
Quantum Complexity Theory 

Proof Strategy for the Quantum Cook-Levin Theorem

To put LH in QMA, we challenge Merlin to send us the ground state, and then we check it using phase 
estimation.   In the NO instance he can’t cheat because of the variational principle.  

Here we need to show that finding ground state energies can be as difficult as doing nondeterministic 
quantum computation.   To do this we will map an arbitrary quantum circuit with a constrained output 
and an unconstrained input register (i.e. a QMA verifier) into the ground state of a local Hamiltonian in 
such a way that the ground state energy will be sensitive to the acceptance prob of the QMA verifier.

Like the Cook-Levin tableau, these ground states will record the history of a quantum computation in a 
way that allows us to check validity with local constraints.  These are called Feynman-Kitaev history states.



Quantum Complexity Theory 

Suppose the QMA verifier runs the sequence of local unitary gates                      on the input and the 
witness.  The history of the computational steps looks like this: 

Again in the classical proof, each gate acts on a few input bits and a few output bits.  We can check that 
the inputs match the correct outputs using a local constraint that only acts on those bits.  

We want local constraints that distinguish the state                       from some other state                 .   What is 
the problem with this if the       ‘s are n qubit states and we check them with a k-local operator?  

In the classical Cook-Levin proof, we would put each time step on its own set of bits.   If we did this in 
the quantum case, the time steps might look like this:



Quantum Complexity Theory 

The problem occurs if                       and                  are both highly entangled states (which is the generic case).  

Local observables are only sensitive to local reduced density matrices.   If both states are  highly entangled, 
then in both cases the RDMs will be very close to maximally mixed, and so local observables tell us nothing.

Entanglement fundamentally breaks the proof strategy of the classical Cook-Levin theorem.  

However, paraphrasing the comments of Mike and Ike on quantum cloning and QKD, whatever quantum 
takes away with one hand, it gives us something new and beautiful with the other.  

In particular, the solution to locally checking the time steps of a quantum computation is to entangle them, 
instead of recording them on separate registers in a tensor product.



Quantum Complexity Theory 

Distilling the previous example, even locally checking the identity gate is impossible to do across a tensor 
product.  This would require distinguishing                 from                using a k-local operator, when               
are arbitrary n-qubit quantum states.    

But notice that if we have the state                                          , then the RDM of the first qubit (a local RDM)

tells us a lot about the relation of               .   

This gives us hope for local constraints if we entangle the time steps of the computation,

Which is the (baseline form) of what is called a Feynman-Kitaev history state.    



Quantum Complexity Theory 

The notation            refers to the input and the witness.  We are also free to consider the history state of a 
circuit                           ,  

If someone hands you this state, then how would you check the output of the circuit?   To check the output 
we could collapse the clock register, and hope we get             , which happens with probability 1/T.   Then if 
we look at the computational register we’ll see the state of the circuit at              .  

How could we modify the history state to increase the probability of seeing the output of the circuit? Pad the 
end of the circuit with identity gates…

Where is the state of the circuit at time t.  Note the Hilbert space is now
, where                 is a qudit of dimension T + 1 called the clock.



Quantum Complexity Theory 

Given the history state corresponding to a verifier circuit, the probability of acceptance (output of       ) is 
given by the expectation value, 

These equations are correct, but when we map a QMA verifier to a local Hamiltonian we want to assign a 
higher energy to inputs that the verifier rejects.  Therefore we include an energy penalty for rejection:



Quantum Complexity Theory 

Similarly, the Hamiltonian in our reduction will include terms that enforce the input of the computation.  If 
the input is                          , then we include  

Which assigns higher energy to states that do not have the intended input bit at t = 0.   This covers the case 
when the string x is input to the verifier.  If instead we define QMA verifiers in terms of circuits that are 
efficiently computable from x, the input constraint may just check for ancillas in a standard state like       , 

In any case, just as in the Cook-Levin proof the local constraint terms do not act on the registers that hold the 
witness at t = 0.  Rather, we will design the overall Hamiltonian so that is has lower energy iff an acceptable 
witness exists.



Quantum Complexity Theory 

So far we have written down a few local terms that check the inputs and outputs of a history state.  But what 
about the main problem of creating ground states that look like history states?

Our solution to this problem will be closely related to a much easier problem, which is to construct a 
Hamiltonian on just              with a unique ground state given by

Which is a uniform superpositon state of a particle on a line with T + 1 sites.  From physics, this looks like a 
low energy state of a particle hopping on a line (in a higher energy state we would expect the magnitude and 
phase of the wave function to oscillate rapidly across space).   This propagation Hamiltonian is: 



Quantum Complexity Theory 

The terms                   are most useful as projectors, but we can expand them out as             

Consider an arbitrary  state                               , for which the expectation value is                         

And so the states that minimize              have amplitude distributions that are as “flat as possible.”   This is 
one of many ways to see that the uniform superposition is the ground state of             . 



Quantum Complexity Theory 

To go from a single particle to the history state, define a unitary:

Append a register of          to our single particle ground state, and note that 

Is a ground state of                     .   The rotated propagation terms have the form 



Quantum Complexity Theory 

Because of the unitary equivalence, we can move freely between the single hopping particle Hamiltonian 
and the propagation Hamiltonian that enforces history state ground states.

