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The results here are based on formulae in the two appendices in R. Schack, C. M. Caves, and
G. M. D’Ariano, “Hypersensitivity to perburbation in the quantum kicked top,” Phys. Rev. E
50, 972–987 (1994). The relevant equations in the two appendices are (A18) and (B5)–(B6). A
preliminary version of the analysis here can be found at the end of Sec. V of R. Schack and C. M.
Caves, “Information-theoretic characterization of quantum chaos,” Phys. Rev. E 53, 3257–3270
(1996). This analysis was further elaborated to essentially the present form in A. N. Soklakov and
R. Schack, “Preparation information and optimal decompositions for mixed quantum states,” J.
Mod. Opt. 47, 2265–2276 (2000).

Consider N vectors randomly distributed in a D-dimensional Hilbert space, where we assume
that N ≥ D. Given an entropy H ≤ log D, we want to group the vectors into groups that on
average have this entropy and then ask how much information I is required to specify a group.
The relation between I and H is the information-entropy trade-off.

We can estimate this trade-off by considering a grouping of the vectors into spheres on
projective Hilbert-space whose radius is given by a Hilbert-space angle φ. The number of spheres
of radius φ is [Eq. (A18) of Schack1994]

ND(φ) =
VD

VD(φ)
= (sin2φ)−(D−1) , (1)

where VD(φ) is the volume of a sphere of radius φ and VD is the total volume of projective Hilbert
space. The entropy of vectors distributed randomly within a sphere of radius φ is [Eqs. (B5)–(B6)
of Schack1994]

HD(φ) = −λ0 log λ0 − (1− λ0) log
(

1− λ0

D − 1

)
= H2(λ0) + (1− λ0) log(D − 1) , (2)

where H2(λ0) is the binary entropy corresponding to the largest eigenvalue

λ0 = 1− D − 1
D

sin2φ =⇒ 1− λ0

D − 1
=

sin2φ

D
≤ 1

D
. (3)

For a long time, I thought we could approximate (2) as

HD(φ) ∼ sin2φ log D , (4)

but a little bit of plotting in Mathematica shows this gives a hopelessly bad approximation,
especially near φ = π/2, which is the most important place. Here we will use the exact expression
for HD(φ).

Now we’re ready to get started. We group the N vectors into groups of radius φ. The number
of vectors per group is

NV (φ) =
N

ND(φ)
= N(sin2φ)D−1 , (5)
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provided this number is not less than one. There is clearly a critical angle, φ b, at which there is
only one vector per group, i.e.,

NV (φ b) = 1 ⇐⇒ ND(φ b) = N ⇐⇒ (sin2φ b)D−1 =
1
N

. (6)

For φ ≥ φ b, there are ND(φ) groups, each containing approximately NV (φ) vectors, but for
φ ≤ φ b, there are N groups, each containing one vector.

The information required to specify a group at resolution angle φ is thus

I(φ) =
{

log N , φ ≤ φ b,
log ND(φ) = −(D − 1) log(sin2φ) , φ ≥ φ b.

(7)

There is clearly another critical angle, φd, at which there are only two groups, i.e.,

NV (φd) = N/2 ⇐⇒ ND(φd) = 2 ⇐⇒ (sin2φd)D−1 =
1
2

⇐⇒ I(φd) = 1 . (8)

For φ ≥ φd, we can’t talk about grouping the vectors into spheres of equal radius, so we aren’t
justified in saying that I(φ) is given by log ND(φ). To deal with this, we give up on describing
the situation φ > φd, amending Eq. (7) to be

I(φ) =
{

log N , φ ≤ φ b,
log ND(φ) = −(D − 1) log(sin2φ) , φ b ≤ φ ≤ φd.

