q02 = E0 , where E0 remains to be chosen, then

the Hamiltonian can be expressed as

H = E0 Q
2 + P2( ) .
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Finally, let us define a dimensionless complex amplitude in phase space,
α ≡Q + iP =

q
q0

+ i p
p0

so that the Hamiltonian can be expressed as,  H = E0 α
*α .  Since energy is conserved, α

is conserved by the dynamics.
     The equations of motion can be found from either the Lagrange-Euler equation or the
Hamilton equations of motion, ˙ ̇ q +ω 2q = 0 , with the solution

q(t) = q(0)cos(ωt) + p(0)
mω

sin(ωt) = q0 A cos(ωt − φ )

p( t) = p(0)cos(ωt) −mωq(0)sin(ωt) = −p0 Asin(ωt − φ ) ,

where A = Q(0)( )2 + P(0)( )2 ,φ = tan −1 P(0) / Q(0)( ) , 
                                 Q(0) = q(0) / q0, P(0) = p(0) / p0 .

The complex amplitude thus evolves according to

α (t) = (Aeiφ )e− iω t = α (0)e− iω t .

It is helpful to view these dynamics in the (Q,P) plane which can be thought of as phase
space, or the complex α plane, with Q the real axis and P the imaginary.

P

Q

A
ωτ−φ

The motion is that of a phasor rotating clockwise with frequency ω, oscillating every quarter
period between pure potential energy (phasor along Q-axis) and pure kinetic energy (phasor
along P-axis).  The magnitude of this phasor is conserved.  Note from the solution for q(t)
above, if we have a reference oscillator of the same frequency that oscillates as cos(ωt)  then
q(0) tells us the part of the motion that is in-phase with the reference, and p(0) tells us the
part that oscillate 90 degrees out-of-phase ("in-quadrature").
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The Quantum Simple Harmonic Oscillator

     In the quantum picture of the oscillator, the phase space coordinates become (Hermitian)
operators,   q → ) q ,  p → ) p , and we impose the fundamental canonical commutator,

  [
) q , ) p ] = ih .

If we take the scale length of energy to be   E0 = hω , then   q0 = 2h / mω ,  p0 = 2mhω ,

and the dimensionless phase space operators satisfy [ ˆ Q , ˆ P ] = i
2

.  The complex amplitude is

mapped onto a nonHermitian operator

 
  
α → ˆ a =

) 
Q + i ˆ P =

mω
2h

) q + i
) p 

mω
⎛ 
⎝ 

⎞ 
⎠ .

Using the commutation relations for   
) 
Q  and ˆ P  we then have,

[ ˆ a , ˆ a † ] = 1.

Substituting the operators   
) 
Q  and ˆ P , and the energy scale E0 into the Hamiltonian yields,

  

) 
H = hω

) 
Q 2 + ˆ P 2( ) = hω ) a † ) a +

1
2

⎛ 
⎝ 

⎞ 
⎠ .

The final form of the Hamiltonian is arrived at by substituting in for   
) 
Q  and ˆ P  in terms of

  
) a  and ) a † , and using the commutation relations above.
(Note, in general there is no unique way of going from a classical Hamiltonian  H(q, p)  to a
quantum Hamiltonian   

) 
H ( ) q , ) p )  because of the problem of operator ordering.  That is,

although q and p commute,   
) q  and ) p  do not, so if the Hamiltonian depends on products of q

and p, we must choose some particulart ordering of these variables).
     The operator   

) 
N = ) a † ) a  is known as the number operator, satisfying the commutation

relations,

  [
) 
N , ) a †] = ) a † ,      [

) 
N , ) a ] = − ) a  .

Its eigenstates, |n>, are the eigenstates of the Hamiltonian,
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) 
N n = n n ,  

  

) 
H n = hω(n +

1
2
) n .

 The ground state satisfies   
) a 0 = 0 . If we act with   

) a  on the eigenstate n , the resulting
vector is also a eigenstate of ˆ N  (with a different eigenvalue) ,

  
) 
N ) a n = ) a 

) 
N n + [

) 
N , ) a ] n = ) a n n − ) a n = (n −1)) a n ,

 so we must have

  
) a n = n n −1 ,

where the n  factor is for normalization.  For this reason,   
) a  is known as the lowering

operator, or the annihilation operator.  Similarly, one can show,

  
) a † n = n + 1 n +1 ,

so   
) a †  is known as the raising operator, or the creation operator.  The general nth energy

eigenstate can be represented by acting n-times on the ground state with   
) a † ,

  
n =

( ) a † )n

n!
0 .

