
Complexity Theory

How difficult is it to solve to estimate the ground state energy of a local Hamiltonian?  

A glib answer to this question is that the difficulty depends on the specific Hamiltonian!   

For some Hamiltonians, we can immediately guess the ground state e.g.

For other classes of Hamiltonians, simplifying assumptions may allow computational physicists and 
theoretical computer scientists to develop efficient classical simulation algorithms.

However, the exponential time hypothesis says that we expect 3-SAT (which is a local Hamiltonian problem) 
to take exponential time to solve on a classical computer.   Similarly, we expect that for a general local 
Hamiltonian it takes an exponential time to find the ground state energy, even using a quantum computer.

This statement about the worst-case complexity for a class of local Hamiltonians also holds if we restrict the 
Hamiltonian to be 2-local on a translation-invariant 2D square lattice.   



Classical Complexity Theory

Quantum complexity theory proceeds in a way that is strongly (and beautifully) analogous to classical 
complexity theory.  To understand the former we first need to learn the latter.

The starting point is to abstractly characterize efficient classical deterministic computation.  

Informally, the complexity class P consists of all problems that can be solved in a time that scales 
polynomially with the size of the input description of the problem.   Theoretical computer scientists regard P 
as the class of problems that are easy to solve on a classical computer.

The class P includes many of the provably efficient algorithms studied in CS courses e.g. sorting a list, 
multiplying integers, finding the shortest path between two points of a graph, and so on.  

A crucial point is that a problem is in P even if the algorithm runs for time           on inputs of length n.   Or it 
could run for time .  In what sense is this efficient?  



Classical Complexity Theory

More formally, P is a set of languages.   A Language is a set of bit strings.   A language L is in P if polynomial-time 
deterministic classical circuits can recognize L, in the following sense.   

Let       be a finite alphabet, and let       denote the (infinite) set of all words (of arbitrary length) formed from 
the alphabet     .   A subset L of        is called a language.  (this * notation is called the Kleene Star)

It is important that L is infinite and contains strings of varying size.  For example, the set of all 3-SAT 
instances with a satisfying assignment is a language L.  So is the set of all R-sided polygons with area A, and 
so on.  Languages are extremely general.  

To recognize strings of varying length, we will also need circuits of varying size. A circuit verifier (or just a 
verifier) is a family of circuits                   , such that each       has r gates (chosen from some set of 
combinatorically local gates like AND, OR , NOT) ,  and on each input x,       outputs a single bit,            . 

The bit output by the verifier signifies the answer to a YES/NO question, or we say it either “accepts” 
(outputs 1) or “rejects” (outputs 0).  



Classical Complexity Theory

A Language L is in P if there exists a polynomial p and a verifier such that for all

(here |x| is the size of the bit string x), and for all                ,                    

Semi-formally,                if there is a polynomial-time verifier that distinguishes whether                 or              

The main purpose of the formality is to properly handle infinite sets.  Infinite sets make mathematics richer 
(and incomplete).  Infinity is the reason that “P vs NP” is a mathematically deep question.   

Even though computations are always finite sized, we can consider infinite families of computations which 
together have unbounded size.  



Classical Complexity Theory

Now we turn to the class NP.  The name refers to a “nondeterministic verifier.” 

Very informally, NP is the class of problems you can solve efficiently if you are infinitely lucky.  

Instead of luck, you can think of Merlin, the all-powerful wizard, who 
hands you a string to help you see the answer to the problem.   

If you’re infinitely lucky, you can decide whether a 3-SAT instance is satisfiable.  Just guess the satisfying 
assignment, and if you’re right everyone can see it, and if not then there must be no satisfying assignment.  

Similarly, you’re so lucky that you can factor integers.  Just guess the prime factorization, and then it is easy for 
anyone to check.  



Classical Complexity Theory

Semi-formally, a problem is in NP if there exists a polynomial sized witness (a bit string) which allows you to 
solve the problem in polynomial time. 

The string y is essentially the answer to the problem described by x.  If the answer is YES (i.e.             ) then 
(1) there is a succinct classical bit string y that acts as witness for x being in L, and (2) a classical computer 
can use the witness y efficiently to check that x is in L.  

A Language L is in NP if there exists polynomials p and q and a verifier                     such that for each              
there exists a bit string y with                        such that                            

And for all                 , for all strings y of size                        we have  

If the answer is NO (i.e. ) then there is no bit string y that could fool the verifier into accepting.   The 
verifier always rejects regardless of the witness.  



Classical Complexity Theory

The fact that the verifier always rejects NO instances is crucial to making NP an interesting definition.

