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The goal of this document is (i) to reformulate Brun-Finkelstein-Mermin (BFM) com-
patibility in terms of the notion of inside information, (ii) to formulate the notion of
maximal belief as the situation where no other party with BFM-compatible beliefs has any
inside information, and (iii) to reformulate the notion of maximal belief as the sitation
where no other party has one-way inside information.

First we have to recall how to define probabilities in terms of betting odds. If a party
is willing to buy or sell the lottery ticket “Pay $1 if E” for $q, this defines that party’s
probability for event E to be p(E) = q. Of course, the same party would be willing to sell
a ticket on the same event for any amount ≥ $q or to buy a ticket on the same event for
any amount ≤ $q.

Now consider two parties, A and B, who assign different probabilities, pA(E) and
pB(E), to the occurrence of E. Assume for the moment that pB(E) ≤ pA(E). Clearly, A
and B can agree on a bet in which A buys from B a ticket for any amount $q satisfying
pB(E) ≤ q ≤ pA(E), and this is the only sort of transaction regarding E that both parties
can agree to. The mutually agreeable bets are characterized by a flow of tickets from lower
probability to higher probability.

Now we can define what is meant by inside information. Party B is said to have inside
information about event E, relative to A, if A is willing to agree to a bet on E that B
believes to be a sure win. This occurs in two circumstances: (i) B is certain E cannot
occur, while A believes E to be possible, i.e., pA(E) > 0 = pB(E), or (ii) B is certain E
will occur, while A thinks there is a chance it will not, i.e., pA(E) < 1 = pB(E). In the
former case, A will agree to buy a ticket for $q with 0 < q ≤ pA(E), and B is certain that
he will retain the $q because E will not occur. In the latter case, A will agree to sell a
ticket for $q with pA(E) ≤ q < 1, and B is certain that he will be able to cash the ticket
in for $1 when E occurs. Notice that E is of type (i) if and only if ¬E is of type (ii).

Let’s now assume in the standard way that there is an exclusive and exhaustive sample
space of primary events (atoms) and that the possible events are sets of atomic events.
It would not be unusual for A to have inside information relative to B about one event
and for B to have inside information relative to A about another event; indeed, this
is precisely what we would expect in many circumstances. There is, however, a more
awkward situation in which each party has inside information relative to the other about
the same event. This occurs when one party believes the event is certain to occur, and
the other believes it is impossible. These are starkly contradictory beliefs, so we refer
to this situation as contradictory inside information. It is clear that two parties have
contradictory inside information if and only if their atomic probability assignments do not
overlap.

We are now ready to define compatibility: N parties have compatible beliefs if there
exists a state of belief Z such that no party has any inside information relative to Z. It
follows immediately that the parties have compatible beliefs if and only if the supports of
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their atomic probability assignments (the support of an atomic probability assignment is
the set of atomic alternatives that have nonzero probability) have nonempty intersection
and thus that this is a simple reformulation of BFM compatibility. To see this, suppose
first that there is a Z such that no party has inside information relative to Z. This implies
that no party assigns zero probability to any atom to which Z assigns nonzero probability,
so the intersection of the parties’ supports includes the support of Z’s probability assign-
ment. Suppose now that the parties’ atomic probabilities have supports with a nonempty
intersection. Any probability assignment that is restricted to the intersection can serve
as an expression of Z’s state of belief, it being clear that no party can assign zero prob-
ability to an event to which Z assigns nonzero probability and no party can assign unity
probability to an event to which Z assigns subunity probability.

A belief Z defined by a set of compatible beliefs is a candidate belief structure for the
situation in which all parties pool their beliefs. We can specialize further to the particular
case where Z is an expression of maximal belief: a state of belief Z is said to be maximal
if no other party whose state of belief is compatible with Z has any inside information
relative to Z. It is immediately clear that a belief is maximal if and only if it corresponds
to certainty for a particular atom. To see this, notice first that if Z assigned nonzero
probability to more than one atom, then an assignment of unity probability to one of these
atoms would be compatible and would have inside information relative to Z. Suppose now
that Z is certain about the occurrence of a particular atom. Any compatible belief must
assign nonzero probability to that atom, thus ruling out having any inside information.

All this generalizes straightforwardly to quantum mechanics. The only differences
are that states of belief are translated into density-operator assignments instead of prob-
abilities and that when we talk about one party’s having inside information relative to
another, we are thinking about all possible measurements. Thus we define compatible
beliefs and maximal beliefs in exactly the same way as above, keeping in mind only these
two differences in what the definitions mean.

Let’s deal first with compatibility from this point of view. To make our task easier,
we introduce the notation that N (ρ) and S(ρ) denote the null subspace and support of a
density operator ρ. We want to show that the beliefs of N parties, expressed in density
operators ρα, α = 1, . . . , N , are compatible if and only if the intersection of the supports
S(ρα) is nontrivial, i.e., not zero-dimensional. We thus demonstrate that this notion of
compatibility is a rewrite of BFM compatibility. It is useful to recall that the intersection
of the supports is the orthocomplement of the span of union of the null subspaces.