The energy spectrum is thus an infinite latter of energy levels,  all equally spaced by   hω .

h ω

h ω

2

The ground state energy 
  
Eground=

1
2

hω   is known as the zero point energy.  That is,

quantum mechanically it is forbidden to have the oscillator exactly at rest at the equilibrium
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position, for this would violate the uncertainty principle.  The ground state is a minimum
uncertainty wave packet state 

  
ΔqΔp = 1

2
h .

     If we want to depict the energy eigenstates in a phase space diagram as we did for the
classical oscillator on Page 3, we can no longer represent it as a well defined phasor in the
Q,P plane since these variables no longer commute.  In fact,

  n
) 
Q n = n

) 
P n = 0 ,

for the stationary states.  Instead we must picture these states a "fuzzy" rings in phase space,
whose radius is n and whose, thickness depends on the uncertainties   Δ

) 
Q  and Δ

) 
P .

The ground state will be a fuzz-ball center on the origin with the minimum uncertainties

  
Δ

) 
Q = Δ

) 
P = 1

2
.

P

Q

ground-state

excited-state

If we construct a wave packet as a superposition of different energy eigenstates

ψ = cn
n
∑ n ,

then we can obtain a state whose expectation values of   
) 
Q  and ˆ P  oscillate in time.

P
QA

ωτ−φ

Δ

ΔP
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However, the degree to which we can specify the trajectory in phase space is limited by the
uncertainty principle.  In fact, the more precise we try to specify the phase of the oscillator,
the more uncertain the amplitude will become, This can be stated in terms of an
(approximate) uncertainty relation between the number of excitations (i.e. the amplitude of
the oscillation) and its phase

  Δ
) 
N Δ

) 
φ ~ 1.

An eigenstate of the number operator thus has the complete uncertainty in the phase, as is
represented by the ring in phase-space.  A state with a more well defined phase, will have a
large uncertainty in number.

Lagrangian formulation of a one dimensional scalar field theory

   Consider now a collection of N identical masses  attached to one another in a linear chain
by springs of length a .

κ κ κm m m
......

x1 x2 x3
a

Linear chain of oscillators

The configuration space for this system is given by the set of positions for the N oscillators
{xi}.  The kinetic energy and potential energy for the system are, respectively,

T =
1
2

m ˙ x i2
i
∑ ,   V =

1
2
κ (xi+1 − xi )

2

i
∑

 From the Lagrangian L=T–V we can determine the coupled equations of motion of the
masses.
     We now want to go to a limit so that our chain of oscillators becomes a continuous
elastic rod.  We do so by taking the limit as N→∞, a→dx, m/a→µ (the linear mass density),
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and κa→Y (the Young's modulus of the rod).  In doing so, the discrete set of dynamical
variables {xi} are replaced by a continuous field η(x) describing the displacement from
equilibrium of a differential element of the rod at position x by an amplitude η.

{xi}⇒ η(x)

When we take this limit the kinetic and potential energies of the system become,

T = lim a 1
2

m
a

⎛ 
⎝ 

⎞ 
⎠ ˙ x i2

i
∑ = dx  1

2
µ

∂η
∂t

⎛ 
⎝ 

⎞ 
⎠ 

2
∫

V = lim a 1
2
κa xi+1 − xi

a
⎛ 
⎝ 

⎞ 
⎠ 

2

i
∑ = dx  1

2
Y ∂η

∂x
⎛ 
⎝ 

⎞ 
⎠ 

2
∫ .

The equation of motion which follows from this Lagrangian is

∂2η
∂t2

−
Y
µ
∂2η
∂x2

= 0 .

This is none other than the wave equation for longitudinal excitations on elastic rod, whose
phase velocity is v = Y / µ .

Normal Modes of the Field

      Now consider a finite elastic rod of length L.  In order to determine the dynamics of
wave on the rod, we decompose it into its normal modes, {uk(x)}, satisfying

∂2uk
∂x 2

= −k2uk (x) .

 To solve this, we must specify the boundary conditions.
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•  "Hard-wall" boundary conditions:
      Consider first the case of the elastic rod attached at each end to an infinitely massive
wall, so that  η(0) = η(L) = 0 .

