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What is it?
• A diagrammatic method for representing tensors

• Why is this useful?

• Gives a convenient way of bookkeeping how much 
entanglement there is between different parts of a 
quantum system

• Has resulted in many useful numerical and analytic 
methods for analysing interesting many-body quantum 
states.



Goals

1. Get comfortable with the notation

2. See how tensor network methods are used 
in quantum information/condensed 
matter



Reference

• These slides use figures from the lecture notes by 
Bridgeman and Chubb:
• Hand-waving and Interpretive Dance: An Introductory 

Course on Tensor Networks, J. Phys. A: Math. Theor. 50 
223001 (2017) arXiv:1603.03039

• Much of what we will cover can also be found in 
lectures 1-3 in those notes.



Tensors

• Represent tensors as shapes

• Indices represented as legs

𝜌

𝜎 𝜇 𝜐



Combining tensors: tensor product

• 𝐴⨂𝐵 𝑖1,…𝑖𝑟;𝑗1,…𝑗𝑠 ≔ 𝐴𝑖1,…𝑖𝑟 ⋅ 𝐵𝑗1,…𝑗𝑠



Contracting indices: trace

• Cyclic property of the trace:

• Tr𝑥,𝑦𝐴 𝑖1,…𝑖𝑥−1,𝑖𝑥+1,…𝑖𝑦−1𝑖𝑦+1,…𝑖𝑟
≔ σ𝛼=1

𝑑𝑥 𝐴𝑖1,…𝑖𝑥−1,𝛼,𝑖𝑥+1,…𝑖𝑦−1,𝛼,𝑖𝑦+1,…𝑖𝑟



Contracting indices: generally



Grouping and splitting indices

• ℂ𝑎1×⋯×𝑎𝑛 ≅ ℂ𝑏1×⋯×𝑏𝑚 ⇔ ς𝑖=1
𝑛 𝑎𝑖 = ς𝑖=1

𝑚 𝑏𝑖

• E.g.      ℂ4 ≅ ℂ2×2 ≅ ℂ2⨂ ℂ2 ∗

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

≅
𝑎
𝑏

⨂
𝑐
𝑑

≅
𝑎𝑐 𝑎𝑑
𝑏𝑐 𝑏𝑑

≅ ≅ ==



Turning tensors into matrices

• 𝑇𝑖1…𝑖𝑛;𝑗1…𝑗𝑚 = 𝑇𝐼;𝐽

• 𝐼 = 𝑖1 + dim(𝑖1) 𝑖2 +dim(𝑖1)dim(𝑖2)𝑖3…

• 𝐽 = 𝑗1 + dim(𝑗1) 𝑗2 +dim(𝑗1)dim(𝑗2)𝑗3…

• E.g., if each index of 𝑇 has dimension 2
• ൿห𝑖1 ⨂ ൿห𝑖2 ≅ ۧȁ𝐼 , where 𝑖1 and 𝑖2 ∈ {0, 1}, 𝐼 ∈ {0, 1, 2, 3}

• ۦ ȁ𝑗1 ۦ⨂ ȁ𝑗2 ۦ⨂ ȁ𝑗3 ≅ ۦ ȁ𝐽 , where 𝑗1, 𝑗2, and 𝑗3 ∈ {0, 1},
𝐽 ∈ {0, 1, 2, 3, 4, 5, 6, 7}

𝑖1

𝑖2

𝑗1
𝑗2

𝑗3

𝐼 𝐽



𝐼 𝐽

Matrix decompositions

• Singular value decomposition: 
• 𝑇𝐼;𝐽 = σ𝛼𝑈𝐼;𝛼𝑆𝛼;𝛼𝑉𝐽;𝛼

∗ , where 𝑈†𝑈 = 𝐼, 𝑆 > 0 is 
diagonal, 𝑉†𝑉 = 𝐼

• For square matrices: Polar decomposition:
• 𝑇 = 𝑊𝑃, where 𝑊 = 𝑈𝑉† is unitary, 𝑃 = 𝑉𝑆𝑉† > 0