Suppose first that there is a state of belief Z, represented by density operator σ,
such that no party has any inside information relative to Z. Assume that N (ρα) is not
contained in N (σ). This implies that there is a vector |φ〉 ∈ N (ρα) that is not in N (σ)
and thus not orthogonal to S(σ). Considered as an outcome of a measurement, |φ〉 has
zero probability according to party α and nonzero probability according to Z, thus giving
party α inside information about this outcome. We can conclude that the null subspaces
of all the parties—and, hence, also the span of these null spaces—is contained in N (σ) and
thus that the intersection of the supports S(ρα) contains the nontrivial subspace S(σ).

Suppose now that the intersection of the supports S(ρα) is a nontrivial subspace S,
and let Z be any state of belief whose density operator has support S. A measurement
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outcome that has zero probability according to party α must correspond to a POVM
element that is orthogonal to S(ρα). The POVM element is thus orthogonal to S and
has zero probability according to Z. A measurement outcome that has unit probability
according to party α must have a POVM element that is the sum of the projector onto
S(ρα) and a POVM element orthogonal to S(ρα). The outcome thus has unit probability
according to Z. We conclude that no party has inside information relative to Z.

It might be a tiny surprise that we can phrase BFM compatibility in this way. At
first sight it might seem that the requirement of no inside information for all measure-
ments means only that for all measurements, the supports of the parties’ probabilities
have nonempty intersection. This is the requirement for post-Peierls (PP) compatibility,
so it’s clear that it cannot give BFM compatibility. The difference is that PP compatibility
doesn’t care whether the overlapping supports for different measurements are consistent
with a single density operator, whereas for BFM compatibility such consistency is required.
This is a nice way of phrasing the difference between BFM and PP compatibility.

We’re now ready for maximal beliefs, and we want to show that a state of belief is
maximal if and only if it corresponds to a pure state. This is really easy. Notice first that
if S(Z) were more than one-dimensional, any assignment of a pure state in S(Z) would be
compatible and would have inside information relative to Z. Suppose now that Z assigns
a pure state |ψ〉. Any compatible belief must assign a density operator whose support
contains |ψ〉, thus ruling out having any inside information by the argument above.

So at last we have come to a suitable Bayesian way of encapsulating the property that
is shared by unit probability for a classical atomic alternative and quantum pure states:
both are the unique expression of the firm belief that compatible belief structures have no
inside information.

So far, this document has proceeded by first defining compatible beliefs and then
defining maximal beliefs in terms of compatible beliefs, but we can instead go straight to
maximal beliefs by defining what might be called one-way inside information. To define
this notion, consider two parties, A and B, who assign density operators ρA and ρB , with
supports SA and SB and null subspaces NA and NB . The key result we need is that B
has inside information relative to A if and only if SA is not a subset of SB .

To prove this result in the forward direction, assume that SA is not a subset of SB ,
which implies that NB is not a subset of NA. Thus there exists a state vector |φ〉 ∈ NB

that is not in NA. Considered as an outcome of a measurement, |φ〉 has zero probability
according to B and nonzero probability according to A, thus giving B inside information
about this outcome.

To prove the key result in the opposite direction, assume that SA is a subset of SB .
A measurement outcome that has zero probability according to B must correspond to a
POVM element that is orthogonal to SB . The POVM element is thus orthogonal to SA

and has zero probability according to A. A measurement outcome that has unit probability
according to B must have a POVM element that is the sum of the projector onto SB and
a POVM element orthogonal to SB . The outcome thus has unit probability according to
A. We conclude that B does not have inside information relative to A and, hence, that if
B does have inside information relative to A, then SA is not a subset of SB .

We can now introduce the notion of one-way inside information. We say that B has
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one-way inside information relative to A if B has inside information relative to A, but A
does not have inside information relative to B. It is a trivial consequence of the key result
that B has one-way inside information relative to A if and only if SB is a proper subset of
SA.

We now define maximal belief: a state of belief Z is said to be maximal if no other
party has one-way inside information relative to Z. It is obvious that Z is maximal if
and only if the corresponding quantum state is a pure state or, classically, one atomic
alternative has probability 1. This way of characterizing maximal belief permits us to say
why we have more confidence in the probabilities that come from a pure-state assignment
than in classical probabilities or the probabilities from a mixed-state assignment: pure-
state probabilities come from a belief structure that is incompatible with any other party
having inside information that goes only one way. That’s the real content of the statement
that we trust a quantum coin toss more than a classical one or a pseudo-random-number
generator.

Moreover, we again have a suitable Bayesian way of stating the property that is shared
by unit probability for a classical atomic alternative and quantum pure states: both are
the unique expression of the firm belief that no other party has one-way inside information.
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