0 L
The normal modes are

ukn(x) =
2
L
sin(knx) ,   kn =

nπ
L

.

These modes are orthonormal,

dx  u ′ k (x)∫  uk(x) = δ ′ k k ,

and complete,

dx  uk( ′ x )∫  uk (x) = δ( ′ x − x) .

Note:  I have dropped the subscript n on the mode, though it is to be understood that k=kn.

• "Periodic" boundary conditions
     Consider now the case that the rod is wrapped into a ring so that the position along the
rod is the azimuthal position.

x

angular elastic rod

circumference L
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 The field must come back to its after one circumference, η(x + L) = η(x) .  The normal
modes for these boundary conditions are:

ukn(x) =
1
L
eikn x ,  kn =

n2π
L

The orthonormality and completeness relations are,

dx  u ′ k 
*(x)∫  uk (x) = δ ′ k k ,

uk
*( ′ x )  uk (x)

k
∑ = δ( ′ x − x) .

     For either choice of boundary conditions, the completeness relation tells us that we can
expand an arbitrary field in terms of the normal modes

η(x,t) = L qk (t)
k
∑ uk (x) .

The factor of L  was added for dimensional purposes so that qk and η have the same
units.  This expansion is essentially a Fourier series for the field which satisfies the
appropriate boundary conditions.  Since η is real, for the hard-wall boundary conditions, the
coefficients qk are real, while for periodic boundary conditions qk* = q−k .  The difference is
that for hard-wall boundary conditions we only retain the "sine" terms in the Fourier series,
while for periodic boundary conditions we have both the spatial "cosine" and "sine" terms
which represent the real and imaginary parts of qk respectively.  Periodic boundary
conditions are more convenient if we want to allow for propagating solutions, rather that the
solely standing wave solutions as dictated by hard-wall boundary conditions.  If, in the end,
we want to take the limit as L→∞, then the choice of boundary condition becomes
unimportant.
     Substituting the normal mode expansion into the wave equation, and using the
orthonormality relation, we obtain the equation of motion for the normal mode coefficients,

˙ ̇ q k +ωk
2qk = 0 ,  ωk = vk =

Y
µ
kn .

Thus, each normal mode evolves as a simple harmonic oscillator with frequency ωk .
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Hamiltonian formulation of the field theory

     Let us express the kinetic and potential energies in terms of the normal modes.  For the
discussion to follow I will assume the expansion associated with hard wall boundary
conditions since the mode functions and coefficients are real, thereby allowing for simpler
calculations.  In the end I will generalize this to allow for periodic boundary conditions.
    Substituting the normal mode expansion into the kinetic energy on Page 8,

  

T = dx  1
2

µ
∂η
∂t

⎛ 
⎝ 

⎞ 
⎠ 

2
∫ =

1
2

µ
k , ′ k 
∑ L ˙ q k ˙ q ′ k dx uk (x)u ′ k (x)∫

δ k ′ k 

1 2 4 4 3 4 4 =
1
2

M˙ q k2

k
∑ ,

where M=µL.  Similarly, for the potential energy

V = dx  1
2

Y ∂η
∂x

⎛ 
⎝ 

⎞ 
⎠ 

2
∫ =

1
2

Y
k , ′ k 
∑ Lqkq ′ k dx (∂xuk)(∂xu ′ k )∫

   =
1
2

Y
k , ′ k 
∑ Lqkq ′ k dx (−∂2xuk)u ′ k (x)∫

   =
1
2

Y
k , ′ k 
∑ Lqkq ′ k k2δ ′ k k =

1
2

Y ωk
v

⎛ 
⎝ 

⎞ 
⎠ k

∑
2
Lqk

2

   = 1
2
Mωk

2

k
∑ qk2 .

In the second line we used integration by parts.  In the third line we used the normal mode
equation on Page 8 and the orthonormality relation.  Finally we used the dispersion relation
relating k and ωk, and the relation v = Y / µ .
       Thus, the Lagrangian for the field can be written as

L = T − V =
1
2

M ˙ q k2 −
1
2

Mωk
2qk

2⎛ 
⎝ 

⎞ 
⎠ k

∑ .

