
Entropy and Compression

In his 1948 paper, Shannon related the entropy S of a message source to the number of “typical” messages 
that source could send.   Recall the source is modeled in terms of independent and identically distributed 
messages from an alphabet                     , where each message sends      with probability      .

For a large number of messages               , each letter      is sent approximately           times.  As we counted 
previously, the number of strings with those letter frequencies is:          

We described Huffman codes, which substitute each letter with a variable-length bit string (“codeword”) 
based on the letter frequencies, in order achieve a compression rate set by the Shannon entropy.

Shannon’s original idea was conceptually simpler and easy to fully analyze, though less explicit and more 
dependent on the asymptotic limit.  The idea is called block coding and it is based on typical sequences.

If you only cared to send typical messages then how would you compress the information?



Let                    be iid events (observations) with probability distribution p (“sampled from p”). Let f be a 
function defined on this space of events (an observable), and define the estimator
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Block coding is based on the “strong law of large numbers”, which expresses the fact that estimators based on 
samples from a probability distribution will eventually converge to their expectation values. 

(Strong) law of large numbers: for all                 there exists an         such that

For all                 .   

Note that the LLN does not tell us anything about the rate of the convergence with the number of samples, 
only that convergence is eventually guaranteed.



In this case the true expectation value is the entropy of the source                      , while the estimator is 
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We can apply the LLN to the random variable 

Therefore the LLN implies that for all                we can choose N such that 

With probability at least           .   We say a sequence satisfying the above is “  -typical.”  Therefore if     is a 
length N message that is    - typical then the probability of this message satisfies
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For given values of these parameters, the number of typical sequences must satisfy 

Therefore

From the upper bound, we can see that a block code with                       bits suffice to encode all of these typical 
messages (simply assign a distinct positive integer to each typical message).

Since every typical message is assigned a distinct bit string on                        bits, the probability of a successful
transmission (encoding, decoding) is 1 as long as the message is typical.   If the message is atypical then it may 
not be decoded correctly, but this only ever happens with probability at most    . 
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To see that the entropy characterizes the compression rate of the optimal asymptotic block coding scheme, 
suppose we try to compress the message to only 

Bits per letter, where     is a constant independent of N.   Using this number of bits we can uniquely encode    

distinct typical messages.  Perhaps the hope is that these messages are somehow “the most typical” and we’ll 
get away with only encoding these.  But the probability of each typical message is at most 

And so the probability of success is at most

Which for constant       will eventually become arbitrarily small at large N.  



Entropy and Compression

More formally, a compression scheme with rate R maps the string                               to a string on           bits,
Denoted          .  The corresponding decompression string maps back from the           bits to the original 
alphabet.  The compression-decompression scheme (C,D) is reliable if

Shannon’s source-coding theorem: suppose           is an iid information source with entropy S.  If R > S then 
there exists a reliable compression scheme of rate R for the source.   If R < S then there can be no reliable 
compression scheme with rate R for the source. 

A compression rate of                           is achievable, and a compression rate of                           is not achievable.    
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Benjamin Schumacher, who is co-credited with coining the term “qubit”, generalized Shannon’s noiseless 
coding theorem to the quantum setting in 1995. 

Consider an iid quantum information source that sends various pure states with various probabilities.

We can model this by saying that each use of the channel sends the density matrix:

And so after n uses of the channel, we have sent the state 
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How much redundancy is contained in the message                                          ? How much can it be compressed? 

Schumacher’s answer is that there is a reliable compression-decompression scheme which compresses the 
state          down to a state in a Hilbert space of dimension 

And that no such reliable scheme exists when                                            .                                    

The proof of Schumacher’s quantum source-coding theorem closely parallel’s Shannon’s, replacing the notion 
of “typical sequences” with that of “typical subspaces.”   Therefore the most difficult part of this result from a 
historical perspective was the conceptual leap required to consider quantum states as information.
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Before moving to the general proof, we will do a small example to gain intuition for relating von Neumann 
entropy to compression.  

Suppose we have a channel that sends                with equal probability, and so it sends the density matrix 

But the key point for this example is that                are nonorthogonal states.   Intuitively, the nonzero overlap 
between these vectors creates a new kind of quantum redundancy that has no classical analog.  

Classically, if we have an alphabet of two symbols that are each sent with equal probability, than the source 
outputs 1 bit of entropy per letter and no reliable compression is possible.