• For Hermitian matrices: Spectral decomposition
• 𝑇 = 𝑈𝐷𝑈†, where 𝑈 is unitary and 𝐷 is diagonal & real

𝐼 𝐽= 𝑈 𝑆 𝑉†



Isometries vs Unitaries

• Unitaries map ℂ𝑑 → ℂ𝑑

• Written as 𝑈 = σ𝑖=1
𝑑 ൿห𝑣𝑖 ۦ ȁ𝑒𝑖 , for some ℂ𝑑

orthonormal bases ൿห𝑒𝑖 and ൿห𝑣𝑖
• Have  𝑈†𝑈 = 𝐼 = 𝑈𝑈† over ℂ𝑑

• Isometries ℂ𝑘 → ℂ𝑑 for 𝑘 < 𝑑
• Written as 𝑊 = σ𝑖=1

𝑘 ൿห𝑣𝑖 ۦ ȁ𝑒𝑖 , for some ℂ𝑘

orthonormal basis ൿห𝑒𝑖 , and ൿห𝑣𝑖 a strict subset of 
orthonormal basis elements of ℂ𝑑

• Have 𝑊†𝑊 = 𝐼 over ℂ𝑘

• Have 𝑊𝑊† = Π𝑘, a rank k projector over ℂ𝑑



Rank-k approximations to tensors

1. Treat the tensor as a matrix by grouping the legs 
into two sets (rows and columns)

2. Perform singular value decomposition

3. Set all but the largest k singular values equal to 
zero (known as k-trimming)

• Eckart-Young theorem:
• Let 𝑋 = 𝑈𝑆𝑉†. Define 𝑋(𝑘) = 𝑈𝑆(𝑘)𝑉† to be the k-

trimmed version of 𝑆. Then 𝑋 − 𝑋(𝑘)
𝐹
≤ 𝑋 − 𝑌 𝐹

for all rank-k matrices 𝑌. 

• Note: 𝐴 𝐹 = Tr(𝐴T𝐴)



Contracting tensor networks

• Contracting general tensor networks is challenging

• Fortunately, we can reduce this to sequential 
matrix multiplication



Bubbling

𝜒 × 𝜒 matrix

𝜒2 × 𝜒 matrix

𝜒2 × 𝜒 matrix

𝜒 × 𝜒2matrix

𝜒2 vector

scalar

Important note: horizontal-first bubbling on a 2 × 𝑙 lattice will result 
in a 𝜒𝑙−1 × 𝜒 intermediate matrix



Bubbling: order matters!

𝜒 × 𝜒 matrix

𝜒 × 𝜒 matrix

𝜒2 × 𝜒 matrix 𝜒2 vector

scalar

Important note: vertical-first bubbling on a 2 × 𝑙 lattice will result in 
no intermediate matrices larger than  𝜒2 × 𝜒 or 𝜒 × 𝜒2

𝜒 × 𝜒 matrix



1D vs 2D networks

• There is no choice of bubbling that can avoid exponentially 
growing matrices on the 2D square lattice network.

• Contracting such networks is very hard. 
• Contains #P-complete problems
• Approximating such contractions is Post-BQP hard 



TNN and quantum information

• General quantum states
• ȁ ۧ𝜓 = σ𝑖1𝑖2…=0

1 𝑐𝑖1𝑖2…ȁ ۧ𝑖1𝑖2…

• Product states
• ȁ ۧ𝜓 = ⨂𝑖=1

𝑛 ȁ ۧ𝜙𝑖

𝑐Ԧ𝑖=

𝜙1 𝜙2 𝜙3 𝜙4 …



TNN and quantum information

• The Bell basis:

• ඀ቚΦ± =
ۧȁ00 ۧ±ȁ11

2
, ඀ቚΨ± =

ۧȁ01 ۧ±ȁ10

2

• Refer to ൿหΦ+ as ۧȁΩ

• ۧȁΩ(𝐼) = ൿหΦ+

• ۧȁΩ(𝑋) = ൿหΨ+

• ۧȁΩ(𝑌) ∝ ۧȁΨ−

• ۧȁΩ(𝑍) = ۧȁΦ−



Teleportation ȁ

ȁ

ȁ

ۧȁΩ(𝐼) = ൿหΦ+

ۧȁΩ(𝑋) = ൿหΨ+

ۧȁΩ(𝑌) ∝ ۧȁΨ−

ۧȁΩ(𝑍) = ۧȁΦ−

• If Alice and Bob share an entangled resource state, and are 
allowed to perform classical communication, then Alice can 
perfectly transmit an arbitrary quantum state to Bob



