
Quantifying Entanglement

For a general quantum state     , the Schumacher compression rate provides an operational meaning to            .  

Recall that the von Neumann entropy also measures entanglement in a bipartite state               , since 

What is the operational meaning of entanglement entropy?  Why is it a good measure of entanglement?

Recall that our first measure of entanglement was the Schmidt rank, but the flaw in this measure is that it is 
not robust.   For example the unentangled state                       has Schmidt rank 1, while 

Has Schmidt rank 2 for every           , but the fidelity between these states is                                       .   Therefore 
the two states can be arbitrarily close together while one is entangled and the other is not.  This means the 
Schmidt rank is a very rough (discontinuous) measure of entanglement.



Quantifying Entanglement

If Alice and Bob are restricted to local operations and classical communication, then entanglement is a limited
resource (because they are restricted to applying separable quantum channels).

From this perspective, we want measures of the entanglement shared in Alice and Bob’s initial state to tell us 
about protocols that they could perform using LOCC.   

This again indicates a shortcoming of the Schmidt rank.  The state                                                     has the same 
Schmidt rank as a Bell pair, but will not be a useful resource for teleportation as             .    

Suppose Alice and Bob share many initial Bell pairs.  Then they may be interested in the amount of Bell pairs 
needed to prepare a particular entangled state             using only LOCC, which is called the entanglement cost.  

Conversely, if Alice and Bob initially share              , then they may wish to convert the entanglement in              to
standardized entangled states like Bell pairs, and the amount of ebits they obtain is the distillable entanglement.  



Such that                can be mapped by LOCC to a state which has fidelity            with the target state            .   

Quantifying Entanglement
To relate the entanglement cost and the distillable entanglement to the entanglement entropy, we will need to 
work in the asymptotic limit in which we have many identical copies of the state,                  .    

A rate R of (LOCC) conversion from Bell pairs           to the state        is asymptotically achievable if for any                 
and all sufficiently large n there is a k satisfying

With this we can rigorously define entanglement cost:

Asymptotically, we create many copies of        by using R Bell pairs per copy. 



Such that                can be mapped by LOCC to a state which has fidelity            with the target state               .

Quantifying Entanglement
The distillable entanglement is similarly defined in terms of an asymptotically achievable conversion rate.

A rate R of (LOCC) conversion from the state        to Bell pairs           is asymptotically achievable if for any                 
and all sufficiently large n there is a k satisfying

And from this we have the rigorous definition of distillable entanglement:



Quantifying Entanglement
Since LOCC can generate entanglement, our first observation is that for any state         we have 

Otherwise Alice and Bob would be able to generate an unlimited number of Bell pairs using LOCC by 
converting back and forth between copies of          and Bell pairs.  

In fact, the protocol we will describe that relates these entanglement conversion rates to the von Neumann 
entropy is asymptotically reversible, and so we will find 

However in the mixed state case this is no longer true, and the distillable entanglement may be strictly less 
than the entanglement cost.  But for pure states we can drop the subscript on               , and we will show 



Quantifying Entanglement

Just as Shannon entropy allows us to measure fractions of a bit, we will find it convenient in the asymptotic 
setting to let the entanglement entropy measure fractions of a ebit. 

If Alice and Bob each hold a quantum system of Hilbert space dimension D, then the maximally entangled state is:

Which has entanglement entropy log d.  We’ll refer to this as “log d Bell pairs” even when d is not a power of 2.

Therefore our proof strategy to show                                                                    for all bipartite pure states is as follows. 

Alice and Bob will use a maximally entangled state with dimension                            together with LOCC to create n 
copies of , with arbitrarily good fidelity as                 .

Conversely, Alice and Bob will use n copies of together with LOCC to create a maximally entangled state with 
dimension                           , with arbitrarily good fidelity as                 .



Quantifying Entanglement

First, Alice and Bob will use a maximally entangled state with dimension                            together with LOCC to create
n copies of , with arbitrarily good fidelity as                 .

Alice will begin by making several copies of a state              in her lab, where C is the subsystem that will be 
compressed and then teleported to Bob with LOCC to form the state             .  

They will accomplish this by combining Schumacher compression with quantum teleportation. 

If A and C are both d-dimensional quantum states, then the Schmidt decomposition is

Therefore in the asymptotic limit of Alice holding many identical copies of the state, 



Quantifying Entanglement

In her laboratory, Alice will project this state into a    - typical subspace, and this succeeds with high probability: 

The state after projecting onto the typical subspace is 

Which has a high overlap with the original state since



Quantifying Entanglement

Since the typical subspace has dimension at most                   , Alice can teleport her          part of the state
to Bob using at most                      Bell pairs that were initially shared between Alice and Bob.   

The generalization of teleportation to d-dimensional systems where d is not a power of 2 was already addressed 
in the original paper by Bennet et al.  One replaces the Bell state with a maximally entangled state, and then 
performs a measure over all maximally entangled bases.   So as before this only requires LOCC.

After Bob receives the classical information from Alice needed to correct the teleported state, he can
decompress it so that the state they share has high fidelity with                  , as intended. 

This protocol demonstrates that the entanglement cost                     is no larger than        .  



Quantifying Entanglement

Since the typical subspace has dimension at most                   , Alice can teleport her          part of the state
to Bob using at most                      Bell pairs that were initially shared between Alice and Bob.   