The canonical momenta are  pk =
∂L
∂ ˙ q k

= M ˙ q k , and the Hamiltonian is

H({pk , qk}) = T(qk =
pk
M
) + V(qk ) =

pk2

2M
+
1
2
Mωk

2qk2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

k
∑ .
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Thus we see explicitly: the Hamiltonian for the field is equivalent to that for a collection of
simple harmonic oscillators , where each oscillator is associated with a normal mode of
the field.  Following our analysis of a single oscillator, we define the characteristic units for
each mode,   E0,k = hω k ,  q0,k = 2h / mωk ,  p0,k = 2mhωk , and dimensionless phase
space coordinates, Qk = qk / q0,k ,  Pk = pk / p0,k .  The complex amplitude for each mode is
defined analogously, α k =Qk + iPk , so

Qk (t) =Qk (0)cos(ω kt) + Pk (0)sin(ωkt) ,
Pk(t) = Pk (0)cos(ω kt) +Qk(0)sin(ωkt) ,
α k(t) = Qk(t) + iPk( t) = αk (0)e

− iω kt .

Expressed in terms of the dimensionless coordinates and complex amplitude

  
H = hωk Qk2 + Pk2( )

k
∑ = hω kα k

*αk
k
∑

η(x,t) = L qk (t)uk(x)
k
∑ = Lq0,k

αk (t) + α k
* (t)

2
uk(x)

k
∑

           
  
=

h

µωk L
αk (0)sin(kx)e

− iω k t + α k
*(0)sin(kx)eiω k t( )

k
∑ ,

where in the in the final step we substituted for the scale length q0,k , and the normal mode

function (for hard-wall boundary conditions).

Aside:  If we had followed the calculation through with periodic boundary conditions, we
would have found the following results:

L =
1
2

M ˙ q k ˙ q −k −
1
2

Mωk
2qkq−k

⎛ 
⎝ 

⎞ 
⎠ k

∑ ,  pk =
∂L
∂ ˙ q k

= M ˙ q −k

  
H({pk , qk}) =

pk p−k
2M

+
1
2
Mωk

2qkq−k
⎛ 
⎝ 

⎞ 
⎠ k

∑ = hωk QkQ−k + Pk P−k( )
k
∑

α k =Qk + iP−k , 
  
H = hωk αk

*

k
∑ α k

η(x,t) = L qk (t)uk(x)
k
∑ = Lq0,k

αk (t) + α−k
*(t )

2
uk (x)

k
∑

  
=

h

2µω kL
α k(0)e

i( kx−ω k t) +α k
*(0)e− i(kx−ω kt )( )

k
∑ .

For either choice of boundary condition, we have the general relations,
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H = hωk αk

*

k
∑ α k

η(x,t) = Lq0,k
2 α k(0)e

−iω kt uk (x) + α k
*(0)eiω k tuk* (x)( )

k
∑

The Quantized Scalar Field

     In order to quantize the field we replace each normal mode oscillator by its quantum
counter part:

  qk →
) q k ,  pk → ) p k ,  α k →

) a k ,

and we impose the canonical commutation relations on each mode,

  [
) q k , ) p ′ k ] = ihδk ′ k ,  [

) a k , ) a ′ k 
† ] = δk ′ k ,  [) a k , ) a ′ k ] = 0 .

Note that since each normal mode is an independent degree of freedom, any two operators
associated with different modes commute, as is inforced by the Kronecker delta functions in
the commutation relations above.

The Hamiltonian for the system is then,

 
  

) 
H = hωk ˆ a k

† ˆ a k +
1
2

⎛ 
⎝ 

⎞ 
⎠ k

∑ ,

and the quantum field is

  
ˆ η (x) = L ) q k uk (x) =

k
∑ Lq0,k

2 ˆ a k uk(x) + ˆ a k
†uk

*(x)( )
k
∑ .

It is customary to define a "canonical momentum" field,   
) 
π (x) , conjugate to the field ˆ η (x) ,

ˆ π (x) =
1
L

ˆ p k uk(x) =  −
k
∑ i

p0,k
2

L
ˆ a k uk(x) − ˆ a k

†uk
*(x)( )

k
∑ .

Then, the commutation relation between the field and its canonical conjugate field is
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[ ) 
η (x), ˆ π ( ′ x )] = [) q k , ˆ p ′ k ]uk (x)u ′ k ( ′ x ) =  

k, ′ k 
∑ ih δk , ′ k uk(x)u ′ k ( ′ x )

k
∑ = ih δ(x − ′ x ) ,

where in the last step we used the completeness of the normal mode functions.  This relation
is known as the canonical commutation relation for fields.  An alternative more sophisticated
method for quantizing the field is to start with the Lagrangian for the field in x-space, as on
space 8, define the conjugate momentum field π (x)  as the "functional derivative" of the
Lagrangian with respect to the function η(x) , and then quantize by imposing the field
canonical commutator as above.  Raising and lowering operators are defined by expanding
these fields in terms of their normal modes, and associating the coefficients in this
expansion with operators.

