
Physics 581, Quantum Optics II 
Problem Set #2 

Due: Tuesday October 11, 2016 @ 5PM 
 

Problem 1:  Nonclassical light generation via the Kerr effect. (15 points) 
In the classical (optical) Kerr effect, the index of refraction is proportional to the intensity.  
The quantum optical description is via the Hamiltonian, 
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(a) Suppose we inject a strong coherent state into a nonlinear fiber with Kerr response.  
Linearize this Hamiltonian about the mean field via the substitution 

� 

ˆ a = α + ˆ b , and keep 
terms only up to quadratic order in 

� 

ˆ b  and 

� 

ˆ b †.  Show that the resulting leads to squeezing. 
 
(b) Now let’s go beyond the linear approximation.  Show that for a long time such that 

� 

χ (3)t = π , the state becomes a Schrödinger cat,  

� 

eiπ / 4 −iα + e− iπ / 4 iα( ) / 2 . 

 
Problem 2:  Calculation of some quasiprobability functions (25 points) 
 
(a) Find the P. Q, and W distributions for a thermal state  

, = partition function 

 and show they are Gaussian functions.  For example, you should find 

. Show that these three distributions give the proper functions in 

the limit, , i.e. the vacuum. 
 
(b) Find the P. Q, and W distributions squeezed state .  In what sense 
is this state nonclassical? 
 
(c) Find the Glauber-Sudharshan P-representation for a Fock state .  Comment. 
  
(d) Consider a superposition state of two “macroscopically” distinguishable coherent 
states, 

, , where  is normalization. 
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ψ = N α1 + α2( )

� 

α1 −α2 >>1

� 

N = 2 1+ exp{−α1 −α2
2}( )[ ]−1/ 2



This state is often referred to as a “Schrodinger cat”, and is very nonclassical.  Calculate 
the Wigner function, for the case  , with α real, and plot it for different 
values of .  Comment please.  
 
(e) Calculate the marginals of the Schrödinger-cat Wigner function in X and P and show 
they are what you expect. 
 
Problem 3:  An Alternative Representation of the Wigner Function. (20 points) 
 
We have shown that Wigner function could be expressed as 
 

, where   

 
(a) Show that . 
 
(b) Show that .  (This is a tough problem.  You may assume the answer 
and work backwards or try to find a direct proof). 
 
Note: the operator  is the “parity operator” (+1 for 

even parity, -1 for odd parity).  Thus we see that the Wigner function at the origin is 
given by the expected value of the parity. 
 

. 

 
(c) Show that general expression 
 

, 

 

and thus . 

 
This expression provides a way to “measure” the Wigner function.  One displaces the 
state to the point of interest, , one then measures the photon statistics 

.  Putting this in the parity sum gives  at that point! 
 
This is a form a quantum-state reconstruction, also know as “quantum tomography,” 
which we will study in a future problem. 
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Problem 4: Toward an optical “Schrödinger cat state.” (20 points) 
 
Creating a “Schrödinger cat state,” e.g. catφ (α 0 ) = N α 0 + eiφ −α 0( ) , where the 

normalizationN = 1/ 2 1+ cosφ e−2α
2( ) , is a challenging task in the optical regime 

because we do not have sufficient nonlinearity with low loss (in the microwave regime, 
cavity and circuit QED has achieved this – more on that in another problem).  Producing 
something close to such a state for applications in Quantum Information Processing has 
been an important goal. 
 
Consider a squeezed single photon Fock state, r,1 ≡ Ŝ(r) 1  

(a) Show that the Wigner function of this state is W (α ) = − 1
π 2 e

−2 b 2L1(4 b
2 )  where  

b =α * cosh r +α sinh r  and L1  is the first-order Laguerre polynomial.  Plot W. 
 
(b) Show that the fidelity between the “odd” cat-state and the squeezed Fock state is 
 

F(r,α 0,π ) ≡ catπ (α 0 ) r,1
2
=
2α 0

2 exp α 0
2 tanh r −1( )⎡⎣ ⎤⎦

(cosh r)3 1− exp[−2α 0
2 ]( )  (where α0 is real). 

 
(c) Make a surface plot of F as a function of r andα 0 .  Under what parameters can the 
squeezed Fock state well approximate the cat state? 
 
While the squeezed Fock state can approach cat state, squeezing a single photon state is 
not easy to achieve either.  The output of a nonlinear optical processes is typically a 
squeezed vacuum.  This is a Gaussian state, which is classical if we perform only 
homodyne measurements.  However, if we have access to other resources, such a photon 
counting, we can transform this into a non-Gaussian, fully quantum resource.   
Consider the following experiment: 

 

 
 

 
The state produced is a “photon subtracted squeezed state.”  This operation is non-
Unitary, so the post-measurement state is ψ out = âŜ(r) 0 / âŜ(r) 0 . 

(d) Show that ψ out = Ŝ(r) 1 , the squeezed Fock state. 
 

“click” 

    

 

The light is incident on a highly transmitting beam splitter.  
Rarely one photon is reflected and detected.  Conditioned on 
that “click,” the output state has one of the photons annihilated.  
This state is “post selected” and the probability of producing it 
is rare.  Nonetheless, this is a highly non-Gaussian operation. 