(9)

Notice that for φ b ≤ φ ≤ φd, we have

sin2φ = 2−I/(D−1) = e−I ln 2/(D−1) =⇒
λ0 = 1− D − 1

D
2−I/(D−1)

1− λ0

D − 1
=

sin2φ

D
=

2−I/(D−1)

D

. (10)

This gives
sin2φd = 2−1/(D−1) , (11)

so that as long as D À 1,

sin2φd ' 1− ln 2
D − 1

=⇒ φd ' π

2
−

√
ln 2

D − 1
. (12)

Equation (10) shows that there are two important cases in terms of the number of vectors.
If log N ¿ D (N ¿ 2D), a situation we refer to as sparse collection of random vectors (even
though there can be a heck of a lot of them), we have I ≤ log N ¿ D, giving

sin2φ ' 1− I ln 2
D − 1

=⇒ φ ' π

2
−

√
I ln 2
D − 1

(13)
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over the entire range φ b ≤ φ ≤ φd. In particular, we have

sin2φb ' 1− log N ln 2
D − 1

= 1− ln N

D − 1
=⇒ φb ' π

2
−

√
ln N

D − 1
. (14)

The number of groups increases so fast as φ retreats from π/2 that for a sparse collection, there is
a group for each vector when the radius φ is still quite close to π/2 (Hilbert space is a big place!).
In contrast, if log N À D (N À 2D), which we call a dense collection of vectors, then

φ b ' sin φ b = 2− log N/2(D−1) ¿ 1 , (15)

meaning that to get to one vector per group, the group radius φ b must be small.
When we start thinking about the entropy of the groups, it becomes clear that there is

yet another critical angle, φc, the angle at which the number of vectors per group equals the
Hilbert-space dimension:

NV (φc) = D ⇐⇒ ND(φc) =
N

D
⇐⇒ (sin2φc)D−1 =

D

N
⇐⇒ I(φc) = log N − log D .

(16)
For φ ≥ φc, there are sufficiently many vectors in each group to explore all the available dimen-
sions, so the entropy will be close to the entropy HD(φ) for a group of random vectors of radius
φ in D dimensions. In contrast, for φ b ≤ φ ≤ φc, the vectors in a group can explore roughly only
NV (φ) dimensions, thus giving an entropy close to HNV (φ)(φ). Finally, for φ ≤ φ b, there is only
one vector per group, so H = 0. Summarizing, we have

H(φ) '




0 , φ ≤ φ b,
HNV (φ)(φ) , φ b ≤ φ ≤ φc,
HD(φ) , φ ≥ φc.

(17)

Our main interest is in the relation between H and I, so we eliminate the resolution angle
φ from the above expressions. The region φ ≤ φ b simply gives H = 0 and I = log N . For
φ b ≤ φ ≤ φc, i.e., log N ≥ I ≥ log N − log D, we have

H ' HNV (φ)(φ) = H2(λ) + (1− λ) log
(
2−IN − 1

)
,

λ = 1− 2−IN − 1
2−IN

2−I/(D−1)

= 1− 2−I/(D−1)

(
1− 2I

N

) . (18)

and for φc ≤ φ ≤ φd, i.e., log N − log D ≥ I ≥ 1, we get

H ' HD(φ) = H2(λ0) + (1− λ0) log(D − 1) , λ0 = 1− D − 1
D

2−I/(D−1) . (19)

Again summarizing, we have

H '
{

H2(λ) + (1− λ) log
(
2−IN − 1

)
, log N ≥ I ≥ log N − log D,

H2(λ0) + (1− λ0) log(D − 1) , log N − log D ≥ I ≥ 1.
(20)
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with λ and λ0 given by Eqs. (18) and (19). Equation (20) is the trade-off relation we are seeking.
The important part of the trade-off relation is the part that is independent of the number

of random vectors, i.e., for 1 ≤ I ≤ log N − log D. Notice that to investigate this region, we
need N À D, but we do not need N so large that the perturbation samples typical vectors, i.e.,
N >∼ 22(D−1), which would be a dense set of vectors. We do not need a dense collection of vectors
to investigate the important part of the trade-off relation.

