
Physics 572: Homework #1
Due Date: March 7th, 2019

Problem 1: Entanglement and correlations. Supposes Alice observes events from the set
{1, ..., dA} and Bob observes events from the set {1, ..., dB}. The probability that Alice observes a
and Bob observes b is p(a, b). The probability that Alice observes a is

p(a) =

dB∑
b=1

p(a, b).

The conditional probability for Alice to observe a, given that Bob has observed b, is

p(a|b) =
p(a, b)∑dA
a=1 p(a, b)

We say that the observations of Alice and Bob are uncorrelated if (and only if)

p(a|b) = p(a|b′) ∀a ∈ {1, ..., dA} , b, b′ ∈ {1, ..., dB} (1)

In other words, the probability for Alice to observe a does not depend on whether Bob observes b
or b′ (Alice’s observations are independent of Bob’s).

Part I (10 points): show that the expression of conditional independence in (1) is symmetric
between Alice and Bob (if the probability for Alice’s observations do not depend on Bob’s obser-
vations, then the probability of Bob’s observations do not depend on Alice’s observations). Show
that either of these conditions implies

p(a, b) = p(a)p(b) , ∀a ∈ {1, ..., dA}, b ∈ {1, ..., dB}. (2)

Therefore we may freely take either (1) or (2) as the definition of uncorrelated events (and if either
of these conditions is violated then the events are correlated, by definition).

Part II (10 points): We can represent the joint distribution of Alice and Bob as a probability
distribution over quantum states i.e. a density matrix:

ρAB =

dA,dB∑
a,b=1

p(a, b)|ab〉〈ab| =
dA,dB∑
a,b=1

p(a, b) (|a〉〈a| ⊗ |b〉〈b|) , (3)

where the last form emphasizes the fact that {|a〉〈a| ⊗ |b〉〈b|}dA,dB
a,b=1 is a tensor product basis for

HA ⊗HB. Using the results from Part I, show that if the observations made by Alice and Bob are
uncorrelated then ρ = ρA⊗ρB. Can the state ρAB in (3) be entangled (across the bipartition A,B)
if the observations of Alice and Bob are correlated?

Part III (30 points): Prove or disprove. A pure state |ψAB〉 is entangled (across the bipartition
A,B) if and only if for every tensor product basis on A,B the measurement outcomes on subsystem
A are correlated with the measurement outcomes on subsystem B.
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Problem 2: A distance measure between quantum states. If p, p̃ are probability distribu-
tions on the event space Ω = {1, ..., N} then the total variation distance between p and q is

d(p, p̃) =
1

2

N∑
x=1

|px − p̃x|. (4)

Part I (10 points): Prove that definition (4) is equivalent to

d(p, p̃) = max
A⊆Ω
|p(A)− p̃(A)| (5)

where p(A) =
∑

x∈A px (hint: consider the subset of events A = {x : px ≥ p̃x}). From (5) we have
the operational interpretation that the total variation distance quantifies the maximum difference
in the probability assigned to any two (collections of) events.

Part II (20 points): Suppose that distributions p, p̃ arose by measuring two density matrices ρ, ρ̃
in some complete basis of states {|ψa〉}Na=1, where the measurement Kraus operators Ea = |ψa〉〈ψa|
satisfy the completeness relation

N∑
a=1

E†aEa = I.

Show that

d(p, p̃) ≤ 1

2

N∑
i=1

|λi| (6)

where λi, i = 1, ..., N are the eigenvalues of the operator ρ − ρ̃. Find a choice of measurement
operators {Ea} that saturates the upper bound in (6).

Part III (20 points): The upper bound (6) supplies an operational meaning to the use of

d(ρ, ρ̃) =
N∑
i=1

|λi|

as a distance measure between quantum states, because it is an upper bound on the maximum
difference in probability that ρ, ρ̃ can assign to any two events, in any choice of measurement basis.
Show that this distance measure can be expressed in terms of the trace norm,

‖A‖Tr = tr
(√

A†A
)

for some operator A, which leads this measure to be called the “trace distance.” Combine the
results of part I and II to show that

d(ρ, ρ̃) = max
P

tr (P (ρ− ρ̃))

where the maximum is taken over all projectors P .
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Problem 3: Quantum channels. Recall that every quantum channel E that maps valid density
matrices to valid density matrices has a Kraus operator-sum representation:

E(ρ) =
∑
k

EkρE
†
k ,

∑
k

E†kEk = I.

