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The primary resource for quantum computation is Hilbert-space dimension. Whereas
Hilbert space itself is an abstract construction, the number of dimensions available
to a system is a physical quantity that requires physical resources. Avoiding a
demand for an exponential amount of these resources places a fundamental con-
straint on the systems that are suitable for scalable quantum computation. To be
scalable, the effective number of degrees of freedom in the computer must grow
nearly linearly with the number of qubits in an equivalent qubit-based quantum
computer.
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1. INTRODUCTION

Quantum computation is an alluring long-term goal for the emerging field
of quantum information science.(1) In this paper we address the question
of what physical resources are required for quantum computation and,
in particular, how the required resources scale with problem size. We
explicitly do not try to establish whether quantum computing is more
powerful than classical computing, that being an unsolved problem in
computational complexity theory. Rather we assume that quantum com-
puting is more powerful than classical computing; and, given this assump-
tion, we ask how the physical resources required to take advantage of the
power of quantum computing scale with problem size. By determining how



to avoid a physical-resource demand that increases exponentially with
problem size, we establish necessary conditions for a physical system to be
a scalable quantum computer.
The initial step in a quantum computation(2) is to store classical infor-

mation (the input) as some quantum state of the computer. The computer
then runs through a carefully controlled sequence of unitary operations
and/or measurements (the program). A program can be carried out wholly
by reversible unitary operations(3) or wholly by irreversible quantum mea-
surements.(4–6) Generally both will be used, especially in implementing
quantum error correction(7–9) and fault-tolerant quantum computation.(10–13)

At the completion of the computation, the answer (the output) is stored as
classical information that can be read out with high probability by a mea-
surement. The power of a quantum computer lies somewhere in the murky
region between the classical input and the classical output—a region where
classical, realistic descriptions fail.
Ask for the crucial property of that murky region, and you will get

nearly as many answers as there are quantum information scientists: the
superposition principle of quantum mechanics and associated quantum
interference and quantum parallelism; quantum entanglement; the use of
entangling unitary operations; the collapse of the wave function after mea-
surement and associated information-disturbance trade-offs. All of these
distinguish quantum systems from classical ones. How are we to decide
which is the crucial quantum feature?
There are quantum-information-processing scenarios for which one or

more of these features can be identified up front as a key resource not
available in the comparable classical situation. Examples include quantum
cryptography(14) and quantum communication complexity or distributed
computing,(15) where there are clearly identified, separate parties who can
do things locally, but who interact with one another only through exchange
of classical information. In quantum key distribution, for example, two
parties seek to generate a secret key that can be used for secure communi-
cation. The presence of an eavesdropper is revealed by the disturbance
produced when she obtains information about the key. In quantum com-
munication complexity or distributed computing, separate parties try to
perform some computational task through local operations and classical
communication. Prior entanglement is a resource not available classically,
which allows the parties to do things, such as teleportation, that can’t be
done classically.
A quantum computer is not like these examples, however, because

there are no clearly identified separate parties. Although it is natural to
think in terms of a division of a quantum computer into parts that
exchange quantum information, these parts are not like separate parties:
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they generally are not well separated, and they interact quantum mechani-
cally with one another. Moreover, the division into subsystems is not
unique,(16) and there are proposals for quantum computing that have no
natural division into parts at all.(17–19)

Given that none of the quantum features listed above stands out as the
source of a quantum computer’s power, we argue that the empowerment
stems from the murky region itself: a quantum computer can escape the
bounds of classical information processing because there is no efficient
realistic description of what happens between the classical input and the
classical output. We do not know how to characterize completely the
circumstances for which there is no efficient classical description, since
knowing this would be equivalent to knowing when a quantum computa-
tion is more powerful than a classical computation. If quantum computers
are more powerful, however, their ability to access arbitrary states in
Hilbert space leads to such situations.
It is difficult to pin down the source of a quantum computer’s power

because arbitrary states can be accessed in very different physical systems
—different hardware—using very different control techniques—different
software, e.g., the use of reversible unitary operations vs. irreversible
quantum measurements. Yet no matter how a quantum computation is
packaged, we can identify one universal prerequisite: the computer must
have a Hilbert space large enough to accommodate the computations. If
the computer is to be a general-purpose computer, able in principle to solve
problems of arbitrary size, it must have a Hilbert space whose dimension
is capable in principle of growing exponentially with problem size. Hilbert
space is essential for quantum computation, and the primary resource is
Hilbert-space dimension.
Hilbert spaces of the same dimension are fungible. What can be done

in one can be done in principle in any other of the same dimension: simply
map one Hilbert space onto the other, including all the subsystems, opera-
tions, and measurements. Which Hilbert space is used to represent and
process quantum information only becomes important when further phy-
sical considerations are introduced. What is important at the outset is that
a system have ‘‘quantum information inside,’’ i.e., that there be informa-
tion stored as arbitrary states in the system’s Hilbert space.
Though Hilbert spaces are fungible, the physical systems described by

those Hilbert spaces are not, because we don’t live in Hilbert space, or as
Asher Peres puts it, (20) ‘‘Quantum phenomena do not occur in Hilbert
space. They occur in a laboratory.’’ A Hilbert space gets its connection
to the world we live in through the physical quantities—position, linear
momentum, energy, angular momentum—of the system that is described by
that Hilbert space. These physical quantities arise naturally from spacetime
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symmetries and the system Hamiltonian, and they are the physical resources
that must be supplied to access various parts of the system Hilbert space.
The crucial physical question for quantum computation is the following:
how much of these resources is required to achieve a Hilbert-space dimension
sufficient for a computation? This is the question we address in this paper.
Quantum mechanics—and its generalization to quantum fields—con-

strains our description of physical systems sufficiently that we can for-
mulate the question of physical-resource demands in a general way. We
find that to avoid supplying an amount of some physical resource that
grows exponentially with problem size, the computer must be made up
of parts—degrees of freedom in the simplest analysis, particles and field
modes acting as effective degrees of freedom in the case of quantum
fields—whose number grows nearly linearly with the number of qubits
required in an equivalent quantum computer. This thus becomes a funda-
mental requirement for a system to be a scalable quantum computer.(21)

This result will not be a surprise to researchers in quantum informa-
tion science. Indeed, it is often assumed a priori that a quantum computer
must be made up of interacting parts. Our analysis here provides a general
justification for this requirement, based only on an examination of how
Hilbert-space dimension is related to physical resources in different physi-
cal systems.
We emphasize that this requirement is an initial barrier that must be

surmounted by proposals for scalable quantum computation, before such
proposals confront the difficult tasks of initialization, control, protection
from errors, and readout, to which we return at the end. Surmounting this
barrier does not guarantee that a proposal can meet the further require-
ments; it is a necessary, but by no means sufficient requirement for a scal-
able quantum computer. An important point of this paper is that one can
draw general conclusions about the physical systems that can be used for
quantum computation just by considering whether the system can effi-
ciently provide the primary resource of Hilbert-space dimension, without
getting enmeshed in questions about the other necessary requirements for
the operation of a quantum computer.
The remainder of the paper is organized as follows. In Sec. 2 we con-

sider the physical resources required by a quantum computer that is built
out of subsystems that are separate ‘‘degrees of freedom.’’ The conclusions
drawn there form the core of our analysis, which we extend in Sec. 3 to
systems that require a more general description in terms of quantum fields.
In Sec. 4 we consider how our necessary condition for scalable physical
resources is related to other requirements for quantum computation,
including initialization, control, stability, and measurement. These require-
ments touch on some of the more difficult issues in trying to pinpoint
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the source of a quantum computer’s power, including the role of entanglement
and the scalability of quantum computers that use highly mixed states. In
Sec. 5, we summarize our conclusions.

2. DEGREES-OF-FREEDOM ANALYSIS OF RESOURCE
REQUIREMENTS

2.1. The Role of Planck’s Constant

Dimensionless quantities in physics are determined by writing the
relevant physical quantities in terms of a relevant scale. For the dimension
of a system’s Hilbert space, Planck’s constant h sets the scale; the available
number of Hilbert-space dimensions is determined by writing an appropri-
ate combination of physical quantities, the action, in units of h.
The analysis of resource demands is particularly simple for systems of

particles described by ordinary quantum mechanics, i.e., not requiring the
more general description in terms of quantum fields. For these systems, the
subsystems can be identified with the degrees of freedom of the particles.
The quantum state of such a computer is described in a Hilbert space that
is a tensor product of the Hilbert spaces of the degrees of freedom.
A degree of freedom corresponds to a pair of (generalized) canonical

coordinates, position q and momentum p. The physical resources are the
ranges of positions and momenta, Dq and Dp, used by the computation.
The physically relevant measure of these resources is the corresponding
phase-space area or action, A=Dq Dp. For a degree of freedom that is an
intrinsic angular momentum J, we can use Dq=2p and Dp=DJ, thus
giving A=2p DJ. The connection to Hilbert space comes from the fact that
a quantum state occupies an area in phase space given by Planck’s constant h;
orthogonal states correspond roughly to nonoverlapping areas, each of
area h. (22) Thus the available dimension of the Hilbert space for a single
degree of freedom is given approximately by A/h. The goal of scalability is
to avoid having to supply an action resource A for any degree of freedom
that grows exponentially with problem size.

2.2. Degrees-of-Freedom Analysis

We measure the Hilbert-space dimension required for a quantum
computation in qubit units: let the problem size for a computation be n,
and let N=F(n) be the number of qubits required for the computation,
assuming an optimal qubit algorithm that requires only a polynomial
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number of qubits, an example being Shor’s factoring algorithm.(2) Here
and throughout, bold type denotes a function that is bounded above by
a polynomial. The Hilbert-space dimension needed for the computation is
2N=2F(n). Using qubit units, we see that the Hilbert-space dimension grows
exponentially with problem size. We assume that there is no more efficient
algorithm in a Hilbert space with some other structure than the qubit
tensor-product structure, this being part of our assumption that Hilbert
spaces are fungible.
Suppose now that the jth degree of freedom supplies an action Aj. The

Hilbert space of the entire system is a tensor product of the Hilbert spaces
for the degrees of freedom, so the overall Hilbert space has dimension

2N ’
A1
h
· · ·
AT
h
=
V
hT
, (1)

where V is the phase-space volume used by the computation. If T grows
more slowly than linearly with N (within specific logarithmic corrections
discussed below), at least one of the actions must grow exponentially withN,
thus requiring an exponential amount of some physical resource. In con-
trast, if T grows linearly with N, no degree of freedom has to supply an
increasing amount of action, which makes the system a candidate for a
scalable quantum computer.
It is useful to summarize this simple result, as it is the foundation for

all our further conclusions. The physical resources are the quantities that
label the axes of a (generalized) phase space that has two axes for each
degree of freedom. The number of Hilbert-space dimensions available for a
computation is proportional to the total phase-space volume. If the number
of degrees of freedom grows linearly in N, the phase-space volume needed
to accommodate the Hilbert-space dimension can be fitted into a hyper-
cube in phase space without requiring an exponentially increasing contri-
bution along any direction in phase space. In contrast, if the number of
degrees of freedom grows more slowly than linearly in N (within the loga-
rithmic corrections), some phase-space direction must supply an exponen-
tially increasing amount of the corresponding physical resource. This
simple argument is depicted schematically in Fig. 1.
To formulate a more precise statement, we specialize to the case of

T identical degrees of freedom, each of which supplies an action A. In this
situation, the total number of Hilbert-space dimensions satisfies (A/h)T

’ 2N, which gives

A/h ’ 2N/T. (2)
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Fig. 1. Using many degrees of freedom to save resources.
Orthogonal basis states for an eight-dimensional Hilbert space
depicted schematically as nonoverlapping phase-space cells in
the phase space of three degrees of freedom (A), each of
which uses an action ’ 2h, or in the phase space of a single
degree of freedom (B). Phase space is pictured at half its
actual dimension by letting the axes represent both the posi-
tion and momentum coordinates for a degree of freedom; one
can think of the axes as measuring the amount of action used
by a degree of freedom. To accommodate the eight states, the
single degree of freedom requires three times as much action
as does each of the three degrees of freedom. If one adds
degrees of freedom to (A), the phase-space volume—and
hence the Hilbert-space dimension—doubles as each degree of
freedom is added and thus grows exponentially with the
number of degrees of freedom, whereas the physical resources
grow linearly with the number of degrees of freedom and thus
logarithmically with the Hilbert-space dimension. The result is
a scalable resource requirement. In contrast, for the single
degree of freedom in (B), the required resources grow linearly
with phase-space volume and Hilbert-space dimension; to
achieve the same Hilbert-space dimension as for the scalable
case requires physical resources that are exponentially larger.
As shown, the basis states for both situations can be labeled
either by unary or binary numbers, this being an example of
the fungibility of Hilbert spaces. The labeling, however,
cannot alter the physics: the single degree of freedom is a
physically unary realization of the Hilbert space, which uses
exponential resources asymptotically, whereas the multiple
degrees of freedom in (A) provide a physically binary realiza-
tion of the same Hilbert space, which uses resources effi-
ciently. The compact phase space achieved in (A) also aids in
suppressing decoherence, as discussed in Sec. 4.3.
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In order to avoid an exponential resource demand, A/h must grow poly-
nomially with N, (23) which means that the number of degrees of freedom
increases as (24)

T ’
N

log P(N)
, (3)

where P(N) is a function bounded above by a polynomial. We say that T
grows quasilinearly with N and that the system is scalable, having a scalable
tensor-product structure.
For comparison with our analysis of quantum fields, it is instructive to

distinguish three cases:

1. T grows more slowly than linearly with N. If T grows quasili-
nearly, as in Eq. (3), then A/h ’ P(N), and the system is scalable.
If T grows more slowly than quasilinearly with N, A/h grows
exponentially with N, leading to an exponential demand for phy-
sical resources.

2. T grows faster than linearly with N. Since A/h goes to one as N
increases, the present analysis in terms of independent degrees of
freedom breaks down and should be replaced by a counting of the
excitations of a quantum field, which we give in Sec. 3.

3. T=N/log D grows strictly linearly with N. For D < 2, the present
analysis breaks down, and we again need the analysis of quantum
fields to reach a sensible conclusion. For D \ 2, each degree of
freedom is a D-level system, i.e., a qudit instead of a qubit.
Though this is a special case of quasilinear growth in which
P(N)=D, we separate it off for separate analysis. It is the most
important scalable case because the action supplied by each
system, A/h ’ D, is independent of problem size. Scaling is
achieved simply by adding degrees of freedom, without having to
change the Hilbert-space dimension supplied by each degree of
freedom. We say that this kind of system is strictly scalable and
has a strictly scalable tensor-product structure. Most quantum
computing proposals are of this sort.

Had we focused on the total action resource,

TA/h ’ T2N/T, (4)

instead of on the action resource per degree of freedom, we would have
reached the same conclusions regarding scaling. The total action resource is
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more akin to the resource quantities that arise in our analysis of quantum
fields. For a scalable system, it grows as TA/h ’NP(N)/log P(N); only
for strictly scalable systems is the total action resource linear in N.

2.3. Quantum Computing in a Single Atom

An illuminating extreme example of the nonscalable systems in case 1
is the attempt to implement quantum computing in a single atom,(17, 25, 26)

fixed molecule,(18) or large spin.(19) Advances in laser spectroscopy with
ultrashort pulses have allowed researchers to manipulate and measure the
electronic wave function in an atom(27) or both electronic and rotational/
vibrational wave functions in a molecule(28) with exquisite precision. It is
natural to wonder whether these tools for coherent control of quantum
states can be applied to quantum computing.
For illustration, consider the simplest hypothetical model, quantum

computing in a hydrogen atom. Characteristic atomic units of length,
momentum, and energy are formed from the physically important constants:
the electron charge and mass, e and m, and the quantum of action, (. If we
ignore spin, Bohr’s formula for quantizing the action gives the familiar
expressions for the energy, radius, and momentum of a stationary state
with principle quantum number n,

En=−
1
2n2
e2

a0
, rn=n2a0, pn=

1
n
(

a0
, (5)

where a0=(2/me2 is the Bohr radius. The dimension of the Hilbert space
spanned by all bound states from the ground state up to a maximum prin-
ciple quantum number n is

C
n

k=1
C
k−1

l=0
(2l+1) ’

1
3
n3 ’ 1 rn pn

(

23. (6)

The final expression is of just the form we expect. Without spin the internal
states of the hydrogen atom have three degrees of freedom, signaled by the
3 in the exponent and corresponding to the three coordinates of relative
motion of the electron and proton. Each degree of freedom is allotted an
action A ’ rn pn, which provides enough phase space for ’ A/h orthogonal
states in Hilbert space.
Demanding that the atomic Hilbert space have a dimension 2N

requires that the radial coordinate scale as rn ’ 22N/3a0. The exponential
growth of this coordinate with problem size implies that quantum control
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in a single atom cannot be used for scalable quantum computation. For
instance, to implement a quantum computation requiring N=100 qubits,
the atomic radius must be rn ’ 1020a0=6×106 km, about 5 times the
diameter of the Sun.
A single atom is an example of a ‘‘physically unary’’ quantum compu-

ter, having a limited natural tensor-product structure provided by the small
number of physical degrees of freedom. Similar poor scaling will be seen in
any implementation consisting of a single particle, a single atom, or a single
molecule consisting of a fixed number of atoms. The fungibility of Hilbert
spaces means that one can impose an artificial tensor-product structure on
the Hilbert space of these systems, equivalent to that of qubits, but this
does not obviate the need to provide the physical resources to generate
orthogonal quantum states. Without a scalable tensor-product structure
corresponding to a division into physical degrees of freedom, one or more
of the physical coordinate axes must blow up exponentially with problem
size, meaning that these systems are not suitable for scalable quantum
computation.
This should be contrasted with quantum computing using multiple

atoms, containing a physical tensor product structure, such as in an ion
trap.(29) Quantum information is stored in two sublevels of each of the ion’s
ground states and manipulated with a limited number of vibrational states.
A Hilbert space of 100 qubits requires 100 ions in their ground states
occupying 100 local positions. Neither the internal nor the external degrees
of freedom of the atoms require physical resources that grow exponentially
in order to accommodate a 2N-dimensional Hilbert space.
We now need to extend the lessons of this section to the more general

case of quantum fields. In that context, the notion of degrees of freedom is
generally not well defined, though in some circumstances it reemerges as a
useful concept. This more general analysis allows us analyze the cases that
we were unable to treat properly above. Readers not interested in these
details can skip the next section with little loss of continuity.

3. FOCK-SPACE ANALYSIS OF RESOURCE REQUIREMENTS

3.1. Resources in Fock Space

We now consider a quantum field to be the basic physical system. The
state of a single particle, i.e., a single quantum of excitation of the field, is
described in a Hilbert space that is a tensor product of a K-dimensional
Hilbert space for the particle’s external degrees of freedom (e.g., translational
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motion in three spatial dimensions) and a D-dimensional Hilbert space for
the internal degrees of freedom (e.g., spin). The single-particle states repre-
sent different configurations of the quantum field, analogous to wave
functions, and are often called field ‘‘modes.’’ The total number of modes
is M=KD. Given the single particle space—‘‘first quantization’’—we can
define the many-body system through the Fock-space construction—
‘‘second quantization.’’ Fock space is spanned by orthonormal Fock states,
which are specified by giving the number of particles in each of the single-
particle states.
The physical resources are the total number of particles, L, and the

numbers of external and internal single-particle states, K and D. We con-
sider three kinds of systems: bose and fermi systems, and systems where
each external state contains at most one particle. In the last of these, the
particles are distinguished by the label for the external state and thus act
like ‘‘distinguishable’’ particles. When L=K, each ‘‘distinguishable’’ par-
ticle has available D internal states; hence this case reduces to T=L=K
particle degrees of freedom, each with A/h=D levels, i.e., a quantum
computer consisting of L qudits.
For quantum fields, field and particle degrees of freedom are slippery

concepts, which become rigorous only in special cases, such as the case
of ‘‘distinguishable’’ particles just mentioned. In classical physics, particles
and fields are both described by pairs of canonical coordinates, with the
number of pairs determining the number of degrees of freedom. Thus a
point particle moving in three dimensions has access to three degrees of
freedom, and a vibrating string of limited bandwidth has access to a set of
fundamental modes, each of which is a degree of freedom. The comple-
mentary particle and field aspects of a quantum field mean that physical
degrees of freedom cannot generally be defined rigorously for quantum
fields, since a rigorous definition requires that the overall Hilbert space
be a tensor product of the Hilbert spaces for the individual degrees of
freedom. The particle degrees of freedom of a quantum field come from a
particle’s ability to occupy various single-particle states, but the restrictions
set by particle indistinguishability mean that Fock space is not a tensor
product of particle Hilbert spaces. The field degrees of freedom arise from
the different numbers of particles that can occupy a single-particle state,
or field mode. Although the entirety of Fock space is a tensor product of
the field-mode Hilbert spaces, each spanned by particle-number states, the
subspaces we are considering, which have no more than a fixed number of
particles, are not. For example, for a bose field containing exactly L par-
ticles, the states where any given mode contains all of the particles is in the
subspace, but the tensor product of these states, where all modes contain L
particles, clearly is not.
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The particle and field degrees of freedom of a quantum field can,
nonetheless, be serviceable approximate concepts. It is useful to think in
terms of particle degrees of freedom when the number of modes per par-
ticle,M/L, is large; we can then think of the L particles as effective degrees
of freedom. Likewise, field degrees of freedom are a useful approximate
concept when the number of particles per mode, L/M, is large; in this case
we can think of theM modes as effective degrees of freedom. Outside these
asymptotic regimes, particle and field aspects are both important, and the
degrees of freedom are less useful concepts. Of course, for fermions, field
degrees of freedom are never a useful concept, because the possible field
excitations are so restricted by the Pauli exclusion principle.
For bosons, the physical resources can be interpreted in terms of a

phase-space picture. The electromagnetic field provides a familiar
example: the field modes give the possible states for a photon, and the
population of the modes by photons describes the amplitudes of the elec-
tric and magnetic fields. The total number of modes, M, is proportional
to the phase-space volume used by a single particle; it characterizes how
ordinary space and particle momentum (wave number) and also internal
states like photon polarization are used as resources. The number of
particles, L, is proportional to the volume used in the phase space of the
bose field; it characterizes how field strength is used as a resource.
Because of the exclusion principle, only the particle aspect of this phase-
space picture works for fermions, but that is sufficient for our considera-
tions; since L [M, the number of modes is always the important
resource for fermions.
Quantum entanglement is only defined for Hilbert spaces that have a

rigorous tensor-product structure in terms of subsystems. Thus the struc-
ture of Fock space as a tensor product of field-mode Hilbert spaces has
important implications for entanglement: entanglement among field modes
is always well defined, but particle entanglement, along with particle
degrees of freedom, can be defined rigorously only in special cases,(19) an
example being distinguishable particles with L=K. Note that when the
field modes share just a single particle, mode entanglement is nothing more
than the second-quantized version of a simple superposition state in the
language of first quantization. These superposition states, e.g., the state of
a single photon after it passes though a beam splitter, are indeed entangled
states and can be used as an entanglement resource in protocols such as
teleportation.(30)

The Fock-space construction in hand, we proceed to counting Hilbert-
space dimensions and analyzing resource requirements for the three kinds
of systems. The counting is equivalent to calculating the entropy of a
microcanonical ensemble in which all particles carry the same energy.
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3.2. Scaling in Bose Systems

The dimension of the Hilbert space for L bosons occupying M modes
is

WB=
(M+L−1)!
(M−1)! L!

. (7)

This expression is invariant under the exchange LYM−1; i.e., we can
effectively exchange the roles of particles and modes in counting the
number of orthogonal Fock states. For bosons it is often useful to consider
the situation where the number of particles, instead of being fixed, can vary
from zero to a maximum number Lmax. The corresponding Hilbert-space
dimension can be obtained from WB by increasing the mode number by 1,
i.e., by imagining that there is an additional ‘‘phantom’’ mode that soaks
up the extra particles:

W −B=
(M+Lmax)!
M! Lmax!

. (8)

The particle-mode symmetry in this case is even simpler: Lmax YM.
We consider whether this many-body system can support scalable

quantum computation by examining the asymptotic behavior of WB (or W
−

B)
in various cases:

1. L fixed, M grows: 2N=WB ’ML/L!. Particle degrees of freedom
predominate. The system is not scalable because the number of
modes must grow exponentially with N.

2. M fixed, Lmax grows: 2N=W
−

B ’ L
M
max/M!. Field degrees of free-

dom predominate. The system is not scalable because the number
of particles must grow exponentially with N.

3. Both L andM grow:

2N=WB ’ 11+
L
M
2M 11+M

L
2L. (9)

The first term represents field degrees of freedom, and the second
term represents particle degrees of freedom. In this asymptotic
regime the particle-mode symmetry reduces to LYM. Again
there are three cases.
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(i) M grows faster than linearly with L: N=logWB ’ L log(M/L)
SM ’ L2N/L [this has the same form as the total action
resource in Eq. (4)]. Particle degrees of freedom predomi-
nate, with L being an effective number of degrees of freedom
and M being the resource that must be constrained. To be
consistent with this case, L must grow more slowly than
linearly with N. As in our degrees-of-freedom analysis, if
L ’N/log P(N) grows quasilinearly with N, the growth of
M ’NP(N)/log P(N) leads to a scalable resource require-
ment. If L grows more slowly than quasilinearly with N,
then M grows exponentially with N, giving a nonscalable
resource requirement.

(ii) L grows faster than linearly withM:N=logWB ’M log(L/M)
S L ’M2N/M. Field degrees of freedom predominate, with
M being an effective number of degrees of freedom and L
being the resource that must be constrained. We reach the
same conclusions as for (i), but with L andM reversed.

(iii) L=mM, m (constant) being the average number of particles
per mode:

2N=WB ’ (1+m)M (1+m−1)L=2MS(m)=2LS(1/m). (10)

Here S(m) — −m log m+(1+m) log(1+m) is the entropy (in
bits) of a field mode containing on average m quanta. The
available Hilbert-space dimension is that of M degrees of
freedom, each with 2S(m) levels, or L degrees of freedom, each
with 2S(1/m) levels, in accordance with the particle-mode
symmetry. This case is strictly scalable, as both M and L
grow linearly with N. For m± 1, where field degrees of
freedom predominate, the counting, WB ’ mM, reduces to
that of M modes, each with m levels. For m° 1, particle
degrees of freedom predominate, and the counting, WB=
(m−1)L, reduces to that of L particles, each with m−1 levels;
in this asymptotic regime, we recover the simple degrees-of-
freedom analysis for the bose particles, each of which has
access to a phase-space volume proportional to m−1.

Examples of these different scenarios have been explored in the lit-
erature. Physically unary systems are a special instance of case 1 with a
single particle (L=1) or of case 2 with a single mode (M=1). In a single-
particle Fock space, we have 2N=WB=M, and there are two interesting
possibilities: D=1, K=M corresponds to single-photon optics, (31, 32)
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whereas K=1, D=M corresponds to an M-level system like an atom. (17)

Both of these require an exponential number of modes and the associated
physical resources. The case of many bodies occupying a single mode
(case 2 with M=1) corresponds to quantum optics in a single-mode
cavity; though this system has a large number of ‘‘nonclassical’’ states
(e.g., squeezed states), the particle number must scale exponentially,
2N=W −B=Lmax+1.
Closely related to unary systems with a single particle are implemen-

tations of quantum algorithms that use superposition and interference of
classical linear waves. Classical linear optics (electromagnetic waves) pro-
vides an example that can be easily implemented in the laboratory. The
wave amplitudes are described in a complex vector space, just like the
Hilbert space of a quantum system, so it might appear that such classical-
wave processors are candidate quantum computers. The problem is that
they will always scale poorly when the necessary physical resources are
taken into account. A classical wave is essentially a many-particle copy of a
single-particle wave function. The linear-optics transformations of a classi-
cal wave are in one-to-one correspondence with the unitary transforma-
tions of the single particle wave function. The single photon has only three
motional degrees of freedom and one polarization degree of freedom. Thus
a classical-wave computation requires an exponential number of modes in
the single-particle phase space,(33) a demand inherited from a single-particle
unary machine.(34) In addition, since the transformations required for a
computation generally populate an exponential number of distinguishable
modes, a classical-wave computation requires an additional exponential
overhead in particle number (field strength) if all the populated modes are
truly classical throughout the computation. This additional overhead can
be avoided if one drops the demand for classical waves at all intermediate
stages of the computation.
A compelling illustration of the physical-resource demands in classical

linear-optical implementations was provided by Bhattacharya et al. (35) in a
simulation of Grover’s algorithm for searching a database. The database
entries were represented by the diffraction-limited transverse modes of a
laser beam. Classical-wave interference leads to effective amplification of
the sought-after mode, as Grover’s algorithm predicts. As the database
grows with the corresponding number of qubits, however, the waist diam-
eter of the beam must grow exponentially and would reach the size of the
visible universe for ’ 220 qubits.(36) These same resource demands are seen
in single-photon (unary) linear interferometers used to simulate quantum
algorithms.(31, 32)

The classical-wave example demonstrates that just having the neces-
sary scalable Hilbert space is not sufficient to ensure scalable quantum
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computing. Classical waves are coherent states with a large mean particle
number; the restriction to linear-optical transformations means that the
field always stays within the coherent-state sector, never exploring the
multitude of ‘‘nonclassical’’ many-body states. Whereas the Hilbert space
of this many-boson, many-mode system can be made sufficiently large
without exponential use of physical resources [case 3(iii)], the classical
waves explore only a tiny portion of the available states. In doing so, clas-
sical-wave vector spaces end up demanding exponential resources to keep
up with the quantum Hilbert space.
In contrast to classical waves, examples of bose systems that can

take advantage of the favorable scaling of case 3(iii)—in particular,
a proposal to use nonlinear optics as a source of interactions between
pairs of photons (37)—were among the earliest proposals for quantum
computation. More recently and more surprisingly, Knill, Laflamme,
and Milburn (38) have demonstrated that just with linear optical unitary
transformations—i.e., one-body transformations and no interactions
between photons—one can implement scalable quantum computing,
provided one has access to nonclassical field inputs and measurements
of photon number, both of which take the field out of the coherent-
state sector. In contrast, it has been shown (39, 40) that if one starts in a
state with Gaussian statistics and has access only to manipulations
within the so-called ‘‘Clifford semigroup,’’ (40) which includes linear
optics, squeezing, fast feedforward, and generalized measurements of
canonical observables, but does not include photon counting, the result
can be classically simulated and thus does not correspond to universal
quantum computation. These examples demonstrate the subtlety of
determining whether a given system has access to arbitrary states in
Hilbert space.

3.3. Scaling in Fermi Systems

We now consider L fermions distributed among M modes (L [M).
The number of distinguishable configurations gives rise to a Hilbert space
of dimension

WF=
M!

L! (M−L)!
. (11)

Fermi systems exhibit a particle-hole symmetry, LQM−L. As with the
bose case, we look at the asymptotic behavior to learn how the resource
requirements scale.
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1. L fixed, M grows: 2N=WF ’ML/L!. This is equivalent to case 1
for bosons, because the particles occupy the modes sparsely. We
reach the same conclusion, i.e., this case is not scalable.

2. Both L andM grow:

2N=WF ’ 1
1

1−L/M
2M−L 1M

L
2L, L [M. (12)

Now there are two subcases.

(i) M grows faster than linearly with L: N=log WF ’
L log(M/L). This is identical to case 3(i) for bosons, since
the particles are sparse, and we reach the same conclusions,
i.e., scalability if L grows quasilinearly with N, but not
otherwise.

(ii) L=mM, m [ 1 (constant) being the average number of par-
ticles per mode and 1−m the average number of holes per
mode:

2N=WF ’ (1−m)−(1−m) Mm−mM=2MH(m). (13)

Here H(m) — −m log m−(1−m) log(1−m) [ 1 is the binary
Shannon entropy corresponding to fraction m. The dimension
of this Hilbert space is like that of M degrees of freedom,
each with 2H(m) levels. The particle-hole symmetry becomes
mY 1−m. This system is strictly scalable since bothM and L
grow linearly with N. We recover an effective picture of par-
ticle degrees of freedom for m° 1, where WF ’ (m−1)L, and
of hole degrees of freedom for 1−m° 1, where WF ’
[(1−m)−1]M−L. The largest Hilbert space arises for equal
numbers of particles and holes, m=1/2, where WF ’ 2M

=4L.

Examples of scalable fermi systems [case 2(ii)] have been investigated.
Bravyi and Kitaev(41) showed that there is a universal gate set that consists
of linear transformations together with a transformation coming from an
interaction that is quartic in field amplitudes. In contrast to the bose case,
the noninteracting fermi gas with measurements that count particles does
not allow for universal quantum computation.(42, 43) Once again we see that
access to a scalable Hilbert space is necessary, but not sufficient for per-
forming quantum computation.
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3.4. Scaling for ‘‘Distinguishable’’ Particles

When there is no more than one particle in each external state, the
particles are effectively distinguishable. We assume D \ 2 since D=1
reduces to the fermi case. The number of configurations is

WD=
K!

L! (K−L)!
DL, L [K. (14)

As promised, we recover the qudit case when L=K, but we now have the
freedom to explore the intermediate possibilities that arise when there are
not enough particles to fill each of the external states, i.e., 1 [ L < K. Here
K plays the role of the number of degrees of freedom in our simple degrees-
of-freedom analysis, and D plays the role of A/h. In contrast to the first-
quantized picture, here A/h=D gets raised to the power L, not K, when
L < K, because not all the external states are occupied. This allows us to
deal with the cases that we were unable to handle previously because we
are now properly taking into account the resources required by unoccupied
modes, i.e., vacuum.
We consider the number of internal states to be fixed in our analysis of

the asymptotics, because the case where D grows has already been dealt
with in our simple degrees-of-freedom analysis. With this assumption, the
asymptotic analysis goes as follows.

1. L fixed, K grows: 2N=WD ’ (KD)L/L!. This is equivalent to case
1 for bosons and fermions, because the particles sparsely occupy
the modes. The system is not scalable because the number of single-
particle states must grow exponentially with N.

2. Both L and K grow:

2N=WD ’ 1 1
1−L/K
2K−L 1KD

L
2L, L [K. (15)

Now there are two subcases:

(i) K grows faster than linearly with L: N=log WD ’

L log(KD/L). This is a realization of case 2 in our simple
degrees-of-freedom analysis, which we were unable to analyze
because in that treatment we could not account for the
resources required by unoccupied modes. Since the particles
sparsely occupy the modes, this case is identical to case 3(i)
for bosons and case 2(i) for fermions, i.e., scalable if L grows
quasilinearly with N, but not otherwise.
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(ii) L=mK, with m [ 1 (constant):

2N=WD ’ (1−m)−(1−m) Km−mKDL=2K[H(m)+m log D]. (16)

The system is strictly scalable with K and L linear in
N: L=mK=N/[H(m)/m+log D]. This provides the correct
treatment of the remaining unanswered question in case 3 of
the degrees-of-freedom analysis.

Though all these specific cases are tedious to analyze, there is a payoff,
for they come together in a fundamental requirement for a many-body
system to be a scalable quantum computer: scalability requires that the
number of particles or the number of modes, whichever (or both) acts as the
effective number of degrees of freedom, must grow quasilinearly with the
equivalent number of qubits, N; if the effective number of degrees of freedom
grows more slowly than quasilinearly in N, the complementary resource set
demands an exponential supply of physical resources. This requirement is the
analogue of our conclusion that a set of degrees of freedom must have
a scalable tensor-product structure. The many-body analogue of strict
scalability is that both L andM grow strictly linearly with N, this being the
only case where all resources grow linearly with N.

4. OTHER REQUIREMENTS FOR A SCALABLE QUANTUM
COMPUTER

4.1. DiVincenzo Requirements

So far we have analyzed one necessary condition for a scalable
quantum computer, based on the need to avoid an exponential demand for
physical resources. We have been careful to emphasize that this require-
ment is necessary, but by no means sufficient. To see how the physical-
resource requirement is related to other requirements for implementing a
universal quantum computer, it is instructive to consider the list of five
requirements laid down by DiVincenzo,(3) which we have modified slightly
for our purposes.

1. Scalability. A scalable physical system with well characterized
parts, usually qubits.

2. Initialization. The ability to initialize the system in a simple
fiducial state.

3. Control. The ability to control the state of the computer using
sequences of elementary unitary operations chosen from a set of
universal gates.
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4. Stability. Long relevant decoherence times, much longer than the
gate times, together with the ability to suppress decoherence
through error correction and fault-tolerant computation.

5. Measurement. The ability to read out the state of the computer
in a convenient product basis called the computational basis.

The first item in DiVincenzo’s list posits that a scalable quantum
computer must be made up of parts with a strictly scalable tensor-product
structure. Where does this requirement come from? Is it a prior require-
ment, independent of the other items in the list, or is it needed for ini-
tialization, control, stability, and efficient measurement? We argue here
that a strictly scalable tensor-product structure is a prior requirement,
above all others: in providing the primary resource of Hilbert-space
dimension, a scalable system is necessary to avoid an exponential demand
for physical resources, and a strictly scalable system is needed to constrain
the demand for resources to grow as slowly as possible, i.e., linearly in the
equivalent number of qubits.
DiVincenzo’s further requirements come into play once one has dealt

with the resource issue. We suggest that a strictly scalable tensor-product
structure makes it easier to achieve the control and stability requirements
—so much easier, in fact, that one can regard a strictly scalable tensor-
product structure as essential in practice for these two requirements. We
turn now to a discussion of how the control and stability requirements are
related to DiVincenzo’s first requirement, also touching on the question of
quantum information processing using mixed states and the thorny ques-
tion of the role of entanglement in quantum computing. We do not con-
sider measurements issues explicitly, except as they arise in our discussion
of the need for many measurements to read out the output of a mixed-state
computer.

4.2. Control

Control of a quantum computation is accomplished via some set of
elementary ‘‘universal’’ operations. In the quantum circuit model, these
can be a finite set of one-and two-qubit quantum logic gates (unitary
operators)(44) or an equivalent set of Hamiltonians that generate the one-
and two-qubit dynamics.(45, 46) Alternatively, quantum algorithms can be
implemented through a series of projective quantum measurements and
classical control.(4–6) These schemes assume a tensor-product structure,
usually a qubit decomposition. The qubit structure makes physical imple-
mentation of the elementary operations straightforward in principle; the
coupling to the system needs to isolate either a single qubit or a pair of
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interacting qubits. Though many experimentalists will bridle at our use of
‘‘straightforward,’’ the control issues in systems without a tensor-product
structure are far more serious, as noted by Ekert and Jozsa.(47)

Consider, for example, quantum control of a unary system such as a
single atom(17) or a large spin.(19) One control strategy is to map the one-
and two-qubit gates onto the 2N levels of the unary system. Even the
simplest of the required gates, however, is difficult to implement in terms of
operators that are physically relevant to the unary system. For instance, in
a three-qubit system, the gate s (1)x é I (2) é I (3) generates a bit flip on the
first qubit. Written in an 8-dimensional unary representation, this gate
involves transitions between the mth level to the (m±4)-th level, and all
four transitions have the same strength. This involves coupling to the entire
unary system, in contrast to the single-qubit coupling that is natural in a
system made of qubits. The same problem arises for any mapping onto a
‘‘virtual subsystem.’’(16) In practice, control of physically unary systems
would be achieved by coupling directly to each level and by pairwise tran-
sitions between levels; since this requires access to a ’ 22N control param-
eters, it is not scalable.
The relative ease with which a quantum system built out of subsystems

can be controlled can be understood in terms of degrees of freedom. The
physical quantities that quantify the resources for a degree of freedom
provide the connection to the external world; precisely because they are
physical observables, these physical quantities are available for building
Hamiltonians that are controlled by an external classical apparatus. This
allows the experimentalist to manipulate an exponential number of proba-
bility amplitudes with a polynomial number of gate operations.

