
Physics 572: Homework #1 Solutions
Credits: Thanks to Austin Daniel, Anthony Demme, and Changhao Yi for sharing their solutions!

Problem 1: Entanglement and correlations.

Part I (10 points): Since p(a|b) = p(a|b′) for all a, b, b′, we can fix some b0 such that p(a|b) = p(a|b0) for
all a, b, and so

p(a) =
∑
b

p(a, b) =
∑
b

p(b)p(a|b) = p(a|b0)
∑
b

p(b) = p(a|b0) (1)

Therefore (∀a, b)p(a) = p(a|b) = p(a, b)/p(b) =⇒ (∀a, b) p(a, b) = p(a)p(b). Now p(b|a) = p(a, b)/p(a) =
p(b), for all a, b, and so p(b|a) = p(b) = p(b|a′) for all a, a′, b as claimed.

Part II (10 points): If the measurement results of Alice and Bob are uncorrelated then p(a, b) = p(b)p(b),

ρAB =
∑
a,b

p(a, b)(|a〉〈a| ⊗ |b〉〈b|) =
∑
a,b

p(a)p(b) (|a〉〈a| ⊗ |b〉〈b|) (2)

=

(∑
a

p(a)|a〉〈a|

)
⊗

(∑
b

p(b)|b〉〈b|

)
= ρA ⊗ ρB (3)

If the measurements results are correlated, p(a, b) 6= p(a)p(b), then we have ρAB 6= ρA ⊗ ρB . But

ρAB =
∑
a,b

p(a, b)(|a〉〈a| ⊗ |b〉〈b|)

is a separable state (a mixture of of unentangled states). States ρAB of this form are never entangled, even
if the measurement results are correlated (separable states represent systems with classical correlations).

Part III (30 points): The implication is true in one direction: if the pure state |ψAB〉 is unentangled,
then the measurement results in any choice of tensor product basis will be uncorrelated. To see this,

|ψAB〉 = |ψA〉 ⊗ |ψB〉 =

(∑
a

λa|a〉

)
⊗

(∑
b

γb|b〉

)
=
∑
a,b

λaγb|ab〉, (4)

and so p(a, b) = |λaγb|2 = |λa|2|γb|2 = p(a)p(b) implies the measurement results are uncorrelated. However,
the other direction of the implication is false: even if a pure state is entangled, there may be some choice of
measurement basis which result in uncorrelated outcomes. This can be shown by example,

|ψ〉 = |00〉+ |10〉+ |01〉 − |11〉 (5)

which is an entangled state the arises from applying a controlled Z gate to the state | + +〉. Although this
state is entangled, the measurement outcomes in the computational basis are uncorrelated:

p(a, b) = 1/4 , p(a) = 1/2, , p(b) = 1/2 a, b ∈ {0, 1}. (6)
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Problem 2: A distance measure between quantum states.

Part I (10 points): Following the hint we bipartition the event space into Ω = A1 ∪A2, defined by

A1 = {x ∈ Ω : px ≥ p̃x} , A2 = {x ∈ Ω : px < p̃x}. (7)

Notice that |p(A)−p̃(A)| =
∣∣∑

x∈A(px − p̃x)
∣∣, and so the maximum will be achieved when all the terms in the

sum are nonnegative (A = A1). Furthermore, these subsets satisfy p(A1)+p(A2) = 1 and p̃(A1)+ p̃(A2) = 1,
so |p(A1)− p̃(A1)| = |p(A2)− p̃(A2)| and

d(p, p̃) =
1

2

∑
x

|px−p̃x| =
1

2
(|p(A1)− p̃(A1)|+ |p(A2)− p̃(A2)|) = |p(A1)−p̃(A1)| = max

A⊆Ω
|p(A)−p̃(A)|. (8)

Part II (20 points): Choosing an arbitrary basis {|ψa〉}|Ω|a=1, the measurement distributions are

pa = 〈ψa|ρ|ψa〉 , p̃a = 〈ψa|ρ̃|ψa〉, (9)

and the total variation distance is d(p, p̃) = 1
2

∑
a |pa − p̃a|. If we diagonalize ρ− ρ̃ =

∑
i λi|i〉〈i| then

∑
a

|pa − p̃a| =
∑
a

|〈ψa|ρ− ρ̃|ψa〉| =
∑
a

∣∣∣∣∣∑
i

λiPia

∣∣∣∣∣ ≤∑
a

(∑
i

|λi|Pia

)
=
∑
i

|λi| (10)

where Pia = |〈ψa|i〉|2 is a stochastic matrix (so Pia ≥ 0 and
∑
a Pia = 1 for all i).