Part I (10 points): Let |ψ〉 be an n-qubit state. Find Kraus operators that map any n-qubit
quantum state to |ψ〉〈ψ|. This quantum channel could model a relaxation or decay process to the
state |ψ〉.

Part II (10 points): Find Kraus operators that map any n-qubit quantum state to the maximally
mixed state ρ = 2−nI.

Part III (10 points): Show that the composition of quantum channels is a quantum channel. If

E(ρ) =
S∑

k=1

EkρE
†
k , E ′(ρ) =

T∑
k=1

E′kρE
′†
k ,

then what are the Kraus operators for E ′ ◦ E?

Part IV (10 points): For a composite system |ψAB〉 ∈ HA ⊗ HB, find the Kraus operator-sum
representation of the partial trace:

E(ρAB) = trBρAB

In this example, pay particular attention to the fact that the Kraus operators map states in a
higher dimensional Hilbert space to states in a lower dimensional Hilbert space.

Part V (10 points): Going in the opposite direction, construct the Kraus operators for a channel
that maps any state ρA on the Hilbert space HA to the state ρA ⊗ ρB for some fixed state ρB on
the Hilbert space HB.

Part VI (20 points): Consider the bit flip channel, which acts on a single qubit and does nothing
with probability 1− p, and interchanges |0〉 and |1〉 with probability p.

(a) Find the Kraus operator-sum representation of this channel.

(b) If the system is initially in the state |ψ〉 = cos(θ)|0〉 + sin(θ)|1〉, then what is the state of the
system after one application of the bit flip channel?

(c) Find a unitary channel acting on the system and an environment such that tracing out the
environment yields the bit flip channel on the system. Justify this form by deriving the correct
Kraus operators Ek by acting with a joint unitary and applying the partial trace.
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Problem 4: Noisy classical channel. Let X be a binary message source (a random variable
distributed over {0, 1}). We can model a noisy communication channel N with input X by another
random variable Y with a distribution of outputs y ∈ {0, 1} conditioned on inputs x,

N : p(y|x).

In class we saw a proof sketch of Shannon’s noiseless channel coding theorem, which says that the
optimal rate of message compression for communication over a noiseless channel is given in terms
of the entropy of the source. Shannon’s second breakthrough theorem states that the capacity of
a noisy channel (the highest rate with which it can transmit information) is given in terms of the
mutual information between the input and the output of the channel,

C = I(X : Y )

We will postpone the derivation of this result until we are ready to discuss its quantum counterpart
later in the course, but for now we can gain some understanding of this result from an example.

Consider a binary symmetric channel, which takes as input messages x from the set {0, 1} with
probabilities {0.5, 0.5}, and outputs messages y with the following conditional probabilities:

p(y = 1|x = 1) = 1− ε , p(y = 0|x = 1) = ε , p(y = 1|x = 0) = ε , p(y = 0|x = 0) = 1− ε

for some 0 ≤ ε ≤ 1. This channel represents faithful transmission with probability 1− ε, and a bit
flip with probability ε.

Part I (5 points): What is the entropy of the source, S(X)?

Part II (5 points): What is the probability distribution of the outputs, p(y), and what is the
entropy of this distribution, S(Y )?

Part III (5 points): What is the joint distribution p(x, y) over inputs and outputs, and what is
the joint entropy S(X,Y )?

Part IV (5 points): What is the mutual information I(X : Y )?

Part V (5 points): For what value(s) of ε is the mutual information, and hence the channel
capacity, maximal? Does this make sense?

Part VI (5 points): For what value(s) of ε is the mutual information, and hence the channel
capacity, minimal? Does this make sense?
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