4.3. Stability

A scalable tensor-product structure aids in suppressing decoherence
and is probably essential for implementing quantum error correction and
fault-tolerant quantum computation. The simplest analysis of the decoher-
ence of quantum states that are widely separated in phase space gives a
decoherence rate that is proportional to the square of the phase-space dis-
tance between the states.(48, 49) Our phase-space picture of the physical
resources used by a quantum computation (see Fig. 1) shows that a qubit-
based scalable quantum computer occupies a region of phase space that
looks roughly like a 2N-dimensional hypercube with side lengths indepen-
dent of the number of qubits; the greatest distance between any two states
in the accessible region of phase space is thus proportional to `2N. In
contrast, in a unary system, where one degree of freedom bears the entire
burden of the exponential increase of Hilbert-space dimension with
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problem size, the greatest distance between states grows at least as fast as
2N/2, i.e., exponentially with the equivalent number of qubits. This sharp
difference suggests that a scalable tensor-product structure can play an
important role in reducing decoherence. We emphasize that this argument
is based on a very crude model of decoherence. Decoherence is not only
highly system-specific, but difficult to characterize simply even for specific
systems.(50) The significance of the argument is to suggest that a system
whose accessible states are compactly arranged in phase space will not
decohere faster than one whose states are distant in phase space and, under
appropriate circumstances, will decohere much more slowly.
Once decoherence and noise in a physical system have been reduced

below the error threshold for fault-tolerant quantum computation,(10–13)

quantum error correction(7–9) can be used to suppress errors sufficiently to
perform arbitrarily long computations. Error-correction protocols cannot
correct all errors. Instead they seek to correct the most probable errors,
where what is most probable depends on the error mechanisms appropriate
for a specific physical system; examples of such dominant errors include
errors that act independently on individual qubits (though we refer to
qubits, qudits could be used just as well) or errors that are correlated over
many qubits. The most probable errors define an ‘‘error algebra’’(9) of
errors to be corrected. To detect and correct these errors, one encodes
‘‘logical qubits’’ into carefully chosen two-dimensional subspaces of several
qubits. A good code is one such that the generators of the error algebra
map the code subspace unitarily into mutually orthogonal subspaces. One
is thus able to diagnose the error and correct it without destroying the
encoded quantum information. We argue that these error-correction pro-
tocols require a scalable tensor product structure.
One set of errors that must be corrected consists of the inevitable

imperfections in the quantum logic gates. Control of a set of qubits (or
qudits) can be accomplished by a set of quantum logic gates whose number
is polynomial in N. In contrast, as noted above, the natural couplings to a
system that has no physical tensor-product structure are direct couplings to
individual levels and pairwise transitions between levels. Arbitrary unitary
operations can be built out of these elementary interactions, but since there
are ’ 22N elementary interactions, errors in them will lead to an exponen-
tially large error algebra that contains essentially all errors, thus making
error correction impossible.
Even if we had a more efficient scheme for constructing arbitrary uni-

taries, the known error-correction schemes still require a tensor-product
structure. Error-correcting codes work by channeling the entropy intro-
duced by noise and decoherence into ancillary subsystems (typically a
number of qubits), which are reinitialized in a pure state for subsequent
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rounds of error correction. It is difficult to see how this could be managed
in a system not made of parts that can be used as the ancillary subsystems.
In particular, it is difficult to see how a virtual subsystem within a Hilbert
space without a tensor-product structure could be reinitialized—or even
how fresh virtual subsystems could be introduced.

4.4. Mixed-State Quantum Computing

Our analysis of physical-resource requirements assumed implicitly that
the quantum system is described by a pure quantum state. Yet the system
that has implemented the most sophisticated quantum-information-pro-
cessing protocols is liquid-state nuclear magnetic resonance (NMR),(51–53)

where the nuclear spins that act as qubits are described by a highly mixed
state. A mixed-state quantum information processor can have a strictly
scalable tensor-product structure, as do the nuclear-spin qubits of NMR,
yet still require exponential resources because of the mixed nature of the
quantum state. The problem is one of initialization. When the physical
system is initialized in a mixed state, it has some probability to be in the
desired initial pure state, along with probabilities to be in a variety of other
undesired states; thus, at the end of the computation, the answer cannot be
read out with high probability in a single measurement because the signal is
buried in noise produced by the undesirable states. To extract the signal
requires a number of measurements, made on copies of the physical system
or on repetitions of the computation. Either of these amounts to an addi-
tional physical resource. The way this appears in mixed-state quantum
information processors is that the signal is encoded in an expectation value
that can be determined with good accuracy only from many measurements.
An example is provided by the present method for implementing

quantum information processing in liquid-state NMR. The processing
elements are the active molecules in the liquid sample, each of which has N
active nuclear spins. The initialization procedure takes the N nuclear spins
from a state of thermal equilibrium, with polarization a ’ 2×10−5, to a so-
called pseudopure state, (51, 52) which has density operator r=(1− e) I/2N+
e |kPOk|. This density operator is a mixture of the unpolarized, maximally
mixed state of the spins, I/2N, and the desired initial pure state, |kPOk|.
The mixing parameter e determines the size of the signal produced by
the desired state; a consequence of pseudopure-state synthesis is that the
mixing parameter decreases exponentially with the number of qubits, i.e.,
e=aN/2N.
The exponential signal decrease is an in-principle problem for any

information processing based on pseudopure-state synthesis.(54) To extract
the signal from the random noise produced by the unpolarized piece of the
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density operator requires a number of copies or repetitions that scales as
1/e2=22N/a2N2, thus giving rise to an exponential resource demand. Even
given the macroscopic number (’ 1020) of molecules in an NMR solution,
each of which acts as an independent processor, liquid-state NMR is
limited to about 20 qubits with the initial polarizations presently available.
Schulman and Vazirani(55) have outlined a method for distilling pure

qubits from the weakly polarized nuclear spins in a liquid NMR sample.
This method is algorithmic, using operations that can be implemented in
NMR.(56) Though it is highly impractical, requiring ’ 1/a2 initial qubits
for each distilled pure qubit, it does not make an exponential resource
demand. From our perspective, however, this method is not an example of
mixed-state quantum information processing. Rather it is a different ini-
tialization procedure, which cools a small subset of the qubits to zero tem-
perature, using the remaining qubits as a heat reservoir, thus yielding an
initial pure state to which our previous analysis applies.
We do not have a general analysis of the physical-resource demands

posed by using mixed states for quantum information processing. We
suspect, however, that computational protocols based on the use of highly
mixed states suffer generally from a demand for an exponential number of
repetitions or copies similar to that for pseudopure-state synthesis in liquid-
state NMR. This hunch is supported by work(57) that suggests that sup-
plementing a set of pure qubits with a supply of maximally mixed qubits
provides almost no additional computational power beyond that in the
pure qubits. These considerations make it unlikely that systems in highly
mixed states can be scalable quantum computers, but this does not mean
that they are equivalent to classical computers. They seem to lie somewhere
between classical computers and full-scale quantum computers, since there
are special problems(58, 59) for which no efficient classical algorithm is
known, but which can be done efficiently using highly mixed states—
without the need for an exponential number of copies or repetitions.