Before going further, let’s put the trade-off relation (20) in other forms. First note that for
the second case, which is the case of interest, we have

HD(φ) = −λ0 log λ0 − (1− λ0) log
(

1− λ0

D − 1

)

= −λ0 log λ0 − (1− λ0) log
(

2−I/(D−1)

D

)

= −λ0 log λ0 + (1− λ0)
(

I

D − 1
+ log D

)

= log D − λ0 log(Dλ0) +
I2−I/(D−1)

D

= log D − 1
D

((
D(1− 2−I/(D−1)) + 2−I/(D−1)

)

× log
(
D(1− 2−I/(D−1)) + 2−I/(D−1)

)− I2−I/(D−1)
)

.

(21)

For a sparse collection of vectors, for which I ≤ log N − log D ≤ log N ¿ D, or anytime we have
I ¿ D, we can approximate this by

HD(φ) ' log D − 1
D

(
(1 + I ln 2) log(1 + I ln 2)− I

)
. (22)

This is a pretty good approximation for sparse collections, probably more than good enough given
that the entire approach is only an approximation to an optimal grouping method for random
vectors.

We can manipulate the first case in Eq. (20) in a similar way:

HNV (φ)(φ) = −λ log λ− (1− λ) log
(

1− λ

1− 2I/N

)
+ (1− λ) log

(
N

2I

)

= log N − I − λ log
(

Nλ

2I

)
− (1− λ) log

(
1− λ

1− 2I/N

)
.

(23)

The factor 2I/N increases from 1/D for I = log N − log D to 1 for I = log N . For a sparse
collection, i.e., I ≤ log N ¿ D, we can approximate λ by

λ ' 2I

N
+

I ln 2
D − 1

(
1− 2I

N

)
. (24)

The second term is always small. When the first term dominates, the second two terms in
Eq. (23) vanish. When the first term is as small or smaller than the second, it is easy to see that
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the second two terms in Eq. (23) are both small. Thus for a sparse collection, it is always a good
approximation to use

HNV (φ)(φ) = log N − I . (25)

The conclusion of these considerations is that for sparse collections, the trade-off relation (20)
is well approximated by

H '
{

log N − I , log N ≥ I ≥ log N − log D,

log D − 1
D

(
(1 + I ln 2) log(1 + I ln 2)− I

)
, log N − log D ≥ I ≥ 1. (26)

The place where these approximate expressions are worst is at the knee between the two behaviors,
which is also where the approximate treatment of the grouping is at its worst, so it doesn’t matter
much.

There are two good ways to capture the trade-off between information and entropy in a single
number. The first is in terms of the derivative (dI/dH)|I=1, which tells us the instantaneous
information-entropy trade-off at the last place where our approximate expressions are valid. We
can calculate the derivative from the following considerations. In the region of interest, which is
the second case in Eq. (20), we have

dI(φ)
dφ

=
−2(D − 1) sin φ cosφ

sin2φ ln 2
,

dH(φ)
dφ

=
(

dH2(λ0)
dλ0

− log(D − 1)
)

dλ0

dφ

=
[
log

(
1− λ0

λ0

)
− log(D − 1)

](
−D − 1

D
2 sin φ cos φ

)

= 2
D − 1

D
sin φ cos φ log

(
λ0

(1− λ0)/(D − 1)

)

= 2
D − 1

D
sin φ cos φ log

(
D

sin2φ
− (D − 1)

)
.

(27)

This gives us

dI

dH
= − D/ sin2φ

ln
(
D/ sin2φ− (D − 1)

) = − D2I/(D−1)

ln
(
1 + D(2I/(D−1) − 1)

) , log N − log D ≥ I ≥ 1. (28)

Notice that this derivative diverges at I = 0.
For a sparse collection of vectors, for which I ≤ log N ¿ D, or anytime we have I ¿ D, we

can approximate Eq. (28) by

dI

dH
' − D

ln
(

1 +
D

D − 1
I ln 2

) ' − D

ln(1 + I ln 2)
, (29)
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where the second approximation expression assumes D À 1. Notice that this second expression
follows from differentiating Eq. (22) and retains the singularity at I = 0. The slope introduced
above is thus

dI

dH

∣∣∣∣
I=1

= − D21/(D−1)

ln
(
1 + D(21/(D−1) − 1)

) ' − D

ln
(

1 +
D

D − 1
ln 2

) ' − D

ln(1 + ln 2)
= −1.899D .

