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What is it?

* A diagrammatic method for representing tensors

"o = R

 Why is this useful?

* Gives a convenient way of bookkeeping how much
entanglement there is between different parts of a
guantum system

* Has resulted in many useful numerical and analytic
methods for analysing interesting many-body quantum
states.



Goals

1. Get comfortable with the notation

2.See how tensor network methods are used
in quantum information/condensed
matter



Reference

* These slides use figures from the lecture notes by
Bridgeman and Chubb:

* Hand-waving and Interpretive Dance: An Introductory
Course on Tensor Networks, J. Phys. A: Math. Theor. 50
223001 (2017) arXiv:1603.03039

* Much of what we will cover can also be found in
lectures 1-3 in those notes.



Tensors

p
T

* Represent tensors as shapes
* Indices represented as legs



Combining tensors: tensor product

* [ARBI;, i .j...j. = Ai, i " Bj .




Contracting indices: trace

* [Trx,yA]
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* Cyclic property of the trace:
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Contracting indices: generally

Conventional | Einstein TNN
(Z, ) Loy x Y
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Grouping and splitting indices

A1 X XAy ~ bqX-+Xb n _ m
- ™ n=Crm e liny 4 = 112 by

+ E.g. C* = 2% = CQ(C?)"



Turning tensors into matrices

i ' J1
I—{i ﬁgb—}—]
i : Jz -

=Ty,

llln,]ljm
* ] = j; +dim(j,) j, +dim(j;)dim(j,)j3 ...
e E.g., if each index of T has dimension 2

e |i1)®|i,) = |I), where i; and i, € {0,1},1 € {0,1, 2,3}

* (j11®{2|®(3| = (|, where j;, j,, and j; € {0, 1},
] €{0,1,2,3,4,5,6,7)




Matrix decompositions

L - DD

 Singular value decomposition:
* T1.; = Yo UraSa.aViia, where UTU = 1,5 > 0is
diagonal, VTV =1
* For square matrices: Polar decomposition:
« T =WP,where W = UVTisunitary, P = VSVT > 0
* For Hermitian matrices: Spectral decomposition
« T = UDUT, where U is unitary and D is diagonal & real




Isometries vs Unitaries

e Unitaries map C¢ — C%
* Writtenas U = ld=1|vi) (e;|, for some C4
orthonormal bases {|ei)} and {|vl)}
e Have UTU =1 = UUT over C%

e [sometries C¥ - C% fork < d

e Writtenas W = Zﬁ‘=1|vi) (e;|, for some C¥

orthonormal basis {|ei)}, and {|vl)} a strict subset of
orthonormal basis elements of C%

« Have WTW = I over C¥
» Have WIWT = 1, a rank k projector over C%



Rank-k approximations to tensors

1. Treat the tensor as a matrix by grouping the legs
into two sets (rows and columns)

Perform singular value decomposition

Set all but the largest k singular values equal to
zero (known as k-trimming)

* Eckart-Young theorem:

e Let X = USVT. Define X = US®IVT to be the k-
trimmed version of S. Then ||X — X(k)”,: <||IX =Yg
for all rank-k matrices Y.

* Note: ||Allr = /Tr(ATA)




Contracting tensor networks

i J
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e Contracting general tensor networks is challenging

* Fortunately, we can reduce this to sequential

matrix multiplication
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Bubbling
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x X y matrix x? X y matrix x? vector
x? X y matrix X X x?matrix scalar

Important note: horizontal-first bubbling on a 2 X [ lattice will result
ina y!~1 x y intermediate matrix



Bubbling: order matters!

x X y matrix x? X y matrix x? vector
X X x matrix X X Y matrix scalar

Important note: vertical-first bubbling on a 2 X [ lattice will result in
no intermediate matrices larger than y? X y or y X y*



1D vs 2D networks

(AN

There is no choice of bubbling that can avoid exponentially
growing matrices on the 2D square lattice network.
Contracting such networks is very hard.

 Contains #P-complete problems

 Approximating such contractions is Post-BQP hard



TNN and quantum information

* General quantum states

1 .o

* |lp> — Zl1l2=0 Cl112|l1l2 "')
— Cy
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* Product states

* [Y) = ®?:1|¢i>
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TNN and quantum information

 The Bell basis:
4 100)£]11) |4\  [01)+[10) — 1
- Jo) = R [w) = 20 Q = )
V2

 Refer to |CI>+) as Q)

1
1 0 Vectorise 1 1 0
)= — | . REIE = 1/V2.
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Teleportation

* If Alice and Bob share an entangled resource state, and are
allowed to perform classical communication, then Alice can
perfectly transmit an arbitrary quantum state to Bob

f Y
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Purification

* Given a mixed state p over some Hilbert space
H, find a pure state |1p) from an extended

Hilbert space H; @ H, s.t. p = Tr, (JW)Y)|)

Choose: Y| = v )

TI"Q(W)W): || ¥ = DQ = —F
F D




Stinespring dilation

* A guantum channel & that takes valid density

matrices to valid density matrices is a

completely-positive trace-preserving (CPTP)

map.
* In the Kraus operator decomposition:
« E(p) = ZiKiTpK-, where Zil‘(il(i1L =]

* |n tensor network notation
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where

Note the unfortunate dagger convention here



Stinespring dilation

* The Stinespring dilation theorem says that any
CPTP map &€ can be made by

1. Embedding the system in a larger Hilbert space

2. Evolving the enlarged system under unitary
dynamics

3. Reducing back to the original system via partial
trace

* To see this, we use that the tensor KiT is an
Isometry




Stinespring dilation

E(p) = ZKJPK?:
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The Schmidt decomposition

* Given a bipartite quantum state
s [P)ap = ity 2 ¢l D)B))

* We can always write it as
* W) ap =2 silu@)®Iv())

* v is known as the Schmidt rank

* Entanglement entropy S = _Z?(=1 s;logs; <log y
SVD
Cij — |u Al

T T



The geometry of entanglement

* Under special circumstances, a many-body
guantum system will have structured

entanglement entropy. We can see this using
tensor network notation.

* Example 1: Product state [Y) = @i |®;)

TGS

* Example 2: Entangled pairs |¢) = ®?=1|‘Pi>AB

P14 P24 P34 |(Paal ---
71 /71 /71 /71

©1B| |P2B |P3B |Pap| -
/7 /7 /7 /




The geometry of entanglement

* Example 3: d-dimensional regular lattices

X1 X2 X3 Xa Xs

v ¥ 4+ 3 3 N T T

A1 A2 43444546

I I I I I I N T T

Area law for entanglement S~ log y¢~1



The geometry of entanglement

* Example 4: other lattices

Extra layer gives longer range interactions

7/ 7/ 7/

Area law for entanglement S~ log L(A)
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Connection to physics

* Choose a state out of the many-body
Hilbert space. Generically, it will have
maximal entanglement entropy with
respect to any bipartition.

e States that are considered physically
reasonable correspond to low-energy
sectors of Hamiltonians that are local with
respect to a d-dimensional lattice and have
unique ground states (or possibly bounded
degeneracy).



Area law conjecture

* Given the unique ground state of a gapped,
local Hamiltonian on a d-dimensional
lattice, that state satisfies a boundary law
with respect to entanglement entropy.

* Provenin 1D

* Consequences in Tensor networks: We can
find a good approximation to the ground
state using tensors that look like:



Matrix product state approximations
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