The Fock Space  of a Quantum Field

     We have seen that the quantized field can be interpreted as a collection of quantum
harmonic oscillators for each normal mode.  The Hilbert space, upon which these operators
act, is then the direct product of Hilbert spaces {hk } for each individual mode k,

    H = hk1 ⊗ hk2 ⊗hk3⊗L .

The Hilbert space H is known as a Fock space.
     In the first section of these notes we discussed a complete basis for a single oscillator
Hilbert space as the eigenstates of the number operator,

  
n =

( ) a † )n

n!
0 ,

where 0  is the ground state, defined by   
) a 0 = 0 .  Thus, a state of the field can be

specified by the set of eigenvalues {nk1 ,nk2 , nk3 , .. .} , describing the excitation of each mode
ki with nki quanta,

  
{nk1,nk2 ,nk 3 , .. .} = nk1 ⊗ nk2 ⊗ nk3 ⊗L

                              
  

=
() a k1

†)n1

(nk1 )!
0k1 ⊗

( ) a k 2
†)n2

(nk 2 )!
0k2 ⊗

( ) a k3
†)n3

(nk3 )!
0k3 ⊗L

The total number operator for the field is defined
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) 
N =

) 
N ki

=
ki

∑ ) a ki

†

ki

∑ ) a ki
,

and thus,

  

) 
N {nk1 , nk 2 ,nk3 ,.. .} = nk ik i

∑ {nk1 ,nk2 , nk 3 , .. .} .

 A state with a definite number of quantum in each mode is sometimes known as a Fock
state, or number state.  Spanned over all {nk1 ,nk2 , nk3 , .. .} , these form a complete basis for

the Fock space.  The ground state of the field, with zero excitations in all modes, is known
as the vacuum,

  
0 ≡ 0k1 ⊗ 0k2 ⊗ 0k3 ⊗L,

where
  
) a ki

0 = 0,  for all ki .  Thus, we can write the state with excitations {nk1 ,nk2 , nk3 , .. .} ,

  

{nk1 ,nk2 ,nk3 ,. ..} =
() a ki

† )ni

(nki
)!ki

∏ 0 ,

Then

  
) a ki
{nk1 ,nk2 , .. ., nki

,K} = nki
{nk1 ,nk2 , ... ,nki

−1,K} ,

  
) a ki

† {nk1,nk2 ,. .. ,nki
,K} = nki

+1 {nk1,nk2 , ... ,nki
+ 1,K} .

In other words, the operator 
  
) a ki

 destroys one quantum of excitation in the mode ki, and is
known as the annihilation operator.  Similarly 

  
) a ki

†  creates an excitation in that mode, and

is therefore known as the creation operator.

Vacuum Fluctuations

     We saw in on Page 6 that observes measured in the ground state of a single oscillator
have quantum mechanical uncertainties associated with them.  That is, although

  0
) q 0 = 0 ) p 0 = 0 , we can show that    0

) q 2 0 ≠ 0, 0 ) p 2 0 ≠ 0 , due to the
noncommutivity of a and a† .  This fact means that the ground state had a zero point energy
of one half the quantum of energy of the oscillator,   Eground= hω / 2 .
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      These facts have important implications for the quantum field, and other systems that
interact with the quantum field.  In this case, the ground state is the vacuum 0  defined on
Page 15.  The expectation value of the field vanishes in the vacuum

  
0 ) 
η (x) 0 = Lq0,k

2 0 ˆ a k 0 uk (x) + 0 ˆ a k
† 0 uk

*(x)( )
k
∑ = 0 ,

where we used ˆ a k 0 = 0 ˆ a k
† = 0 .  However, the fluctuations of the field do not vanish

  
0 ) 
η (x)2 0 = L q0,kq0, ′ k 0 ˆ a k ˆ a ′ k 

† 0 uk (x)u ′ k 
* (x)

k , ′ k 
∑

       = L q0,kq0, ′ k 0 ˆ a ′ k 
† ˆ a k + [ ˆ a k , ˆ a ′ k 

† ]( ) 0 uk(x)u ′ k 
* (x)

k , ′ k 
∑

       = Lq0,k
2  uk(x)

k , ′ k 
∑

2
≠ 0 .

