
Physics 581: Quantum Optics II 
Problem Set #1 

Due Tuesday Sept. 14, 2016 
 
Problem 1:  Ambiguity of ensemble decompositions of density operators (15 points) 
 
    A density operator can be decomposed into a statistical mixture of pure states, but the 
decomposition is not unique. What different ensembles yield the same density operator?  
In this problem we prove the following: 
 
Schrödinger-HJW Theorem:  The two density operators 
 

� 

ˆ ρ 1 = pi ψ i
i
∑ ψ i  and 

� 

ˆ ρ 2 = q j φ j
j
∑ φ j  

are equal if and only if the two ensembles are related by, 
 

� 

q j φ j = U ji
i
∑ pi ψ i , 

where 

� 

U ji  are elements of a partial isometry (rows and columns of 

� 

U ji  are orthonormal). 
 
(a)  Assume the relation between the ensembles is true.  Prove that 

� 

ˆ ρ 1 = ˆ ρ 2 . 
(b)  Assume 

� 

ˆ ρ 1 = ˆ ρ 2 ≡ ˆ ρ .  Show 

� 

q j φ j = U ji
i
∑ pi ψ i . 

(Hint:  Show first that 

� 

pi ψ i = M jα
α
∑ λα eα , where 

� 

λα  are the eigenvalues of 

� 

ˆ ρ  and 

� 

eα  its orthonormal eigenvectors and 

� 

M jα  are elements of a partial isometry.  The same 

thus holds for 

� 

q j φ j .  The proof will follow). 

 
Problem 2:  Boson Algebra (25 points) 
This problem is to give you some practice manipulating the boson algebra.  A great 
source is the classic “Quantum Statistical Properties of Radiation”, by W. H. Louisell, 
reprinted by “Wiley Classics Library”, ISBN 0-471-52365-8. 
 
(a) Gaussian integrals in phase-space are used all the time.  Show that 

� 

d2β
π∫ e−A β 2

eαβ
*−βα* = 1

A
e− α 2 /A . 

 
(b) Prove the completeness integral for coherent states 

� 

d2α
π∫ α α = ˆ 1  (Hint:  Expand in number states). 

 



(c) The “quadrature” operators in optics are the analogs of X and P, â = X̂ + iP̂
2

.  Show  

Û †(θ )X̂Û(θ ) = cosθ X̂ + sinθ P̂

Û †(θ )P̂Û(θ ) = cosθ P̂ − sinθ X̂
,   where   

� 

ˆ U (θ) = e− iθ ˆ a † ˆ a . 

Interpret in phase space. 
 

(d) Prove the group property of the displacement operator 

� 

ˆ D (α) ˆ D (β) = ˆ D (α + β)exp iIm(αβ*){ } 

 
(e) Show that the displacement operators has the following matrix elements 
 

 

Vacuum: 0 D̂(α ) 0 = e− α 2 /2

Coherent states: α1 D̂(α ) α2 = e− α +α2 −α1
2 /2ei Im αα2

* −α1α
* −α1α2

*( )

Fock states: n D̂(α ) n = e− α 2 /2Ln α 2( ), where Ln  is the Laguerre polynomial of order n

 

 
 
Problem 3:  Thermal Light (25 points) 
 
Consider a single mode field in thermal equilibrium at temperature T, Boltzmann factor 

� 

β =1/kBT .  The state of the field is described by the “canonical ensemble”, 

� 

ˆ ρ = 1
Z

e−β ˆ H ,   

� 

ˆ H = !ωˆ a † ˆ a  is the Hamiltonian and 

� 

Z = Tr e−β ˆ H ( )  is the partition function. 

 
(a)  Remind yourself of the basic properties by deriving the following: 

• 
  

� 

n = 1
eβ!ω −1

 (the Planck spectrum) 

• 

� 

Pn =
n n

1+ n( )n+1   (the Bose-Einstein distribution).   

 
(b) Make a list-plot of Pn for both the thermal state and the coherent state on the same 
graph as a function of n, for each of the following: n = 0.1, 1, 10, 100 . 

 
(c) Using the number-state representation, show that 

• 

� 

Δn2 = n + n 2 .  How does this compare to a coherent state? 
• 

  

� 

ˆ a = 0 ⇒
! 
E = 0 . How does this compare to a coherent state? 



 

(d) Show that the Glauber-Sudharshan distribution of this state, P(α ) = 1
π n

e−|α |
2 / n , 

satisfies d 2α P(α )∫ α α =
n n

1+ n( )n+1n
∑ n n .   Sketch P(α )  in the phase plane.  

 
 
Problem 4:  Twin beams and two-mode squeezed states.  (20 points) 
Considering the Hamiltonian  
 

  

� 

ˆ H = i!G ˆ a +
† ˆ a −

†e− iφ − ˆ a + ˆ a −e
iφ( ) , 

 
where â±  are annihilation operators for two modes with frequencies ω ± .  We will see in 

class how this arises in nonlinear optics through the process of parametric down-
conversion.  This leads to correlated twin “signal” and “idler” beams as long as the phase 
matching conditions are satisfied, 
 

� 

ω p = ωs + ω i, k p = k s + k i. 

 
Here G is the coupling constant depending on the nonlinearity, pump amplitude, and 
vacuum mode strength.  The state produced is known as a “two-mode squeezed vacuum 
state”,  

� 

ˆ S ± (ξ) 0 + ⊗ 0 − = exp ξ ˆ a + ˆ a − − ξ
* ˆ a +

† ˆ a −
†[ ] 0 + ⊗ 0 − , where 

� 

ξ = reiφ  is the complex 

squeezing parameter for an interaction time t, 

� 

r = Gt . 
 
(a)  Show that the generalized Bogoliubov transformations is 
 

  

� 

ˆ S ±
† (ξ) ˆ a ± ˆ S ± (ξ) = cosh(r) ˆ a ± − e− iφ sinh(r) ˆ a ∓

† . 
 

(b)  Show that the individual modes, 

� 

ˆ a ± , show no squeezing, but that squeezing exists in 
the correlation between the modes.  Hint:  consider quadratures,  
 

� 

ˆ X ± (θ) ≡
ˆ a ±eiθ + ˆ a ±

†e−iθ

2
 and then 

� 

ˆ Y (θ, ′ θ ) ≡ ˆ X + (θ) − ˆ X −( ′ θ )( ) / 2 . 

 
For the remaining parts, take ξ real. 
 



(c)  The two-mode squeezed state is an entangled state between the signal and idler as we 
know from the perturbative limit of twin photons.  Show that in the Fock basis 
 

� 

ˆ S ± (r) 0 + ⊗ 0 − = cosh(r)( )−1 tanh(r)( )n n +
n= 0

∞

∑ ⊗ n − . 

Hint:  Use the “disentangling theorem” (D. R. Traux, Phys. Rev. D 31, 1988 (1985) ): 
 

� 

er ˆ a +
† ˆ a −

†− ˆ a + ˆ a −( ) = eΓ ˆ a +
† ˆ a −

†

e−g ˆ a +
† ˆ a + + ˆ a −

† ˆ a − +1( )e−Γ ˆ a + ˆ a − . 
where 

� 

Γ = tanh(r), g = ln cosh(r)( ) 

 
The photons are produced with perfect correlations between the modes.  This is known as 
“number squeezing” in “twin beams. 
 
 