Part III (20 points): Choose the operator A to be:

A =
1

2
(ρ− ρ̃) =

∑
i

λi
2
|i〉〈i| (11)

so that

tr

(√
A†A

)
= tr

(√∑
i

|λi|2
4
|i〉〈i|

)
=
∑
i

|λi|
2

(12)

For any projector P =
∑
k |ψk〉〈ψk| we have

tr(P (ρ− ρ̃)) =
∑
i,k

λi|〈ψk|i〉|2 ≤
∑
i:λi≥0

∑
k

λi|〈ψk|i〉|2 ≤
∑
i:λi≥0

λi =
1

2

∑
i

|λi| (13)

where the last step follows because
∑
i λi = 0 (since tr(ρ − ρ̃) = tr(ρ) − tr(ρ̃)). The inequality is saturated

when P =
∑
k:λk≥0 |k〉〈k|, and so

d(ρ, ρ̃) = max
P

tr(P (ρ− ρ̃)). (14)

where the max is over projectors of the form P =
∑
k |ψk〉〈ψk|.
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Quantum Channels

Part I (10 points): Given any state |ψ〉, find a complete set of basis: {|φ0〉, |φ1〉, |φ2〉, · · · }, with |φ0〉 = |ψ〉.
Choose the Kraus operators Ek = |φ0〉〈φk|, which satisfy∑

k

E†kEk =
∑
k

|φk〉〈φk| = I. (15)

Computing the action of the channel on an arbitrary state ρ,

E(ρ) =
∑
k

EkρE
†
k =

∑
k

|φ0〉〈φk|ρ|φk〉〈φ0| = |ψ〉〈ψ| · tr(ρ) = |ψ〉〈ψ|. (16)

Part II (10 points): Choose the Kraus operators:

Ejk = 2−n/2|j〉〈k| (17)

where j, k range over complete sets of basis states. The normalization condition is satisfied,∑
jk

E†jkEjk =
∑
jk

|k〉〈j|j〉〈k|
2n

= I

and the action of the channel is

E(ρ) =
∑
jk

|j〉〈k|ρ|k〉〈j|/2n = tr(ρ)
∑
j

|j〉〈j|
2n

=
I

2n
.

To relate this result to the single qubit depolarization channel we discussed in class, one could note that
the set of all tensor products of Pauli matrices forms a basis (under complex linear combinations) for the
space of complex matrices. Alternatively, using the results from part IV of this problem one could take the
partial trace down to a system with a single qubit, then apply the single qubit depolarizing channel from
class, and then use the results of part V to tack on a maximally mixed subsystem. By the results of part III
the decomposition of these three channels would also be a channel.

Part III (10 points): The Kraus operators are: {E′tEk}, since

T,S∑
k,t

(E′tEk)†(E′tEk) =

T∑
t

E′†t

(
S∑
k

E†kEk

)
E′t =

T∑
t

E′†t E
′
t = I (18)

and

E ′ ◦ E(ρ) =

T,S∑
k,t

E′t(EkρE
†
k)E′†t =

T,S∑
k,t

(E′tEk)ρ(E′tEk)† (19)

Part IV (10 points): Beginning from the Schmidt decomposition |φAB〉 =
∑
k λk|ak〉⊗ |bk〉, the reduced

state is ρA =
∑
k λ

2
k|ak〉〈ak|. Define the Kraus operators Ek = |bk〉〈bk|, which satisfy normalization∑

k

EkE
†
k =

∑
k

|bk〉〈bk|bk〉〈bk| = I

and act on ρ as follows,

E(ρ) =
∑
k

|bk〉〈bk|
(∑

ij

λiλj |ai〉〈j | ⊗ |bi〉〈bj |
)
|bk〉〈bk|

=
∑
ijk

λiλj |ai〉〈aj | ⊗ 〈bk|bi〉〈bj |bk〉 =
∑
k

λ2
k|ak〉〈ak| = trBρAB .

