
Classical Complexity Review 

Definition (language): consider an alphabet        (e.g.                            ) and the set        of all strings 
of any length formed by letters of       , e.g.   

A subset L of          is called a formal language.   Languages are very general, for example they 
could describe the set of all 3-SAT instances with a satisfying assignment, or the set of all local 
Hamiltonians with ground state energy 0.    

Complexity classes are defined as sets of languages (“the languages recognized by the class”).  We 
can think of each L as describing a type of problem to solve.  Each element                is a specific 
problem (of fixed size |x| since x is finite length string), e.g. a specific 3-SAT formula or 
Hamiltonian whose ground state we want to find. 



Classical Complexity Review 

Definition (Circuit Verifier): a circuit verifier is a family of Boolean circuits                   satisfying:  

1.  Each circuit         has size r (size = number of gates in the circuit)

Circuit verifiers provide an alternative way to define complexity classes without referring to 
Turing machines, which generalizes more naturally to the quantum setting.  

There is a subtlety when we do this: the mapping                itself should be efficiently computable.  
This stipulation is called uniformity.  This is satisfied if we have a simple rule to go from the 
pattern of gates in         to those in           .   

We also don’t notate the input size of the verifiers at this stage, because the relation of r to the 
input size is crucial to defining different complexity classes.   This relationship is inferred from the 
definition of each class.            

2.  The output of each        is a single bit, representing YES/NO or accept/reject. 



Classical Complexity Review 

Definition (polynomial time).                 if  there exists a polynomial p and a verifier                    such that

P is regarded as a the set of problems that can be efficiently solved on a classical computer. 

Although P includes problems that run in time           on inputs of size n, which is not truly feasible, we 
include these problems for two reasons

1)  History shows that once a problem is known to be in P, subsequent optimizations can lower its run time. 

2) Freeing ourselves from petty details opens our mind to greater things.  ☺



Classical Complexity Review 

Definition (nondeterministic polynomial time).                 if  there exists polynomials p and q, and a 
verifier                  such that

NP is the set of problems with efficiently verifiable proofs.  The string y in the definition is often called a 
witness.  We call the case                a yes instance, and say that for all yes instances there is witness that 
allows the verifier to read the input and the witness, and decide in poly time that             .  

The case             is a no instance, and for a no instance any witness y will be rejected by the verifier.   This 
captures the fact that the verifier cannot be fooled or cheated by a false proof.



Classical Complexity Review 

Definition (poly-time reduction):  A reduction from language A to language B is an efficiently 
computable function                            with the property 

Why can’t we take                  , let f be the zero function, and reduce every problem to recognizing 0? 

The answer is that the reduction needs to be efficiently computable.  We can’t map every              to the 
zero bit unless we already know how to recognize the language A in polynomial time.   

If L is a language and every language in NP is poly-time reducible to L, then L is NP-hard.  

If L is an NP-hard language and                  then L is called NP-complete.  



Classical Complexity Review 

Cook-Levin theorem: 3-SAT is NP-complete.  

The proof is based on mapping the Boolean circuit verifier to a Boolean proposition that enforces the 
valid operation of the gates in the circuit at each time step.  

And evaluating the truth value of such existential formulas (where R(x,y) is efficiently computable for 
fixed x,y) is NP-complete.   (Fagin’s theorem)

A fancy name for a table that records the history of each time step of a classical computation is the 
“Cook-Levin tableau.”  

If the computation were deterministic, then all the variables in the proposition would be literals.  But 
the fact that the computation is nondeterministic leaves us with an existentially quantified formula, 



Classical Complexity Review 

Randomized complexity: classical randomized computation can be thought of as Boolean circuits with 
an unlimited supply of fair coins.  

Alternatively, randomized classes can be thought of in terms of counting paths over unconstrained 
inputs in a deterministic circuit.  