To reduce the notation, redefine                                            to act on                                          , with  

By itself,              only enforces the correct propagation of the gates in the circuit, but it does not check the 
input.  Therefore               is       - fold degenerate.  Combining it with     

Singles out an input, and enforces                                                                         to be the unique ground state.



Quantum Complexity Theory 

The ground energy of                           is 0.   We now want to add              and show that the ground energy 
changes by an amount that is related to the acceptance probability of the circuit.    

Standard perturbation theory would tell us that the first order shift in the ground energy caused by 
perturbing the Hamiltonian with            corresponds to the expectation of            in the original ground state, 
and is therefore related to the acceptance probability.    

But if we leave the part of the input register containing the witness to be unconstrained,                          would 
have a degenerate ground space (spanned by possible witness inputs).   This exponential degeneracy is too 
much for perturbation theory to handle.   



Quantum Complexity Theory 

To solve this problem and analyze the ground energy of                                                   in a NO instance, Kitaev
proved the following “geometrical lemma.”   

Lemma.  Let A, B be positive semi-definite operators, each with a zero eigenspace            
satisfying                                             .  Let                  denote the minimum non-zero eigenvalues of A and B, 
then    

Where       is the angle between                               .  

We begin with a QMA verifier that has completeness and soundness amplified exponentially close to 1 and 
0.  In the YES instance, we can check variationally that the ground energy of                                                   is 
very near zero.  In the NO instance, we need to show the ground energy is pushed up by some amount that 
is at least                     .   



Quantum Complexity Theory 

To compute the angle between the kernels, we use the fact that the cosine of the angle is the maximum 
inner product between vectors in the respective kernels.  

In our setting, we take                                                       .  Therefore 

This question asks, “what is the maximum overlap between valid history states, and states that are accepted 
at time t = T, given that this is a NO instance?”  The answer is (1/T) times 1 – soundness.   

The end result is that the ground energy is at least                  in a NO instance.  



Quantum Complexity Theory 

So far we have given a reduction from QMA verifier acceptance probabilities to the ground energy of a 
Hamiltonian.  But is our Hamiltonian local?

If we represent the clock states      as binary strings, then we need at most                   qubits to represent the 
clock.  Therefore terms like                             are                 -local.     

This is where Kitaev’s 1999 proof stopped.  He showed that the                  -local Hamiltonian problem is QMA-
complete.  (note that this also requires noting that the                  -local Hamiltonian problem is in QMA).   



Quantum Complexity Theory 

A bit about history: the form of             was introduced by Feynman 
around 1985 in the context of classical computers built from 
microscopic components.  He called the clock a “pointer” and did not
look at ground states, but rather time evolution generated by             .    

None of the quantum computer scientists read Feynman’s old papers, 
so it was left to the Kitaev to find this gem.  

Feynman’s gates were classical and reversible; in part because 
quantum logic gates were not yet widely conceptualized. Richard Feynman

Alexei Kitaev

As the story goes, Kitaev agreed to give a talk on “Quantum NP” at 
Hebrew University, and worked out the details (defining quantum NP 
and proving the quantum Cook-Levin theorem) on the flight to Israel 
where he gave the talk. 



Quantum Complexity Theory 

The reduction to a 5-local Hamiltonian came soon after Kitaev’s original proof, and it is based on encoding 
the clock in unary:

A new part of the Hamiltonian                                                   ensures that all clock qubit states with energy 
below 1 are valid unary encodings.   

The propagation terms are now encoded as follows: 

Which suffices to make them 5-local.  See “Quantum NP: A survey” for more unary encoding details.



Quantum Complexity Theory 

In 2016, Bausch and Crosson modified the Feynman-Kitaev construction to obtain a ground energy scaling 
like                 in the NO instance, instead of the                  from the geometrical lemma.    

We joked about calling our paper, “One small trick for increasing the promise gap of the local Hamiltonian 
problem that Dr Kitaev doesn’t want you to know.”

It turned out the joke was on us: while we thought we improved the scaling compared to the standard 
Feynman-Kitaev construction, we subsequently proved the geometrical lemma is not tight.   The ground 
energy for Kitaev’s construction scales like                 , by a more involved proof.   

Then we proved that, of all possible (weighted, complex) graphs, the path graph assigns the best energy 
penalty to nonaccepting computations.  So it is unlikely that anyone can improve the FK construction without 
totally altering the framework.  



Quantum Complexity Theory 

What are these weird Hamiltonian terms with clocks and projectors in them?  What happened to Pauli 
operators?  

There is a general method to reduce k-local Hamiltonians to r-local Hamiltonians with r < k using 
“perturbative gadgets.”  These gadgets are r-local Hamiltonians whose physics at low energy resembles the 
target k-local Hamiltonian.  Some terms in the gadget have norm poly(n), while others have norm 1.   The 
higher order interaction terms then appear at a higher order in perturbation theory.  

Using these kinds of tricks, Biamonte and Love showed that the local Hamiltonian problem is QMA-complete 
for Hamiltonians of the form:


