To: R. Schack and D. Steinbach
From: C. M. Caves
Subject: Quantum hypersensitivity to perturbation: A crude, but informative picture

1996 June 20

'The purpose of this report is to develop a erude picture of how hypersensitivity works in quantim
systems. The picture, which is based on the quantized baker’s map formulated by Riidiger and me last
surnmer, explains the phenomena found in previous numerical work, particularly the features displayed
in Dierk’s work on the kicked rotor. The arguments are both crude and subtle, a potentially explosive
combination. Nonetheless, I think the picture captures the essence of what is going on in our numerical
simulations. It might be worthwhile trying to make the argumenis more rigorous within the context of a
model like the quantized baker’s map.
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Figure 1

Consider a two-dimensional map dn the torus. The torus can be represenied as a rectangular phase
space that has periodic boundary conditions {see Figure 1). Let © be the extent of the rectangle in the
q direction and P the extent in the p direction. By appropriate choice of units, @ and P can both be set
to unity; this not always being the most convenient choice, however, we feave  and P arbitrary. When
quantized, the system has a D-dimensional Hilbert space H, where

Dﬁ%. {1)

The D) position eigenstates, separated by a position discreteness Q/D = 2zxh/P, and the D momentum
eigenstates, separated by a momentum discreteness P/D = 27h{Q, together form a grid of D? points on
phase space.




It is useful to able to think in terms of an orthonormal basis consisting of I? localized states on phase
space (see Figure 2). These states are centered at the D = rs grid points of an r x s grid. A localized
state occupies a quantum cell of area 27k, with extent Q/r in position and extent P/s in momentum. The
position eigenstates correspond to r = D and s = 1, and the momentum eigenstates to » = 1 and s = D.
Crudely speaking, a localized state is a linear combination of the D/v = s position eigenstates that He within
its column in the grid or a linear combination of the D/s = r momentum eigenstates that lie within its row.
Indeed, the s localized states in a column of the grid are roughly the “momentum” states corresponding to
the s position eigenstates within the colurnn, and the r localized states in a row are roughly the “position”
states corresponding to the » momentum cigenstates within the row.
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Figure 2

A case of particular interest occurs when the grid of localized states has the same number of states in
the ¢ and p directions, ie., r = s = /1. We call these states coherent states, even though they generally
look squeezed in the original phase-space units; crudely speaking, a coherent state is a linear combination of
V'D position eigenstates or /D momentum cigenstates. We use a coherent state as the initial state in the
following,

It is convenient throughout the discussion to put position and momentum on the same footing by
measuring all quantities in units of the position and momentum discreteness scales. In these units the area
of phase space is [)%, and the area occupied by a localized state—the quantum cell sige—is [

Suppose now that the two-dimensional map has classical KS entropy K (in bits). Our quantum model
of the map is that a coherent state is taken under one iteration of the map to a localized state that has
extent 2-5+/D in the contracting dimension and extent 2¥+/D in the expanding dimension {see Figure 3).
This localized state is a linear combination of 2% coherent states, with roughly equal probabilities for all 2%
states. This evolved state is a more general sort of localized state than the ones introduced above, because
generally it is not aligned with the ¢-p axes. The unitarity of the quantum map means that the localized
states generated from all coherent states form an orthonormal basis. After n steps an initial coherent state
evolves into a linear combination of 2K™ coherent states; again the collection of all such linear combinations
forms an orthonormal basis.
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Figure 3

We assume that the folding of the phase-space pattern is due wholly to the finite size of phase space, i.e.,
to the periodic boundary conditions at the boundaries of the rectangular phase space. Given this assumption,
there is an Ehrenfest time ng, defined to be the number of steps that it takes for an initial coherent state
to evolve into a single stripe across phase space. This Ehrenfest time is given approximately by

2fna/pD D s ngrv««z«i—{logl). (2)



For times up to the Ehrenfest time ng, the quantum evolution mimics the classical evolution. Beyond the
Ehrenfest time ng the folding leads to quantum interference between the multiple stripes in the classical
pattern. Though this quantum interference is displayed clearly on phase space, there is no evidence of it in
Hilbert space. Indeed, the Hilbert-space evolution takes no notice of the passage through ng; it continues to
be described as a state that is a linear combination of an exponentially increasing number of coherent states,
'The quantum interference is a consequence of the folding that is required to map the coherent states onto
phase space; Hilbert space is oblivious to this mapping. For a particular quantum map described in terms
of coherent states, the form of the quantum interference depends on how the coherent states are mapped
onto phase space. We see below that ng is important because our perturbation is defined on phase space
and thus is aware of the folding of the elassical dynamies.

There is a second Ehrenfest time n;, defined to be the number of steps that it takes an initial coherent
state to spread over all coherent states. This second Ehrenfest time is given approximately by

25" o p ez g ~ }f}—logD ~2np . (3)
Notice that as A decreases, both Ehrenfest times increase logarithmically. After the second Ehrenfest time
the evolution displays genuinely quantum-mechanical effects, even on Hilbert space, for there is inferference
between multiple paths to go from the initial coherent state to a final coherent state. As a consequence,
the quantumn evolution loses contact entirely with the classical evolution. The interference between different
paths, not the interference on phase space, is responsible for quantum recurrences, Unless noted otherwise,
we always assume n < 0% in the following. '

Consider now a stochastic perturbation that generates a displacement on phase space. The important
part of the perturbation is the displacement orthogonal to the classical stripes. Assume that the perturba-
tion is L-fold, with the L potential displacements (all of equal probability) spaced uniformly and located
symmetrically about zero. The perturbation strength is characterized by a parameter o, where the mazi-
mum positive or negative displacement orthogonal to the classical stripes has magnitude o/2. Each of the
L realizations of the perturbation is deseribed by a unitary operator.

Classically the perturbation becomes effective at step ny,! the first step after the classical pattern shrinks
to width o in the contracting dimension.? Thus n, is given approximately by

o~ 27K =D B g (n-natl) &= na o~ 14 i; 1og§ ~ng 41~ :f{« logar . {4)
We assume throughout that o < \/5, so that the perturbation does not become effective before the first
step; otherwise, the perturbation produces dramatic effects at the first step. The perturbation becomes
effective before the first Ehrenfest time if o 2 2% and after the first Ehrenfest time if @ € 2%, These two
cases exhibit a striking difference in behavior, to which we now turn.

Assume first that o is somewhat larger than 2% (but not bigger than VD), so that the perturbation
becomes effective before ng, ie., 1 $ n, < ne? In quantum-mechanical terms we can say that before
the perturbation becomes effective, it is too weak to push the system into orthogonal states; the resulting
nearby states persist through the perturbation histories and produce the structure of pairs, quartets, oclets,
and so forth that we see in our numerical simulations. We ignore this structure in the following discussion,
proceeding as if the perturbation does nothing at all until it becomes effective. After the perturbation
becomes effective, it is strong enough to push the system into orthogonal states.

To analyze the perturbation in the case 1 < n. < ng, it is convenient to use as a basis the localized
states that are produced from coherent states after n, — 1 iterations of the map, i.e., at the step just before
the perturbation becomes effective? (see Figure 4). These localized basis states have extent 2-K(-U/D =
a 2 2% in the contracting dimension and extent 257~/ = Dfa £ 275 D in the expanding dimension.

! In order for the perturbation to turn on abruptly, as we assume here, we must have K = 1. If K is
less than 1, one way to proceed is to define a new map, each step of which consists of enough steps of the
original map to make the new KS entropy bigger than 1.

* There are subtleties at step n, — 1 which we are ignoring.

3 For this to hold nz must be somewhat greater than 1; i.e., 2% must be smaller than vD. Combined
with the condition in {ootnote 1, this means that we always assume 2 < 2% < /D,

4 Notice that if o ~ /D, then n, ~ 1, and these localized basis states are the echerent states.
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Figure 4

Classically the unperturbed state after step n has extent 2=/ = 2-K(n-nat1)y in the contracting
dimension and extent 267/ = 2K {”‘”""1)1)/0: i the expanding dimension; quantum mechanically the
unperturbed state |4} is a linear combination of D, = 2X(r—=n.%1} Jgcalized basis states, with roughly equal
probabilities for each of these localized states (see Figure 5}. Indeed, it is instructive to consider these D,
states as the position states in a Dy-dimensional Hilbert space H,; we label these position states by lén;),
7=1,..., D, Conjugate to these position states are [J, orthogonal momentum states. The extent o of the
position states in the contracting dimension gives the range of possible values of the corresponding momentum,
which therefore ranges from —a/2 to o/2, just covering the range of possible perturbation strengths. This
1s why we use the states |¢,;) as as a basis: the Hilbert space they span, H,,, has just the right extent in
momentum to accommodate the perturbation. The unperturbed state after step n can be expanded as

D,
¥n) = Zc;; |#ns) all expansion coefficients ¢; having roughly the same magnitude. (5)
]

'The unperturbed state can be defined to be the zero-momentum state in Hy.

The strength of the perturbation applied at step n is such that all the perturbed states after step n
remain in the Hilbert space H,,. Indeed, as we discuss further below, the perturbation can be effected by
making appropriate phase changes in the expansion coefficients in the position-state basis. Thus all the
perturbed states after the perturbation at step n have expansions of the form {5).

We can say more, however. The expansion and contraction of the unperturbed unitary evolution at
step n maps the Dy, orthogonal momentum states in Hy—1 into the D, _; orthogonal momentum states in
My, that are closest {on both sides) to.the unperturbed state. Let us denote by Mao the D, _;-dimensional
subspace spanned by these momentum states. Formally we can say that the nth unperfurbed step maps
Hp—y unitarily into H,o. Moreover, since the perturbed states after step n — 1 all lie in H,_;, they are
mapped by the nth unperturbed step into H,q.

In analyzing the effect of the perturbation at step n, it is convenient to decompose H,, into 2K subspaces
similar to Hyug; these subspaces are mutually orthogonal, and each is spanned by a contiguous set of D,_; =
Dy f2K = 2K (v=n2) momentum states. We denote these subspaces by H,i, where k is an index that labels
the subspace and runs over an appropriate set of 2% integers. The formal statement is that #,, is the direct
surn of the subspaces H,5:

%n = ?an . (6)
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Figure 5

Consider now the effect of the perturbation at times before the first Ehrenfest time, e, n.—1 £ n S np.
The phase-space displacement produced by the perturbation can be effected by ramping the phases of the
position states j¢,;); Le., a displacement by o, where ~/2 < o' < af2, is produced by’

Dn Dn
D cilbus) — Y epetmi g @)
Fa=1 Fu=l

which is a momentum displacement in H,,.5 To see what is going on, it is instructive to consider the special
case I, = 25, In this case we argue that the [7~m#! = 9K(n-na4l) — perturbation histories (recall
that we are ignoring the perturbations that oceur before the perturbation becomes effective) lead roughly
to orthogonal momentum states in H,. Suppose that this is true for the Dy, _; perturbed states after the
perturbation is applied at step n — 1. Then the unperturbed evolution at step n maps the perturbed states
to the momentumn states in the subspace H,e. The 25_fold perturbation at step n maps momentum states
to momentum states; moreover, it is set up in just such a way that each realization of the perturbation maps
the subspace M, to a different orthogonal subspace M, . Thus, for a 2K_fold perturbation the perturbed
states are the IJ,, orthogonal momentum states in H,,.

% One way to obtain the phase factors here is to notice that for a momentum displacement by o' P/ D (in
ordinary phase-space units), the phase between successive position states (separated by /D in ordinary
phase-space units) is (i/R)(o’P/DY(Q/D) = 2wia’/D; thus the cumulative phase between position states
that are separated by D/« position discreteness units is 2rila’ /DY D/ o) = 2ria’ [ o,

® The perturbation (7) approximates a displacement on phase space only when o /o < 1. As noted, what
the perturbation (7} really describes is a momentum displacernent on #,,. Classically this perturbation is a
displacement within a phase-space cell, with periodic boundary conditions at the top and bottom boundaries
of the cell. This is not such a bad perturbation to use—we use it classically—but it is not what we do in
the pumerical simulations. Notice that within a Hilbert space of dimension D, the actual maximum range
of displacements is & = a(1 — D). The quantity & is a sort of renormalized perturbation strength. We
ignore the difference between o and & for the present, but return to it later.
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We want to generalize this property to times after the first Ehrenfest time, e, ng S n $ ny. The
generalization is complicated by the fact that we no longer deal directly with momentum states, because a
phase-space displacement is no longer given by a monotonic ramping of position-state phases, as in {7}, and
thus no longer corresponds to a momentum displacement. The reason is that the perturbation recognizes the
folding caused by the boundaries of phase space. The classical pattern consists of 270" 7#) gripes across
phase space, and the perturbation displaces each stripe by the same amount. Quantum mechanically we
must do the same displacement within each stripe.

The quantum-mechanical description of the stripes is obtained from the expansion (5): group the
Dy = Rvmnatl) = gKvnely position states |¢n;) into D /D, = 28(r=ne) o 9Kn/ /T3 groups, each
consisting of D, = 28{ne=m+l — o > 9K contiguous position states; relabel the position states as Tnis?,
where the index I labels the group and the index j runs from 1 to D, within each group; and rewrite the
unperiurbed state (3) in the form

S D"I:?

D, J . . . .
[thn} —D—’i Z Mot} where o) = Z dijléns;)  is & normalized state for the [th stripe.  {8)
o et

Each stripe state has extent IJ in the expanding dimeunsion and extent 1 in the contracting dimension. All
the perturbed states after the unperturbed evolution at step n lie in H,o and have an expansion of the
form {8&).

‘To analyze the effect of the perturbation, it is instructive to decompose the Hilbert space H,, in ways
thaf match the decomposition of [4£,.) into stripes. For a particular [ the position states |¢,;;} span a “stripe”
sttbspace H,; of dimension D, = a 2 2%, The Hilbert space H, is a direct sum of these stripe subspaces:

Hy == ”}3 FHoni - (9

Within a stripe subspace H,; it is convenient to regard the position states as position states; conjugate to
the position states are momentum states, which we recognize from our previous discussion as localized states
in H,. The stripe subspace H,,; can be further decomposed into 25 orthogonal subspaces My, i.0.,

Hnr = if Hotk {10)

where the subspaces H,y are spanned by D, . / 2K = D, pe1 = f 28 > 1 contiguous momentum states. Our
earlier discussion suggests that it is roughly true that

%-nk = ?Hnik . (11)

We can identify a special subspace H,u of H,, which is the subspace spanned by the D, m—1 mMmomentum
states that are closest (on both sides) to the zero-momentum state. The subspace H,o, which contains all
the perturbed states after the unperturbed evolution at step n, can be written roughly as the direct sum

Hpo = é%??{nm . {12}

The phase-space displacement produced by the perturbation can now be effected by ramping the phases
of the position states within each stripe, with the ramping being the same from stripe to stripe (there is
a discontinuity in the ramping between stripes); ie., a displacement by o/, where —/2 < o' < /2, is
produced by

Dn gy Duy
D dulbeg) — > dige i g, (13)
Fuzl F=1



which is a momentum displacement in H,.,.” To see what is going on, it is again instructive to consider the
case I = 2. In this case we contend that the L7 "<+l = oKUi—ntll o 1y serturbed states after the
perturbation at step n are roughly orthogonal states in ... Suppose that this is true for the D, ; perturbed
states after the perturbation is applied at step n — 1. Then the unperturbed evolution at step n maps the
perturbed states to orthogonal states in Hag = &7 Hnp. The 25 .fold perturbation at step n s set up in just
such a way that each realization of the perturbation maps Hasg to a different orthogonal subspace H,p and
thus maps Hae to a different orthogonal subspace Hap == & Hark.

Qur conclusion from these arguments is the following: if the perturbation becomes effective before the
first Ehrenfest $ime, Le., n. £ npg, then for all times n between the time when the perturbation becomes
effective and the second Ehrenfest time, te., forn, £ n < n'g, a perturbation with L = 2% produces
Dy, = 28041} poughly orthogonal perturbed states, which are a basis for the Hilbert space M,. The
average entropy increases as AHg ~log D, = K{n—n,+ 1}, but there is no hypersensitivity to perturbation
hecause all the perturbed states are orthogonal. If L < 2% then the perturbed states are orthogonal, but the
number of them, L™~ is insufficient to provide a basis for #,, so the average entropy increase is reduced
to AHg ~ logL{n —n, + 1), and there is no hypersensitivity to perturbation. If L > 2%, then there are
enough perturbed states to start to fill M, randomly. The average entropy increases as AHg ~ K (n—n, 4+ 13,
and there is hypersensitivity to perturbation, becoming more pronounced as L increases because that increase
leads to an increasing number of nonorthogonal states. We summarize these conclusions by the following:

L <ok AHs ~log Lin —n, + 1)
. no hypersensitivity |
. 18 n. S ng . AHg ~ K{n—rn. + 1)
252" VD, i Me—18ngng, L~2°: , (14)
VD PR e no hypersensitivity
Lo 9k AHg ~ Kin—mn, +1)
> 20 .

hypersensitivity

In comparing these conclusions with numerical simulations, it is a good idea to set the perturbation strength
of the simulation equal to the renormalized perturbation strength @ = a — 1.

Turn now to the case where « is somewhat less than 2% so that classically the perturbation becomes
effective after the first Ehrenfest time, ie., n. 2 ng. It is instructive to deal first with the case where
1 < o < 2% this is a subtle transitional case, in which the perturbation varies from strong to weak and the
time when the perturbation becomes effective is defined somewhat vaguely as being between ng and np + 1.
We are interested in times greater than the first Bhrenfest time, ie, n, ~1<n 5 .

It 1s still convenient to use the position states |¢,;) because their extent D/« in the expanding dimension
is smaller than the size of phase space. The Hilbert space H,, can still be decomposed into 2875} stripe
subspaces H,y of dimension D,,, = o £ 2% as in (9). The difference arises when we decompose the stripe
subspaces into momentum subspaces, becanse the stripe subspaces cannot accommodate 28 momentum
subspaces. What we do instead is to decompose each stripe subspace M, into o one-dimensional subspaces
Hyix, each containing a single momentum state. We then construct subspaces

Hop = 6??{-nzk ; {15)

of which there are «, each of dimension 250"~"8) = [}, /a. The Hilbert space H,, is the direct sum of the
subspaces Hak, as in (6). The special subspace Mo is now a space of dimension 25(*~78) = D, /o, the
space spanned by the zero-momentum states in each of the stripe subspaces. The unperturbed evolution at
step n takes the space H,..1, of dimension D,,_; = D, /2% into a subspace of H,g.

T Notice that the renormalized perturbation strength becomes constant at & = {1 — Dbihy=a-1for
n oz ne.



The effect of the perturbation is described by (13). To clarify what is going on here, it is best to
consider a perturbation with L = o. Using the same argument that we used above, we can conclude that the
Lr=reti o gh=matt perturhed states after step n are orthogonal states in H,. Thus the average entropy
mcreases as AHg ~ loga{n — n, + 1), and there is no hypersensitivity to perturbation. For L < o, the
perturbed states are orthogonal, the average entropy increases goes as AHg < log L{n — n, + 1), and there
is no hypersensitivity. For L > o, the perturbed states begin to fill randomly a space of dimension o™~ "++1
the average entropy increases as AHs ~ log a{n — n, -+ 1), and there is hypersensitivity, increasing as L
increases. We summarize these conclusions by the following:

AHs ~logL(n—n, + 1)

L s o . '
no hypersensitivity
n iy S np+1 AHg ~loga(n —n, +1
2528 < VD, ;s ol s me—18ngnfg, L~a: ( ),(16)
P razl no hypersensitivity
L>a - AlHs ~loga(n —-n, + 1)

hypersensitivity
In comparing these conclusions with numerical simulations, it is a good idea to set the perturbation strength
of the simulation equal to the renormalized perturbation strength & = o — 1 and to realize that we really
require & = 1. '

Consider now a very weak perturbation, with o < 1, for which the perturbation becomes effective
classically after the first Ehrenfest time. This is the case dealt with in many of our numerical simulations.
We consider times after ng, le, ng S n 5 n. ‘Though it is no longer convenient to use as a basis the
position states introduced above, since these states now extend over more than one stripe,® we can still write
the unperturbed state after n steps as a superposition of 2K(1=72) = 9K /\/Tj quantum-mechanical stripes,

as in (8), i.e.,
172
19) = S 3 ) a7)
7

where each {normalized} stripe state |1} is a superposition of 2575 = /D coherent states. The extent of
a stripe state in the expanding dimension is D, and its extent in the contracting dimension is 1.
A phase-space displacement produces a new state

°
) =\ e 21 as)
i

where the perturbed stripe state |4/} is obtained by ramping the phases of its coherent states, the ramping
being the same from stripe to stripe. The inner product of the perturbed and nnperturbed states is given

by
(W) = S S i) (19)

i

Each of the 257/ VD terms in the sum is approximately the same, since the ramping is the same in each
stripe. The upshot is that the overall inner product (19) is essentially the same as the inner product in a
typical stripe. If the perturbation strength were somewhat bigger than 1, then the perturbation would be
strong enough to push the system into orthogonal states within a stripe and thus into orthogonal states
overall, as we have already seen. In the present case, however, where the perturbation strength is somewhat
smaller than 1, the perturbation is too weak to push the system into orthogonal states within a stripe, and
thus it is always too weak to push the system into orthogonal states overall. The conclusion is the following:
if the perturbation is weak enough that il becomes effective classically after the first Ehrenfest time, then i
never becomes effective quantum mechanically.

% Another way of saying this is that our previous decomposition into stripe subspaces spanned by o
position states cannot be carried out when « is less than 1.



For a perturbation with strength a < 2%, the picture developed here and Dierk’s results for the kicked
rotor reveal an important quantum-mechanical consequence of phase-space folding. If the perturbation were
a monotonic ramping of the phases of all the coherent states that contribute to [tn)-—as far as Hilbert space
is concerned, this is a reasonable perturbation—then the perturbation would become strong enough to push
the system into orthogonal states after it became effective classically. In the inner product (19) the terms
from the various stripes would acquire phases so that they summed to zero. A phase-space displacement,
however, is aware of the folding because of the boundaries of phase space; it must be described by the same
ramping within each stripe. For a perturbation in the transition region, where 1 £ o £ 2K, the result is a
reduction below 2% in the number of orthogonal states available to the perturbation within each stripe and
hence overall. For a weak perturbation, with a < 1, the result is that there is only state within each stripe;
for the mechanism considered so far, which relies on the perturbation’s becoming effective, there is no way
for the perturbation to have any effect at all.