(20)

3



Part V (10 points): Diagonalize ρB =
∑
k pk|bk〉〈bk|, the Kraus operators {Ek} that set ρA to ρA ⊗ ρB

are Ek = IA ⊗
√
pk|bk〉. Testing normalization,∑

k

E†kEk =
∑
k

IA ⊗ pk〈bk|bk〉 = IA ·
∑
k

pk = IA

and the action of the channel is

E(ρA) = ρA ⊗
∑
k

pk|bk〉〈bk| = ρA ⊗ ρB .

Part VI (20 points)

(a): The Kraus operator sum representation is,

E(ρ) = (1− p)1ρ1 + pXρX. (21)

Where X is the Pauli matrix σx. Hence the Kraus operators are, {
√

1− p1,√pX}.
(b): The state |ψ〉 = cos(θ)|0〉 + sin(θ)|1〉 can be expressed as a density matrix |ψ〉〈ψ| in terms of pauli
matrices i.e. a block vector representation.

|ψ〉〈ψ| = 1

2
(1− cos(2θ)Z + sin(2θ)X) (22)

After one application of the channel this becomes,

E(|ψ〉〈ψ|) =

[
1
2 + 2p−1

2 cos(2θ) 1
2 sin(2θ)

1
2 sin(2θ) 1

2 −
2p−1

2 cos(2θ)

]
(23)

=
1

2
(1− (1− 2p) cos(2θ)Z + sin(2θ)X) . (24)

(c): We wish to find a unitary U such that E(ρ) = TrE(U ρ⊗ |0〉〈0| U†). The following evolution

|0〉|0〉E 7→
√

1− p|0〉|0〉E +
√
p|1〉|1〉E (25)

|1〉|0〉E 7→
√

1− p|1〉|0〉E +
√
p|0〉|1〉E (26)

is reversible and therefore unitary (we assume it acts as the identity on |0〉|1〉E , |1〉|1〉E), and satisfies

〈0|U |0〉E =
√

1− p1 (27)

〈1|U |0〉E =
√
pX. (28)

The full unitary can be written,

U =
√

1− p1⊗ |0〉〈0|+√pX ⊗ |1〉〈0|+√pX ⊗ |0〉〈1|+
√

1− p1⊗ |1〉〈1|. (29)

Note that this is a permutation matrix.

Problem 4: Noisy classical channel.

Given probability distribution as follows:

X : p(0) =
1

2
, p(1) =

1

2
; (30)

Y : p(1|1) = 1− ε, p(0|1) = ε, p(1|0) = ε, p(0|0) = 1− ε. (31)
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Part I (5 points): Entropy of the source: S(X) = −
∑
i pi log pi = log 2 = 1.

Part II (5 points): Using p(y) =
∑
x p(y|x)p(x), we compute

p(y = 0) =
ε

2
+

1− ε
2

=
1

2
, p(y = 1) =

ε

2
+

1− ε
2

=
1

2

and so S(Y ) = 1.

Part III (5 points): The joint distribution is:

p(x = 0, y = 0) =
1− ε

2
, p(x = 0, y = 1) =

ε

2
; (32)

p(x = 1, y = 0) =
ε

2
, p(x = 1, y = 1) =

1− ε
2

. (33)

and from this we calculate
S(X,Y ) = 1− (1− ε) log(1− ε)− ε log ε (34)

Part IV (5 points):

From the definition of mutual information,

I(X : Y ) = S(X) + S(Y )− S(X,Y ) = 1 + (1− ε) log(1− ε) + ε log ε. (35)

Part V (5 points): When ε = 0, 1, the value of mutual information is maximized, I(X : Y ) = 1. This
condition means Y is completely determined by X, and so the channel is working as intended, or exactly
opposite as intended (and if the latter behavior is known it can be accounted for to use the channel to
transmit information).

Part VI (5 points):

When ε = 1/2, the value of mutual information is minimal, I(X : Y ) = 0. This condition means that the
source and receiver are completely uncorrelated, and so no transmission of information is possible.
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