
Physics 572: Homework #4
Due Date: April 30th, 2019

Problem 1: Marginal Consistency. The NP-hardness of the classical marginal consistency
problem can be seen from a reduction to the problem 3-COLORING. Let G = (V,E) be a com-
binatorial graph with vertex set V = {1, ..., |V |}. For each vertex u ∈ V we consider a random
variable Xu taking values in the set {r, g, b}. For each edge (u, v) ∈ E, the joint distribution
puv(Xu, Xv) is taken to be uniform over the set {r, g, b}2 − {rr, gg, bb}. Let P = {puv : (u, v) ∈ E}
denote the set of these joint distributions defined on edges. We say that P is a consistent set of
marginals iff there exists a joint distribution p(X1, ..., X|V |) with

puv(Xu, Xv) =
∑

{Xq}|V |
q=1−{Xu,Xv}

p(X1, ..., X|V |)

I. (20 points) Show that P is a consistent set of marginals if and only if G is 3-colorable.

II. (20 points) Suppose Merlin wants to convince Arthur that the graph is 3-colorable, without
giving him any clue about how to color it. This is possible if we can force Merlin to ”commit”
to certain choices. We play a game with multiple rounds. In each round Merlin commits to a
labeling, and also performs a random permutation of the colors {r, g, b}. Arthur chooses a random
edge and challenges Merlin to reveal the colors of its vertices. Merlin is forced to reveal the colors
he committed to. On each round Merlin permutes the colors randomly (and chooses a different
labeling, if he wants), and then commits again. This is called a “zero knowledge protocol” for
graph coloring, and the commitment can be done by “digital signing”, or you can think of it as
enforced by a referee. If the game goes for L rounds, what is the soundness of this ZK protocol
(the maximum probability to falsely conclude the graph is 3-colorable, when it really isn’t) ?

III. (20 points) Consider qubits A,B,C with density matrices ρAB, ρBC . A state ρABC is a
symmetric extension of ρAB, ρBC if ρAB = trCρABC , ρBC = trAρABC , and ρAB = ρAC . A necessary
and sufficient condition for the existence of such a symmetric extension is

tr(ρ2B) ≥ tr(ρ2AB)− 4
√

det(ρAB). (1)

Find the value of p ≥ 0 that makes (1) an equality for the state ρAB given by

ρAB =
(1− p)

4
I + p|Φ+〉〈Φ+| , |Φ+〉 =

1√
2

(|00〉+ |11〉) (2)

IV. (20 points) Let ρAB be a full rank state that saturates (1) and define

HAB =
√

det(ρAB)ρ−1AB + ρAB − ρB. (3)

Show that tr(HABρAB) = 0.

V. (20 points) Define HAC by analogy with (3), and show that the maximally mixed state in
the ground space of ρABC of H = HAB +HAC for the example computed in part III is a symmetric
extension of ρAB in equation (1).

1



Problem 2: History states and tensor networks. Consider a quantum circuit described by
a sequence of gates U1, ..., UT acting on an input state |0n〉. The Feynman-Kitaev history state for
this circuit is a superposition over time steps of this circuit, which are entangled together with a
“clock register” (a qudit) denoted by |t〉, with t = 0, ..., T ,

|Ψhistory〉 =
1√
T + 1

T∑
t=0

Ut . . . U1|0n〉 ⊗ |t〉 (4)

Define H = Hin +Hprop, with Hin = (
∑n

i=1 |1〉〈1|i)⊗ |0〉〈0| and Hprop =
∑T

t=1Hprop(t), where

Hprop(t) =
1

2

(
I ⊗ |t〉〈t|+ I ⊗ |t− 1〉〈t− 1| − Ut ⊗ |t〉〈t− 1| − U †t ⊗ |t− 1〉〈t|

)
, (5)

so that H|Ψhistory〉 = 0 and |Ψhistory〉 is the unique ground state of H.

I. (10 points) Show that the following operator W is unitary:

W =

T∑
t=0

Ut . . . U1 ⊗ |t〉〈t| (6)

II. (30 points) Prove that WHpropW
† = I ⊗Hpath, where

Hpath =
1

2

T∑
t=1

(|t〉〈t|+ |t− 1〉〈t− 1| − |t〉〈t− 1| − |t− 1〉〈t|) (7)

III. (30 points) Diagonalize the Hamiltonian Hpath by using a change of basis (which can be
seen as a quantum Fourier transform, or a change of basis from position to momentum),

|t〉 → 1√
T + 1

k=+T/2∑
k=−T/2

exp

(
2πikt

T + 1

)
|k〉 (8)

IV. (30 points) To embed the history state into a qubit system, the standard trick is to express
the states of the clock qudit in unary. In this representation, the uniform superposition of clock
states (which is the ground state of Hpath) takes the form

|s〉 =
1√
T + 1

T∑
t=0

|1t0T−t〉

Show that this superposition state |s〉 can be represented as a matrix product state,

|s〉 =
∑

(s1,...,sn)∈{0,1}T+1

A(s0)A(s1)...A(sT )|s0, ..., sT 〉

where the matrices A(si) have a constant bond dimension (you may handle the boundary conditions
as you prefer, one choice is to make A(s0), A(sT ) rectangular matrices).
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