The generalization of teleportation to d-dimensional systems where d is not a power of 2 was already addressed 
in the original paper by Bennet et al.  One replaces the Bell state with a maximally entangled state, and then 
performs a measure over all maximally entangled bases.   So as before this only requires LOCC.

After Bob receives the classical information from Alice needed to correct the teleported state, he can
decompress it so that the state they share has high fidelity with                  , as intended. 

This protocol demonstrates that the entanglement cost                       is no larger than        .   Therefore if we 
show that the distillable entanglement satisfies                                  , then by                                  we’ll show   



Quantifying Entanglement

For entanglement distillation, a single copy of              may only be partially entangled, like the example 

Therefore given many copies of this state                   , the entanglement may be diluted throughout the system,
and the goal for Alice and Bob is to concentrate this entanglement in order to distill Bell pairs.

The goal will be to show that they can squeeze all of this entanglement into                     Bell pairs.  

To illustrate entanglement distillation in general, consider many copies of the example state               (which is 
already in the form of a Schmidt decomposition)

Where             only depends on the Hamming weight (the number of 1’s) in the string x. 



Quantifying Entanglement
Suppose Alice uses a quantum channel to measure the Hamming weight of her part of the state, without 
revealing any other information about the state: 

There are          terms in Alice’s state which have Hamming weight m, each with probability                            , so  

After the measurement, Alice will be left with the uniform superposition of strings with Hamming weight m. 
Since Bob’s bit strings are perfectly correlated with Alice’s, the state they now hold is

Which is a maximally entangled state with dimension        ! 



Quantifying Entanglement

In the asymptotic limit, the Hamming weight will be near m = n p with high probability.  

Therefore we can apply Stirling’s approximation to the dimension of this maximally entangled state,                  , 
to recover a result that is by now familiar:

With high probability, where                                                                      is the binary entropy function.   

This proves that                                      .   The generalization to d-dimensional systems is relatively 
straightforward: now instead of measuring the number of 0’s and 1’s, Alice measures the number of 0’s, 1’s, 
2’s,… etc.  This projects onto the permutation symmetric subspace of strings with that number 0’s, 1’s, 2’s,… etc.

The dimension of this subspace is counted by a multinomial coefficient, and as before in the asymptotic limit 
this dimension is counted by entropy.   So it is exactly analogous to going from a binary alphabet to a general 
finite alphabet in our discussion of Shannon theory. 



Quantifying Entanglement

In the case of mixed states          , we can have a strict separation                                .    

In fact this should be expected, because Bell pairs are pure and the state is mixed.  As we go from a pure state 
to a mixed state, some information must be lost, and this is in general irreversible.

One can even have mixed states with a nonzero entanglement cost, and zero distillable entanglement.  This 
phenomenon is called bound entanglement.

The separation between entanglement cost and distillable entanglement also means the entanglement entropy 
no longer neatly characterizes them both, and this remains an active subject of research.

In response the community has introduced a variety of entanglement measures called entanglement monotones.

In general an entanglement monotone should be zero for separable states, invariant under local reversible 
operations, and nonincreasing under general LOCC channels.  



Quantifying Entanglement

Another striking difference between quantum and classical correlations is that quantum correlations carry a 
notion of exclusivity: entanglement is monogamous.  

Suppose Alice shares a Bell pair with Bob.   Can the qubits in this Bell pair be entangled with a third qubit C?

No, because by assumption the reduced state           is pure.  This tradeoff can also be made quantitative, so that 
any entanglement shared between A and B restricts the amount of entanglement that can also be shared with C. 

This contrasts with classical correlation, that can be shared amongst multiple parties with no restrictions.



Quantifying Entanglement

Blackhole information paradox: attempts to combine general relativity and quantum mechanics have led to 
puzzles concerning the fate of quantum information that falls into a black hole.

In 1975, Hawking and Bekenstein showed that quantum mechanical effects cause black holes to radiate energy, 
but their calculations suggested this energy had no correlation with the original in-falling matter.  

Fundamentally irreversible information loss would be a problem for our belief that time evolution is unitarity, 
though we might hope for this to be solved by a quantum theory of gravity.  

In 2012, a new sharper version of the black hole information paradox called the “firewall paradox” was 
proposed, and it is based on the monogamy of entanglement.  



Quantifying Entanglement

Blackhole information paradox: attempts to combine general relativity and quantum mechanics have led to 
puzzles concerning the fate of quantum information that falls into a black hole.

In 1975, Hawking and Bekenstein showed that quantum 
mechanical effects cause black holes to radiate energy, 
but their calculations suggested this energy had no 
correlation with the original in-falling matter.  

Fundamentally irreversible information loss would 
be a problem for our belief that time evolution is 
unitarity, though we might hope for this to be 
solved by a quantum theory of gravity.  

             

           



Quantifying Entanglement

In 2012, a new sharper version of the black hole information paradox called the “firewall paradox” was 
proposed, and it is based on the monogamy of entanglement.  

             

           

The idea is that outgoing Hawking quanta are entangled 
with infalling Hawking quanta.  But after more than half of 
the mass of the black hole has radiated away, it should also 
be the case that the outgoing particle is entangled with 
Hawking radiation from the distant past.  This contradicts 
monogamy of entanglement. 

The term “firewall” refers to a possible resolution, where 
one imagines a fiery wall of destruction at the event horizon 
which breaks the entanglement between the Hawking pairs.  
But this conflicts with our understanding that the event 
horizon should be smooth and unremarkable.  So it 
proposes a modification of quantum field theory.   