(30)
The final approximate value on the right, which assumes D À 1, is, in fact, always off by less
than 10% and is off by less than 1% for D ≥ 36. Notice that for I ¿ 1, we have

dI

dH
=

D − 1
I ln 2

, (31)

which shows the divergence in slope at I = 0.
The second good way to characterize the trade-off is in terms of a finite trade-off between

information and entropy, (∆I/∆H)|I=1, where

∆I

∆H
=

I

H − log D
. (32)

To get this into a reasonable form, we use Eq. (21) to write

∆I

∆H
=

D

2−I/(D−1) −
(
D − (D − 1)2−I/(D−1)

)
log

(
D − (D − 1)2−I/(D−1)

)

I

. (33)

For a sparse collection of vectors, for which I ≤ log N ¿ D, or anytime we have I ¿ D, we
can approximate Eq. (33) by

∆I

∆H
' − D

(1 + I ln 2) log(1 + I ln 2)
I

− 1
. (34)

The trade-off introduced above is thus

∆I

∆H

∣∣∣∣
I=1

=
D

2−1/(D−1) − (
D − (D − 1)2−1/(D−1)

)
log

(
D − (D − 1)2−1/(D−1)

)

' − D

(1 + ln 2) log(1 + ln 2)− 1
= −3.493D .

(35)

The approximate expression is off by less than 10% of the actual value for D ≥ 7 and by less
than 1% for D ≥ 58. The ratio of the two measures, (dI/dH)|I=1/(∆I/∆H)I=1 decreases
monotonically from a value of 0.687128 at D = 2 to an asymptotic value of

(1 + ln 2) log(1 + ln 2)− 1
ln(1 + ln 2)

= 0.543681 (36)
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as D goes to infinity.
One has to be careful in using the approximation (34) for I ¿ 1 because one needs to keep

second-order terms in I in this situation. In particular, for I ¿ 1, we have

D − (D − 1)2−I/(D−1) ' D − (D − 1)

(
1− I ln 2

D − 1
+

1
2

(
I ln 2
D − 1

)2
)

= 1 + I ln 2− 1
2

(I ln 2)2

D − 1
,

(37)

which gives

log
(
D − (D − 1)2−I/(D−1)

) ' 1
ln 2

(
I ln 2− 1

2
(I ln 2)2

D − 1
− 1

2
(I ln 2)2

)

= I − 1
2

D

D − 1
I2 ln 2 .

(38)

Plugging this into Eq. (33), we get for I ¿ 1,

∆I

∆H
' D

1− I ln 2
D − 1

− (1 + I ln 2)
(

1− 1
2

D

D − 1
I ln 2

)

' D

1− I ln 2
D − 1

− 1− I ln 2 +
1
2

D

D − 1
I ln 2

= −2(D − 1)
I ln 2

.

(39)

Notice the factor of two difference between this expression and Eq. (31). Although this factor of
two might be puzzling initially, it is a straightforward consequence of the fact that H is quadratic
in I near I = 0, i.e., for I ¿ 1,

H = log D +
∆H

∆I
I = log D − I2 ln 2

2(D − 1)
, (40)

which gives
dH

dI
= − I ln 2

D − 1
. (41)

In applying these ideas to hypersensitivity of quantum maps, the idea is that D is given
roughly by 2HS , so if HS increases linearly with time, then D increases exponentially, and you
have exponential hypersensitivity to perturbation. The point is that you can have a linear increase
of system entropy without having exponential hypersensitivity, because hypersensitivity measures
more than the linear entropy increase, having to do with the random distribution of the perturbed
vectors in Hilbert space.
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