Definition (Bounded-Error Probabilistic Polynomial-time).                     if  there exists polynomials p 
and q, and a verifier                  such that



Classical Complexity Review 

For randomized classes, the probability to output 1 when              is called the completeness, and the 
probability to output 1 when              is called soundness.  (these terms come from logic, an axiomatic 
system is complete if you can prove everything true, and sound if you cannot prove anything false).  

The values of 2/3 and 1/3 are just chosen for convenience, any constants bounded away from ½ would 
be equivalent because we used parallel repetition to show that

For technical reasons BPP does not have any complete problems.   This subtlety also occurs for BQP and 
QMA, the most important quantum complexity classes, so we may discuss it more later.  But the solution 
is to define promise languages:

And only require the BPP machine to decide whether                     or                    promised that one of 
these two possibilities is the case.   We don’t care what happens when x is outside of                           .   



Classical Complexity Review 

MA (Merlin Arthur) is the generalization of NP to allow for a BPP verifier.   The wizard Merlin hands 
Arthur a witness that he can verify on a BPP machine.    

The polynomial hierarchy PH is a generalization of NP and co-NP, with a natural complete problem of 
evaluating Boolean formulas with k alternating quantifiers at level k of the hierarchy.  

PP is a generalization of BPP that removes the  bounded-error stipulation, so the acceptance probability 
for yes instances is anything larger than ½, and for no instances anything small than ½.   We will later 
learn that PP = PostBQP (“quantum computation with post selection”) and it will be important to know 
that PP contains the polynomial hierarchy,                       .

More powerful classical complexity classes: PH, PP, #P, PSPACE.   All of these relate to the story of 
quantum complexity in interesting and vital ways.  



, and Shor’s proof that                                             provided informal evidence that                     .  
Though this is clearly a central question in quantum computing, many of the formal results came later.   A 
major research result last year was an “oracle problem” that is in BQP but not in PH.  

Quantum Complexity Theory 

BQP: Bounded-Error Quantum Polynomial-Time.   The quantum analog of P (or BPP), this is the set of 
problems which we regard as efficiently solvable with a quantum computer.

Instead, the first major development that kickstarted quantum complexity theory was Kitaev’s
generalization of the Cook-Levin theorem to the quantum setting in 1999.    

This cornerstone result states that the local Hamiltonian problem is QMA-complete.   Therefore it is 
very unlikely it can be solved efficiently in general, even with a quantum computer.  

QMA: Quantum Merlin Arthur.  The quantum analog of NP (or MA), the hard problems in this class 
represent problems we are unlikely to be able to solve, even with a quantum computer.  



Quantum Complexity Theory 
To formally define BQP, we only need to replace our classical circuit verifiers with quantum circuit 
verifiers (uniform families of quantum circuits)                  .  

The classical inputs are replaced with qubit inputs, the Boolean gates are replaced with (local) unitary 
gates, and the output is the measurement of a single qubit in the computational basis.

Definition (Bounded-Error Quantum Polynomial Time).                      if  there exists a polynomial p and a 
quantum circuit  verifier                    such that

For what range of completeness and soundness to we have                              ?



Quantum Complexity Theory 
To go from NP to MA, we allowed the verifier Arthur to be a BPP circuit instead of a P circuit.   But QMA 
does more than just giving Arthur a quantum computer. 

In QMA, Merlin is not restricted to sending a classical witness, but rather he can send an arbitrarily 
complex quantum state, which Arthur plugs into his quantum computer to verify.  

Definition (Quantum Merlin Arthur).                      if  there exists polynomials p and q, and a quantum 
circuit  verifier                    such that



(Marriott and Watrous , “Quantum Arthur-Merlin Games”, 2005)



Quantum Complexity Theory 

It is possible to amplify the completeness and soundness for QMA as we have done for BPP, MA, and 
BQP, but the proof for QMA is more complicated because we only get one copy of Merlin’s state.

If we are in a YES instance (there exists some state Merlin would like to send to convince us), then 
Merlin could send us many copies of the state to use for parallel repetition.

But if it is a NO instance, and we allow Merlin to send us a state that he claims to be many copies of the 
witness, what is to stop him from somehow entangling the copies and gaining an advantage?  