4.5. Entanglement

Entanglement is a distinctive feature of quantum mechanics. It is
clearly a resource for such quantum information protocols as teleportation,
yet its role in quantum computation remains unclear. Some claim it is the
property that powers quantum computation,(47, 60) while others downplay
its significance.(61, 62) The situation has been clarified considerably by the
recent work of Jozsa and Linden,(63) who showed that for a qubit quantum
computer—the extension to qudits is probably straightforward—entan-
glement among all the qubits is a prerequisite for an exponential speed-up
over a classical computation. The Jozsa–Linden proof proceeds by showing
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that if entanglement extends only to some fixed number of qubits, inde-
pendent of problem size, the computation can be simulated efficiently on
a classical computer. Jozsa and Linden were careful to point out that
although entanglement among all qubits is necessary for exponential speed-
up, it is not sufficient: as shown by Gottesman and Knill,(2) there are
sequences of quantum gates that can be simulated efficiently even though
they entangle all qubits.
The Jozsa–Linden argument assumes a strictly scalable tensor-product

structure. The global entanglement that accompanies exponential speed-up
is a consequence of assuming this tensor-product structure and an initial
pure state. This does not necessarily imply that entanglement is the key
resource for quantum computation. Consider a computation with an
exponential speed-up on a qubit quantum computer. Mapped onto a unary
machine, the same computation produces no entanglement. Whether run
on the unary computer or the qubit computer, the computation accesses
arbitrary states—i.e., arbitrary superpositions—in the computer’s Hilbert
space and has no efficient description in the realistic language of classical
computation. Hilbert spaces are fungible! Entanglement is not an inherent
feature of quantum computation, but rather a result of running the com-
putation on a quantum computer with a tensor-product structure; for such
a computer, arbitrary superpositions lead to entanglement among all the
parts, because the states without such entanglement occupy only a tiny
corner of Hilbert space.(47, 60) On a physically unary computer, the same
arbitrary superpositions have no entanglement.
We conclude that the global entanglement in a quantum computation

is a consequence of the need to save resources, which is what dictates a
strictly scalable tensor-product structure to start with. We suggest that
entanglement, instead of being the power behind quantum computation,
might be a measure of the computer’s ability to economize on physical
resources. This surmise, based on our consideration of pure-state quantum
computation, is supported by what is known about mixed-state quantum
computation in liquid-state NMR. The argument that entanglement
follows from accessing arbitrary states in a system with a tensor-product
structure doesn’t work for mixed states.(63) Indeed, with present polariza-
tions, the states accessed in NMR are known to be unentangled up to
about 13 qubits(64, 65) and, for bigger numbers of qubits, are likely to be far
less entangled than in a corresponding pure-state quantum computer. This
paucity of entanglement, we suggest, is a signal of the resource problem in
NMR, i.e., the need, discussed above, for exponentially many molecules
in NMR.
To investigate this idea further, one would like to quantify the amount

of global entanglement produced in a quantum computation carried out in
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systems ranging from nonscalable to strictly scalable and including both
pure-state and mixed-state realizations. This is a daunting task since there
is presently no suitable measure of global entanglement in multipartite
quantum systems, even for pure states. Indeed, multipartite entanglement
cannot be summed up by any single measure and whether there is a
measure or measures tied to the issue of scalability is far from clear.

5. CONCLUSION

Our contention in this paper is that the fundamental requirement for a
scalable quantum computer is set by the need to economize on physical
resources in providing the primary resource of Hilbert-space dimension. To
avoid an exponential demand for physical resources, the number of degrees
of freedom—or, for quantum fields, the number of particles or the number
of field modes, depending on which (or both) acts as effective degrees of
freedom—must grow quasilinearly with the equivalent number of qubits.
These requirements mean that a scalable quantum computer must have a
robust tensor-product structure. Systems without such a tensor-product
structure are not suitable for scalable quantum computation.
Physical systems that don’t scale properly, such as liquid-state NMR,

Rydberg atoms, or molecular magnets, are still worth studying for a variety
of reasons. First and foremost, they embody fundamental physical ques-
tions that are worth investigating in their own right, regardless of their
relevance to quantum information science. Second, they can be used to
develop new technologies for control, readout, and error correction in
quantum systems. These new technologies might have applications to
quantum-information-processing jobs outside quantum computation, and
they might be transferable to scalable quantum computers. Finally, the
scalability criteria formulated in this paper are asymptotic requirements.
They are useful for assessing the physical resources required for a general-
purpose quantum computer to do problems of increasing size. Yet even for
this purpose, they are imperfect tools, because no computer is expected to
do problems of arbitrary size. Nonscalable systems might be able to
provide sufficient Hilbert-space dimension for special-purpose quantum
computations that need only a limited number of qubits, such as simulation
of other quantum systems.(66)

Hilbert space is essential for quantum computation. Yet it is an odd
sort of thing to need. It is not a physical object, but rather a mathematical
abstraction in which we describe physical objects.(67, 68) A Hilbert space
gets a physical interpretation—a connection to the external world—only
through the physical system that we describe in that Hilbert space. The
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connection is made through privileged observables—the generators of
space-time symmetries, e.g., position, momentum, angular momentum, and
energy—which determine a set of physical degrees of freedom for the
system. This connection made, we can determine how the physical resources,
measured in terms of phase-space actions constructed from the privileged
observables, must grow in order to provide the Hilbert-space dimension
needed for a quantum computation.
Our degrees-of-freedom analysis can be applied to the physical

resources required by a classical computer. Generally the subsystems in a
classical computer consist of many physical degrees of freedom. If each
distinguishable configuration of a subsystem occupies a fixed phase-space
volume V0, then our analysis shows that the physical resources required by
the classical computer grow exponentially unless the number of subsystems
grows quasipolynomially with problem size. But the scale V0 in the classical
analysis is not fundamental, instead being set by noise and the resolution of
measuring devices. This makes the classical analysis of resource require-
ments dependent on other features of a classical computer. The difference
for a quantum computer is that Planck’s constant sets a fundamental scale,
which makes the resource requirements presented here prerequisites for
scalable quantum computation, prior to the other necessary requirements
for a quantum computer’s operation.
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