Consider a 3-SAT problem.    If it has a satisfying assignment, Merlin can give that assignment to me and I can
check it in polynomial time by “plug and chug.”  But if there is no satisfying assignment, then there is nothing he 
could give me that would lead me to falsely conclude the formula is satisfiable.   I’ll find a violated clause.

Similarly, I may ask “does the integer N have a factor less than R?”.   If the answer is yes then Merlin can give me
the factor and I can check it with division.  If the answer is no, then no integer he gives me will lead me to 
falsely conclude that the answer is yes, since I can do division efficiently and see the remainder is non-zero.

Some of the problems in NP, like 3-SAT, are believed not to be in P.   This is unsurprising since we neither have 
infinite luck nor all-powerful wizard assistants.  

But NP is not all powerful.  Suppose I have a general local Hamiltonian, and I ask whether its ground state 
energy is nonzero.  What witness would Merlin try to send?  How would I check it?



Classical Complexity Theory 

From the definition, NP can recognize all the languages in P. Therefore                   .  It is strongly believed that     

But this remains one of the greatest unsolved problems in modern mathematics.  The Clay Mathematics 
institute offers a million dollars for a proof that                      and hence                   .  Note that they do not
consider claimed proofs that                   .   

Since NP contains lots of languages that are easy to recognize, like the ones in P, we would like some way to talk 
about the hardest problems in NP.  

To build towards doing this, we introduce a notion of reducing one problem to another.    

We say there is a polynomial-time reduction from problem A to problem B if there is a polynomial-time classical 
algorithm that transforms all the inputs for A into inputs for B.   Therefore if                  , and A is poly-time 
reducible to B, then .  



Classical Complexity Theory 
A Language L is called NP-hard if every Language L’ in NP is poly-time reducible to L.  

The complexity class NEXP is defined analogously to NP, but allows for exponentially large witnesses and 
verifiers.   We can prove                              (using the time hierarchy theorem), so NEXP is a strictly more powerful 
class.    The point is that many problems in NEXP are NP-hard, but not representative of problems in NP.

Therefore we are most interested in the NP-hard problems that can also be solved in NP, and these languages 
are called NP-complete. This is the interesting part of NP.

From these definitions alone, it is not obvious that any NP-complete languages exist.  

The cornerstone of NP-completeness is the Cook-Levin theorem, which states that 3-SAT is NP-complete.  After 
we prove this we can find an abundance of NP-complete languages by reducing them to 3-SAT.  

Informally, if a problem is NP-hard then it is “at least as hard (difficult) as all of the problems in NP.”



Classical Complexity Theory 
Let                  .  The Cook-Levin theorem is based on a poly-time reduction from L to 3-SAT.   Each              will be 
mapped to a satisfiable 3-SAT instance with at most                   variables and clauses.   Each               is mapped to 
an unsatisfiable 3-SAT instance with at most                   variables and clauses.     

Fix      , and consider the verifier circuit V of the appropriate size.  The input for V is the string x, along with a 
witness string y with size                  .   If               we know there is such a y that makes the verifier accept, and if 

then the verifier will reject for every possible witness y. 

The verifier circuit V can be taken to consist of classical logic gates with at most 2 inputs and one output.
Examples of such universal classical gate sets include {AND, OR, NOT}, or just NAND by itself.

For each gate in the circuit, we can write down a Boolean function 
on the inputs and outputs that is TRUE if and only if the inputs 
match the outputs.  



Classical Complexity Theory 

Therefore logic gates can be enforced by Boolean clauses.  The Cook-Levin proof is based on using clauses to 
enforce the history of a valid classical computation.  

Suppose the state of a circuit at time t the bit string           , so that            is the state of the i-th bit at time t.  

If two bits                   pass through a gate at time t, then the output bit                is determined by the input bits,
and there is a corresponding Boolean proposition    

That is TRUE if and only if the inputs match the outputs.   The entire history of the circuit can be enforced 
by the conjunction (AND) of many such clauses.   

Reducing the 3-local propositions to CNF is an exercise. Or one can define a new  3-CSP called CIRCUIT-SAT 
which we are showing to be NP-complete, and reduce CIRCUIT-SAT to 3-SAT later on.

The reason k-SAT is NP-complete only for              is because universal circuits need gates with at 
least two inputs and one output.



Classical Complexity Theory 

The clauses enforce the correct operation of all the gates in the circuit, and also enforce the initial state to be x.
But what about the part of the input that corresponds to the witness y?  This is unconstrained.  

But the nondeterministic part of the circuit is the witness y: the answer to the problem you can check 
efficiently, the lucky guess, the wizard’s gift. Therefore we ask whether there exists some y that can make 
the overall proposition true (“take x,y as input, operate the circuit correctly, output 1”)

The deterministic part of the circuit is just a proposition: start from this state, go to this state, then this state, 
and so on until you output the bit 1.  

