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Quantum information science

A new way of thinking Computer science
Computational complexity
depends on physical law.

New physics
Quantum mechanics as liberator.
What can be accomplished with
quantum systems that can’t be

done in a classical world?
Explore what quantum systems
can do, instead of being satisfied
with what Nature hands us.

Quantum engineering




Metrology

Taking the measure of things
The heart of physics
Extracting information from physical systems

New physics -
Quantum mechanics as Old physics
liberator. Quantum
Explore what quantum | mechanics as nag.
systems can do, The uncertainty
instead of being principle
satisfied with what restricts what can
Nature hands us. be done.
Quantum engineering

Old conflict in new guise

Stories about noise vs. rigorous
analytic techniques with proofs
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(Absurdly) high-precision interferometry

Hanford, Washington l/\ /\ o
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The LIGO Scientific Collaboration,
Rep. Prog. Phys. 72, 076901 (2009).

Livingston, Louisiana

VIRGO

Cascina, Italy
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(Absurdly) high-precision interferometry
Advanced LIGO
Hanford, Washington differential
( ) ~ 107%°

strain
| sensitivity
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- &= o | displacement | @4 x 107 ¥ m
sensitivity

from 50Hz to 2,000 Hz.

High-power, Fabry-
Perot Michelson
(multipass), power-
and signal-recycled,
squeezed-light
interferometers

Livingston, Louisiana



Mach-Zehnder interferometer

C. M. Caves, PRD 23, 1693 (1981).

Take note: | am not here
talking about back action
(radiation-pressure noise).
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Squeezed states of light
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Squeezing by a factor of about 3.5

Groups at ANU, Hannover, Tokyo, and MIT continued
to push for greater squeezing (at audio frequencies)
for use in Advanced LIGO, VIRGO, and GEO and other
quantum metrology and quantum information jobs.

G. Breitenbach, S. Schiller, and
J. Mlynek, Nature 387, 471 (1997).




Squeezed states of light
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Quantum metrology (nearly) making a difference

Strain sensitivity (Hz/2)
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Vacuumn envelope

Arm cavity (4 km)

To squeezed vacuum source: /™ FJ P

phase lock loop
with PUMP laser

Squeezed light in the
LIGO Hanford detector

The LIGO Scientific Collaboration,
Nat. Phot. 7, 613 (2013).
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L1 Strain noise (1/¥Hz)

Quantum metrology making a difference

Virgo: F. Acernese et al., PRL

f il % 123, 231108 (2019).
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LIGO: M. Tse et al., PRL 123, 231107 (2019).
During the ongoing O3 observation run, squeezed
states are improving the sensitivity of the LIGO

interferometers to signals above 50 Hz by up to 3
dB, thereby increasing the expected detection rate
by 40% (H1: Hanford) and 50% (L1: Livingston).
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Fabry-Perot Michelson
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Motion of the mirrors produced by a gravitational
wave induces a transition from the symmetric
mode to the antisymmetric mode; the resulting tiny
signal at the vacuum port is contaminated by
guantum noise that entered the vacuum port.



Fabry-Perot Michelson
AY PDH locking
L | Nested cavities (recycling)

Squeezed-light interferometry

When Ron’s ideas run out of gas (after 35 years, they have),

Experimenters might then (now) be forced to learn how to very
gently squeeze the vacuum before it can contaminate the light
in their interferometers.






Quantum limits on optical interferometry
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Reminder: | am not here
talking about back action
(radiation-pressure noise).
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When do these limits hold? Do we think they’re limits
only because we haven’t thought hard enough?
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e Given the N ~ 4 x 1018 pho' |
ing time of 1 ms, the Heisenberg- Ilmlt
~ 2 x 109 is completely inaccessible to a LIGC
ometer. Aside from needing squeezed light w
photons/ms, losses will limit squeezing improve
to a factor of roughly 1/20.