Purification

• Given a mixed state 𝜌 over some Hilbert space 
ℋ1, find a pure state ۧȁ𝜓 from an extended 
Hilbert space ℋ1 ⊗ℋ2 s.t. 𝜌 = Tr2( ۧȁ𝜓 ۦ ȁ𝜓 )

Choose:



Stinespring dilation

• A quantum channel  ℰ that takes valid density 
matrices to valid density matrices is a 
completely-positive trace-preserving (CPTP) 
map. 

• In the Kraus operator decomposition:
• ℰ 𝜌 = σ𝑖𝐾𝑖

†𝜌𝐾𝑖 , where σ𝑖𝐾𝑖𝐾𝑖
† = 𝐼

• In tensor network notation

Note the unfortunate dagger convention here



Stinespring dilation

• The Stinespring dilation theorem says that any 
CPTP map ℰ can be made by

1. Embedding the system in a larger Hilbert space
2. Evolving the enlarged system under unitary 

dynamics
3. Reducing back to the original system via partial 

trace

• To see this, we use that the tensor 𝐾𝑖
†

is an 
isometry



Stinespring dilation



The Schmidt decomposition

• Given a bipartite quantum state
• ۧȁ𝜓 𝐴𝐵 = σ𝑖=1

𝑑 σ𝑗=1
𝑑 𝑐𝑖𝑗 ۧȁ𝑖 ⨂ ۧȁ𝑗

• We can always write it as
• ۧȁ𝜓 𝐴𝐵 = σ𝑖=1

𝜒≤𝑑
𝑠𝑖 ۧȁ𝑢(𝑖) ⨂ ۧȁ𝑣(𝑗)

• 𝜒 is known as the Schmidt rank

• Entanglement entropy 𝑆 = −σ𝑖=1
𝜒

𝑠𝑖 log 𝑠𝑖 ≤ log 𝜒

𝑐𝑖𝑗 𝑢 𝑣†𝑠
SVD



The geometry of entanglement

• Under special circumstances, a many-body 
quantum system will have structured
entanglement entropy. We can see this using 
tensor network notation. 

• Example 1: Product state ȁ ۧ𝜓 = ⨂𝑖=1
𝑛 ȁ ۧ𝜙𝑖

• Example 2: Entangled pairs ȁ ۧ𝜓 = ⨂𝑖=1
𝑛 ȁ ۧ𝜑𝑖 𝐴𝐵

𝜙1 𝜙2 𝜙3 𝜙4 …

…𝜑1𝐵

𝜑1𝐴 …

𝜑2𝐵

𝜑2𝐴

𝜑3𝐵

𝜑3𝐴

𝜑4𝐵

𝜑4𝐴



The geometry of entanglement

• Example 3: d-dimensional regular lattices

Area law for entanglement 𝑆~ log 𝜒𝑑−1



The geometry of entanglement

• Example 4: other lattices

Extra layer gives longer range interactions

Area law for entanglement 𝑆~ log 𝐿(𝐴)



Connection to physics

• Choose a state out of the many-body 
Hilbert space. Generically, it will have 
maximal entanglement entropy with 
respect to any bipartition.

• States that are considered physically 
reasonable correspond to low-energy 
sectors of Hamiltonians that are local with 
respect to a d-dimensional lattice and have 
unique ground states (or possibly bounded 
degeneracy).



Area law conjecture

• Given the unique ground state of a gapped, 
local Hamiltonian on a d-dimensional 
lattice, that state satisfies a boundary law 
with respect to entanglement entropy.

• Proven in 1D

• Consequences in Tensor networks: We can 
find a good approximation to the ground 
state using tensors that look like:



Matrix product state approximations