This quantifier, followed by R expressed in CNF, is what makes this a SAT problem. The search for an acceptable
witness is the same as the search for a satisfying assignment. This is the Cook-Levin theorem.



Classical Complexity Theory 

If the input x has size |x| and runs for time T = poly(|x|), then our reduction to 3-SAT uses an additional              
variables to represent the time evolution of the initial state through the circuit.  This is an example of how 
polynomial blowups naturally arise from reductions. 

Solving 3-SAT is as difficult as solving any problem in NP.   But any 3-SAT instance can be expressed as a 
local Hamiltonian problem: asking whether a particular Hamiltonian (which happens to be diagonal in the 
Pauli Z basis) has a ground state energy of 0 or not.     

Finding quantum ground states is at least as hard, in the worst-case, as performing nondeterministic computation.  

Once we know 3-SAT is NP-complete, we can find other NP-complete problems by reducing them to 3-SAT.   The 
theory of NP-completeness arose in the late 60s/early 70s as computer scientists realized the connection between 
dozens of difficult combinatorial problems they had studied, which did not appear to have efficient algorithms but 
had concise efficiently checkable proofs.   Karp, “Reducibility Among Combinatorial Problems”, 1972.



Classical Complexity Theory 
SUBSET SUM is NP-complete: given a set S of n integers, decide whether there is a subset of S whose 
elements sum to zero.

K-COLORING is NP-complete: a k-coloring of a graph with n vertices assigns one of k colors to each vertex of the 
graph, in such a way that no two vertices sharing an edge have the same color.   3-COLORING is NP-complete.  

MAXCUT is NP-complete.   The max cut of a graph is the subset of vertices that maximizes the number of edges 
leaving the set.  The decision version (“is there a subset that cuts more than M edges?”) is NP-complete. 

FACTORING is an example of a problem that is in NP, believed not to be in P, but also not believed to be NP-
complete.  Another such problem is GRAPH ISOMORPHISM (deciding whether two graphs are isomorphic).  

P also has complete problems, which tend to look like things that are straightforward and laborious.  Evaluating a
Boolean proposition when all the variables are literals is P-complete.  

As humans, we try to solve special cases of NP problems by using creativity or luck to get the witness y.  If P = NP 
this creativity would be unnecessary: we could proof all provable theorems by plugging and chugging for poly time.
(all mathematical theorems with efficiently readable proofs are in NP)



Classical Complexity Theory 

A related complexity class is co-NP.  A problem is in co-NP if its negation is in NP.   In other words, there is an 
efficient witness for NO instances.    

3-SAT is not believed to be in co-NP.  If it were, we should be able to give an efficient witness that shows the 
formula is not satisfiable.  Therefore it seems clear that 

TAUTOLOGY is NP-complete.  Given a proposition, decide whether it is a tautology (true for all assignments of the 
literals).   If the answer is NO then it is easy to give an efficient witness.  Note the rule for negating quantifiers:

If an NP-complete problem is in co-NP, this would imply NP = co-NP which is not expected for the reason above.  

FACTORING is in                            .  Does the number N have a factor less than M?  If the answer is yes, the witness is
the factor.  If the answer is no, the witness is a list of all the prime factors.   This is one of the main reasons we 
believe factoring is not NP-complete.   



Classical Complexity Theory 

On the way from deterministic classical computation and quantum computation, we first want to treat 
probabilistic classical computation.  

The set of problems that can be efficiently solved by a classical computer that can flip random coins is called 
BPP (“bounded-error probabilistic polynomial time”).  It’s just a poly-time circuit that can flip coins.

The bounded-error stipulation is the following.  If the answer is YES the circuit outputs 1 with probability 2/3, 
and if the output is NO it outputs 1 with probability at most 1/3.   

The probability to output 1 in the yes instance is called completeness, c = 2/3. The probability to output 1 in the
NO instance is the soundness, s = 1/3. The reason we choose (c,s) to be these constants is that their specific
values hardly matter. The reason is that we can repeat the circuit many times (“parallel repetition”) to increase
the completeness exponentially towards 1, and decrease the soundness exponentially near zero.  

Using parallel repetition, we just need c and s to be constants bounded away from ½.  Without this stipulation we 
can have probabilities exponentially close to ½, and that model of computation is too powerful to be realistic.



Classical Complexity Theory 

The class BPP represents the set of problems that can be solved by efficient randomized classical algorithms, 
and hence it is the true extent of what we consider to be feasible with classical computation.  

We believe that P = BPP because pseudo-random number generators are seemingly capable of replacing true 
randomness.  But we are as far from proving P = BPP as we are from proving P != NP.