For what range of completeness and soundness to we have                              ?



Quantum Complexity Theory 
The early QMA amplification schemes required slightly increasing the length of the message and upper 
bounded the extent to which Merlin could cheat.   The first “in-place” amplification using one copy of       
was given by Marriott and Watrous.   

The intermediate operations acting on the upper ancilla register are measurements resetting them to 
|00…0>.  If we are amplifying QMA(2/3, 1/3), then S is a majority vote.



Quantum Complexity Theory 

Input: a set of m positive semi-definite Hermitian matrices                       , each acting on         .  Each 
matrix entry has poly(n) bits.   The operators norms are bounded by                     for all i.   Each matrix 
comes with a specification of the k qubits on which it acts (out of the total of n qubits).   Also given as 
input are two numbers a, b (each described by poly(n) bits)   with                                     . 

Definition (the k-local Hamiltonian problem)

Output:  Is the smallest eigenvalue of                                                      smaller than a, or larger than b?  

Note that we are promised that the ground energy is below a or above b (and             is the promise gap).  
As with the other bounded-error classes, all the complete problems for QMA are promise problems.  

Whether the ground state energy is non-zero or exactly zero, without a promise, is undecidable. If the 
promise gap is exponentially small (the precise local Hamiltonian problem) then it is complete for QMA 
with exponentially small bounded error, which turns out to be equal to PSPACE (2016).  



Quantum Complexity Theory 

Proof Strategy for the Quantum Cook-Levin Theorem

To put LH in QMA, we challenge Merlin to send us the ground state, and then we check it using phase 
estimation.   In the NO instance he can’t cheat because of the variational principle.  

Here we need to show that finding ground state energies can be as difficult as doing nondeterministic 
quantum computation.   To do this we will map an arbitrary quantum circuit with a constrained output 
and an unconstrained input register (i.e. a QMA verifier) into the ground state of a local Hamiltonian in 
such a way that the ground state energy will be sensitive to the acceptance prob of the QMA verifier.

Like the Cook-Levin tableau, these ground states will record the history of a quantum computation in a 
way that allows us to check validity with local constraints.  These are called Feynman-Kitaev history states.



Quantum Complexity Theory 

Suppose the QMA verifier runs the sequence of local unitary gates                      on the input and the 
witness.  The history of the computational steps looks like this: 

Again in the classical proof, each gate acts on a few input bits and a few output bits.  We can check that 
the inputs match the correct outputs using a local constraint that only acts on those bits.  

We want local constraints that distinguish the state                       from some other state                 .   What is 
the problem with this if the       ‘s are n qubit states and we check them with a k-local operator?  

In the classical Cook-Levin proof, we would put each time step on its own set of bits.   If we did this in 
the quantum case, the time steps might look like this:



Quantum Complexity Theory 

The problem occurs if                       and                  are both highly entangled states (which is the generic case).  

Local observables are only sensitive to local reduced density matrices.   If both states are  highly entangled, 
then in both cases the RDMs will be very close to maximally mixed, and so local observables tell us nothing.

Entanglement fundamentally breaks the proof strategy of the classical Cook-Levin theorem.  

However, paraphrasing the comments of Mike and Ike on quantum cloning and QKD, whatever quantum 
takes away with one hand, it gives us something new and beautiful with the other.  

In particular, the solution to locally checking the time steps of a quantum computation is to entangle them, 
instead of recording them on separate registers in a tensor product.



Quantum Complexity Theory 

Distilling the previous example, even locally checking the identity gate is impossible to do across a tensor 
product.  This would require distinguishing                 from                using a k-local operator, when               
are arbitrary n-qubit quantum states.    

But notice that if we have the state                                          , then the RDM of the first qubit (a local RDM)

tells us a lot about the relation of               .   

This gives us hope for local constraints if we entangle the time steps of the computation,

Which is the (baseline form) of what is called a Feynman-Kitaev history state.    