Diagonalizing the density matrix turns it into a probability distribution over a set of orthogonal quantum 
states, and the von Neumann entropy is the Shannon entropy of this distribution.   This is the main idea which 
relates Schumacher’s proof to Shannon’s.
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In this diagonal form, we see that there was quite a lot of redundancy in this channel after all, because it sends 
the state        over 85% of the time.

In our example, the eigenstates and eigenvalues of      are

The idea of Schumacher coding is to exploit this redundancy in terms of typical sequences.  In this example, 
after three uses of the channel the typical sequences could be chosen to be

An encoding of basis states also suffices to encode ever state in the “typical subspace” spanned by these states.  
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Therefore, it also makes sense to speak of a    - typical sequence                    which satisfies,  

More generally, consider a quantum channel sending quantum letters with the following diagonal form:

Now the    - typical subspace is define as the span of all    - typical sequences of quantum states.  The projector 
onto this typical subspace is  
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For sufficiently large n.  Similarly, the dimension of the typical subspace is now

Repeating Shannon’s application of the large of large numbers also gives us

The strategy for Schumacher coding again parallel’s Shannon’s block coding scheme.  Each typical sequence is 
assigned a codeword (e.g. a computational basis state) on                         qubits.   

Asymptotically, the probability for an atypical sequence is vanishingly small, so it won’t matter what coding 
strategy is applied to atypical sequences. 



Entropy and Compression

Alice can then send this state                         to Bob, who can append             onto it and apply           to recover
the original message.   If the sequence is atypical he receives a junk state, but this happens with arbitrarily low 
probability and so his reconstructed state is close in trace distance to the Alice’s original message.

More specifically, starting from the message                                                             , the first step applies a 
quantum channel to measure whether it is typical or atypical (without revealing any other information), 

If the state is typical, Alice will perform a unitary scheme to compress it
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Where                       is the largest eigenvalue of          .   But the     - typical eigenvalues are no smaller than   
, and so the overlap of the original message with Bob’s subspace of limited dimension is:

Conversely, if we tried to compress beyond the limit set by the von Neumann entropy than the scheme will not 
be reliable.  To see this, note that regardless of Bob’s unitary decoding strategy, the decoded states must be in 
a Hilbert space of dimension 

Let P’ be the projector onto this subspace.  Since             , Fan’s dominance principle in matrix analysis implies:

And so the probability for Bob to recover the original message becomes arbitrarily small.  
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Schumacher’s noiseless channel coding theorem: Let         be an iid quantum information source with von 
Neumann entropy S per letter.  If R > S, there exists a reliable compression-decompression scheme of rate R for 
the source       .   If R < S, then no such scheme with rate R can be reliable.   

Schumacher’s compression scheme gives an operational meaning to the von Neumann entropy, and expresses 
the ultimate limits for the compressibility of quantum communication.

We now understand the limits on classical compression of classical information, and quantum compression of 
quantum information.   But what about quantum compression of classical information?  

This question was addressed by Holevo in 1973, “Bounds for the Quantity of Information Transmitted by a 
Quantum Communication Channel.”   Informally, Holevo’s theorem states that you cannot reliably store n bits 
in fewer than n qubits.  
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Suppose Alice wants to encode a random variable x that takes values in                   .  When she sees the value     
, she records this outcome and produces density matrix          , thereby generating the state  

The subscripts C, X reflect the bipartition of the system into a classical part and a quantum part.  Density 
matrices of this form are sometimes called classical-quantum states.  

The goal will be for Alice to generate a state of this form and send the marginal        to Bob so that he can 
perform some measurements to extract the classical information.  

We considered states of this form previously in order to show the concavity of von Neumann entropy based on 
the nonnegativity of the quantum mutual information.  In particular, we computed
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(recall that we computed this by using the fact that                     ).   Therefore the mutual information is 

This mutual information between the classical and quantum parts of a CQ state is called the Holevo quantity 

Suppose that the classical messages are on n bits, while the quantum messages are written with  
qubits.  Therefore                       , and so 

Furthermore, by the data processing inequality there is no further post-processing that Bob could do that 
would raise this mutual information.  
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This mutual information between the classical and quantum parts of a CQ state is called the Holevo quantity 

Suppose that the classical messages are on n bits, while the quantum messages are written with  
qubits.  Therefore                       , and so 

Therefore, at most k bits of information about Alice’s notebook are encoded in the state that Bob receives.  
Furthermore, by the data processing inequality there is no further post-processing that Bob could do that 
would raise this mutual information (this is the historical reason that Holevo’s result followed closely after the 
proof of strong subadditivity).  