Quantum—Cramér-Rao—bound (Fisher-information) an:
yses confirm that back-action (radiation-pressure)
can be evaded, so the only ultimate bound IS th
_Oluantum n0|se I|m|t

Cable Beach
Western Australia



Fisher information

Estimating a probability p from N
trials (random walk, polling)

n
f = N q v 4
— n
f = ~ P \
prq ¢
(Af)?* = T a=1-p p u

Measuring the “distance” between neighboring
probability distributions in units of their distinguishability

(op)2 _ (6p)* _  ((6p)* | (6¢g)*
BNz - pg _N( p g ,)=N((5“)2+(5’U)2)
Fisher information| “=+VvP, vV=./¢

Not |8p| + |dg| or (6p)? + (89)? or (6p/p)? + (8q/q)?



(Classical) Cramér-Rao bound

For any parameter ¢ that affects a
probability distribution p;(¢),
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Quantum information version of interferometry
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Quan-l-um S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys. 247, 135 (1996).
V. Giovannetti, S. Lloyd, and L. Maccone, PRL 96, 041401 (2006).

IimiTS S. Boixo, S. T. Flammia, C. M. Caves, and JM Geremia, PRL 98, 090401 (2007).
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Achieving the Heisenberg limit
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What we really do:
Real-life quantum Cramér-Rao bound

For an optical interferometer powered by a |laser,
with fractional photon loss 1 — n = ¢, the opti-
mal strategy is to put squeezed light into the
vacuum port, with ultimate sensitivity having
shot-noise scaling:

Ap = \/ \/(1—E)N'

M. D. Lang, UNM PhD dissertation, 2015.
Z. Jiang, PRA 89, 032128 (2014).

Rule of thumb for photon losses,
established by many researchers,
under many circumstances.

Reaching the Heisenberg limit requires S

eN ~ 1.




What we really do:
Cramér-Rao bound on estimating parameters of
classical spacetimes

The generators corresponding to
spacetime parameters are stress-
energy components of probe fields.

For wideband detection of a nearly planar grav-
itational wave by a beam of electromagnetic
radiation, the Cramér-Rao bound is

At 1
2 AX;

where X7 Is the wideband quadrature compo-
nent that is out of phase with the mean field.

T. G. Downes, J. R. van Meter, E. Knill, G. J. Milburn,
and C. M. Caves, PRD 96, 105004 (2017).



Telling explanatory stories is what physics is about.

The squeezed-light narrative is about understanding
fringe patterns and sources of noise and designing
devices to improve phase sensitivity based on this

understanding. This is telling stories.

The quantum Cramér-Rao bound is misleading and
clueless on practicality, but it verifies whether the
stories, always of limited validity, are fooling us.

Which then is better, stories or proofs? You need
both, but to design something, you need a story.




Squeezed light into the vacuum
(antisymmetric) port is the optimal strategy for
optical interferometry.

The (SC|ent|f|c) truth shall make ouree

Pinnacles Natlonal Park
Central California
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Quantum limit on practical optical interferometry

1. Cheap photons from a laser (coherent state)
2. Low, but nonzero losses on the detection timescale
3. Beamsplitter to make differential phase detection insensitive to laser fluctuations

Freedom: state input to the second input port; optimize relative to a mean-number
constraint.
Entanglement: mixing this state with coherent state at the beamsplitter.
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Mach-Zehnder configuration. Achieved by squeezed vacuum into the second input port




Practical optical interferometry: Photon losses

M. D. Lang , UNM PhD dissertation, 2015.

ol
) — 1 2 __ [ fractional loss
0 ! p in each arm
B P O
1 1 1 1 1
v i }1 i Aéczi,estz_z_z_
) ©2 ; (1\)] i Fo = Cq Iq

T B. M. Escher, R. L. de Matos Filho, and L.
Davidovich, Nat. Phys. 7, 406-411 (2011).

Upper bound on quantum Fisher information
maximized over fake phase shifts ¢; and ¢»
and over all states input to second input port

Co = (
(Quantum Fisher information) Z. Jiang, PRA 89, 032128 (2014).
Fo =

for squeezed vacuum

S =
input to second input port When |a|< > Ny,

all agree to within
|2 + N n corrections of
T—n 1 =~ o] order Ny/|c|?.

1=
n  2((Ap)?)

Ig =

Optimum achieved by differenced photodetection in a Mach-Zehnder configuration.




Ramsey (atomic) interferometry
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Cat-state Ramsey interferometry

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996).
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