There is, of course, another mechanism for exploring Hilbert space dimensions, the slow diffusion in
Hilbert space. This diffusion, which is ignored in all of the preceding discussion, produces the structure of
pairs, quartets, and so forth in our numerical simulations. For a weak perturbation, diffusion caunot be
ignored, diffusion being the ealy mechanism for exploring Hilbert-space dimensions and thas increasing the
average entropy. We make no attempt here to quantify the increase in entropy in the case where diffusion
is important, but we do note that there is always hypersensitivity in this case, regardless of the value of 7,
because the perturbation produces far more states than orthogonal states. This weak-perturbation quantum
hypersensitivity is the kind found in most of our nurnerical simulations. Indeed, we often go to times larger
than n to make the hypersensitivity more apparent. '

In this regard it is important to stress the following. Quantum hypersensitivity is generally different
from classical hypersensitivity because it exists for a perturbation that is correlated across all of phase space.
The quantum hypersensitivity for perturbations with o < 2%, is still more different, because it is not tied to
the classical KS entropy. Classically one always sees hypersensitivity at the KS rate, provided there are many
correlation cells, because the classical pattern inevitably becomes fine enough in the contracting dimensions
to “feel” the perturbation, no matter how weak it is. Quantum mechanically one sees hypersensitivity at
the KS rate if the perturbation is strong enough to become effective while the guanttum evolution is still
essentially classical; for weaker perturbations, one sees a quantum-mechanical hypersensitivity that is not
tied to the KS entropy.

The classical argument for a linear increase of average entropy is simple. Once the perturbation becomes
effective, the width of the average pattern stays constant at «, while the length grows as 2¥(n—ne+1) Tpe
resulting exponential increase in phase-space area gives an average entropy increase AHs ~ K{n — n. 4+ 1).
A quantum-mechanical version of this argument can be given as long as o 2 1. The perturbation can
access a width o« in the contracting dimension, so it is appropriate to expand the perturbed states in terms
of the position states, which have extent « in the contracting dimension. The analogue of the exponential
increase in classical phase-space area is the exponential increase in the number 12, = 2K{n—n.+1) op position
states in this expansion. The question is whether the perturbation can aceess D, orthogonal states within
the Hilbert space H,,. What the picture developed here shows is that the factor by which the number of
accessed states can increase as a result of one application of the perturbation is limited by the dimension a
of the stripe subspaces. For o 2 2% the perturbation can access the necessary number of orthogonal states
for the classical argument to go through unchanged, but for o < 2K , there is a reduction in the number of
states available to the perturbation and thus a reduction in the rate at which the average entropy increases.
For a weak perturbation, with & < 1, the classical argument has no quantum analogue because there is no
quantum description of a pattern with width a.
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All this reveals a serious defect in work of Paz and Zurek, who argue for a linear increase in entropy
at the KS rate. They consider the evolution of the Wigner distribution in the presence of coupling to
an environment and focus on the difference between the Moyal bracket, which governs the evolution of
the Wigner distribution, and the Poisson bracket, which governs the classical evolution. Their argument
18 essentially the classical argument. Once the coupling to the environment becomes effective, it halts
the contraction of the Wigner pattern in the contracting dimension. The finite width in the confracting
dimension, Paz and Zurek argue, renders the quantum corrections in the Moyal bracket negligible. Under
the resulting classical evolution, the constant-width Wigner pattern lengthens exponentially in the expanding
dimension, thus producing a linear entropy increase at the KS rate.

It is easy fo see where this argument goes wrong. Suppose the coupling to the environment does not
become effective till after there is some folding. The quantum interference that accompanies the folding is
described by the quantum corrections in the Moyal bracket. The quantum corrections to the Moyal bracket
are important before the coupling to the environment halts the contraction, and so they remain important
afterward. The Wigner patiern does lengthen exponentially after the contraction is halted, but since the
Wigner distribution is not classical, one cannot use ¢lassical arguments about phase-space area to determine
the entropy. Paz and Zurek miss this effect in their numerical work because they consider a linear system
that has no folding.

The picture developed here, it seems to me, is worth exploring in some detail, both in analytical maodels,
if possible, and by numerical simulations. If it holds up, as 1 expect it will, then it provides a framework for
taking the next step, which is the study of decoherence when one replaces the stochastic Hamiltonian with
a coupling to a real environment that entangles the system and environment.
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