For technical reasons, BPP does not have any complete problems.  Neither do any of the classes involving bounded 
error, and it is because of the requirement to reject all             .  There are some x that can output 1 with a probability 
outside of the bounded range.

To solve this problem, which is just a technicality but appears everywhere, we define promise problem/languages,

Where the BPP machine only needs to decide whether                       or                     , promised that one of these two 
possibilities is the case.   We don’t care what happens when x is outside of                           .  
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Classical Complexity Theory 

We can also consider a version of NP where the verifier is allowed to be a BPP machine.  This class is called 
MA, which is short for Merlin Arthur.  The all-powerful Merlin gives the witness string y to the human King
Arthur, who has a BPP machine, and for YES instances Arthur outputs 1 with completeness probability at 
least 2/3, and for NO instances he outputs 1 with soundness probability at most 1/3.  

The class MA was defined by Babai in 1985, but the first Promise MA-complete problem was given in 2006 by Bravyi
and Terhal as a restricted kind of local Hamiltonian problem.  “Merlin-Arthur Games and Stoquastic Complexity”, 2006.

If P = BPP, then MA = NP.  But we feel far from proving this.  There is also another class AM, Arthur Merlin, where 
Arthur first flips some coins, and Merlin sends a witness that depends on the coins, and then Arthur verifies the 
witness.                        , but they don’t seem to be equal.  An interesting problem in AM is estimating the volume of 
an exponentially large subset of bit strings.     



Classical Complexity Theory 

Moving up the ladder a bit, we saw that NP problems have the form 

This complexity class is called “the second level of the polynomial hierarchy”.   We can keep climbing by alternating 
quantifiers again to get to the 3rd level,   

And co-NP problems have the form

Therefore if we could solve both classes of problems if we could ascertain the truth value of formulas like

The union of all these classes (with a number of quantifiers independent of the input length, but including 
unbounded numbers of them) is called the polynomial hierarchy, PH.  It is recursively defined, and the complete 
problems tend to be recursive.   CIRCUIT MINIMIZATION is complete for the 2nd level.  



Classical Complexity Theory 

An example of an overpowered probabilistic class if PP, which is defined analogously to BPP but with no 
bound on the error.   In a YES instance the probability of outputting 1 is greater than ½, and in a NO instance 
the probability of outputting 1 is less than ½.   Because the circuit only has polynomial size, the probabilities
can only get as small as                   , so  

An example of a PP-complete problem is MAJSAT.   Given a Boolean proposition, decide whether the 
majority of possible assignments satisfy the proposition or not.   This is much tougher than 3-SAT!

The proof that MAJSAT is in PP is simple.  Choose a random assignment, if it evaluates to true then output 
YES (claim that the majority of assignments are satisfiable).   If that random assignment evaluates to false,
output NO. Clearly this is a wild guess based on extremely limited information. But PP only demands we do 
slightly better than a coin toss.   The proof that MAJSAT is PP-hard is not much more difficult.

In 1989 Toda proved that           , the class of problems that can be solved in polynomial time with access to a 
PP oracle (a machine that instantly solves PP problems) contains the entire PH.   



Classical Complexity Theory 

Another powerful class is #P, which counts the number of accepting inputs to a nondeterministic verifier 
(the number of witness y which will cause the verifier to accept).   The natural complete problem is #SAT, 
counting the number of satisfying assignments to a Boolean proposition.

#P and PP have comparable power because                            , but note the different definitions of #P and PP 
make them suited to capturing different kinds of problems.   

Many problems related to counting exponentially large sets are #P complete, including physics problems 
related to the exact computation of partition functions.



Classical Complexity Theory 
The final complexity class of our whirlwind tour is PSPACE, the set of problems that can be solved using 
polynomial space and unlimited time.  Does PSPACE contain PP?  



Classical Complexity Theory 
The final complexity class of our whirlwind tour is PSPACE, the set of problems that can be solved using 
polynomial space and unlimited time.  Does PSPACE contain PP?  Yes, because MAJSAT is in PSPACE.  

An example of a PSPACE-complete problem is OEOTL (OTHER END OF THE LINE).   Suppose we have a graph 
with vertices labeled by n bit strings.   Every vertex has degree at most 2.  For any vertex v we can see the 
strings of vertices that are neighbors of v.   Given that 00…0 has only one neighbor, find the other end of the 
line that starts with 00…0.   

Another complete problem for PSPACE is QSAT, deciding the truth value of formulas with poly(|x|) many 
alternating quantifiers, 

Which gives the sense that PSPACE is more powerful than PH.  PSPACE is contained in EXPTIME. (despite 
having unlimited time, there is no point in taking longer than exponential time when you only have 
polynomial space to work with).    



Classical Complexity Theory 