In the first line we includes the only nonvanishing term in the expectation value, and in the
final line we used the canonical commutation relation.  Thus, even in the vacuum the
quantized field will have some finite fluctuations, Δη(x) , because of the uncertainty
principle.  These fluctuations are known as  vacuum fluctuation.
     If we calculate the energy associated with this vacuum fluctuations by taking the
expectation value of the Hamiltonian we find,

  
Evac = 0

) 
H 0 = hω k 0 ˆ a k

† ˆ a k 0 +
1
2

⎛ 
⎝ 

⎞ 
⎠ k

∑ =
hωk

2
= ∞

k
∑ .

That is, each mode of the field carries a zero point energy of   hωk / 2 , and for an infinite
number of modes, the total vacuum energy would be infinite.  A proper treatment of this
divergence would require the sophisticated theory of renormalization.  For our purpose, we
will redefine the zero of energy as that of the vacuum.  This is not to say that the vacuum
fluctuation energy has no observable effects.  In fact, if we could somehow restrict the
number of possible normal modes that could be excited in our field then we would change
the zero-point fluctuations.  We will see that vacuum fluctuations of the electromagnetic
field play a central role in the decay of an atom from its excited to ground state.
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The Particle Interpretation of a Quantum Field
     In the modern description of the quantized field, each quantum of excitation is associated
with a particle.  For the case of our scalar field describing vibrations on an elastic rod,
these particles are known as phonons, familiar in the description of vibrations in condensed
matter.

quantum of vibrational excitation   ⇔   phonon

These particles have all the properties we usually associate with quantum particles.  For
example, we can define wave packet states of a single phonon

{ fki} = fki 1kiki
∑

          
  
= f k1 1k1 ,0k2 ,0k3 ,.. . + f k2 0k1 ,1k2 ,0k3 , .. . + f k3 0k1 ,0k2 ,1k3 , .. . +L.

This state is a one particle state, as can be confirmed by applying the total number operator
to this state

  

) 
N { f ki

} = 1 { f ki
} .  However it is neither a eigenstate of the energy or

momentum operators.
     We can also consider general two particle states, described by two wave packets { f ki}
and {gki}.  Of course quantum mechanics imposes symmetry considerations on the two

particle wave function.  That is if the particles are bosons then the wave function must be
symmetric when the coordinates of the two particles are exchanged, ψ (x1, x2 ) = ψ (x2 ,x1) ;
if there were fermions they must satisfy the Pauli exclusion principle, which is enforced by
the anti-symmetry of the two-particle wave function ψ (x1, x2 ) = −ψ (x2 , x1 ) .  One of the
great achievements of relativistic quantum field theory was to establish the fundamental
connection between the statistics (Bose vs. Fermi) of a particle and its spin.  The spin of
course is the measure of the intrinsic angular momentum carried by a particle.  From an
abstract point of view the intrinsic angular momentum is defined by the way in which the
field transform under rotations, that is its vector nature.  The field under consideration here
is a scalar, and thus carrier no angular momentum.  Therefore, the phonons are zero spin
particles, and are thus bosons.  An amazing part of the mathematics associate with the Fock
space is that the required symmetry of the wave functions is accounted for by the
commutation relations of the field operators!  In fact we have secretly assumed that our field
was associated with bosons by instituting the canonical commutation relations,

   [
) a k , ) a ′ k 

† ] = ) a k
) a ′ k 

† − ) a ′ k 
† ) a k = δk ′ k :      BOSONS
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If the field was a vector field whose quanta were fermions, then we would be require to
institute anti-canonical commutation relations,

   {
) a k , ) a ′ k 

† } = ) a k
) a ′ k 

† + ) a ′ k 
† ) a k = δk ′ k : FERMIONS

The fact that the Fock space formalism can account for the spin-symmetry automatically
without explicit symmetrization of the wave function, is a powerful tool used in problems
other than a quantum field theory.  In fact, for complicated many-body systems in
condensed matter physics, such as electrons in a solid, one often employs a reverse
procedure that is the reverse of the one we've introduced here.  Where we have associated a
collection of particles with a quantum field, in condensed mater theory one often associates
a quantum field with the collection of particles!


