
Summary of Probability Theory
• States in a Probability Theory are unit vectors in 1-norm that lie in the nonnegative orthant of a vector space 

with dimension equal to the number of possible events.

• The event space of a composite system is the cartesian product of event spaces for the component 
subsystem.   The state of a composite system is a tensor product of states on the component subsystems iff if 
the component subsystems are independent / uncorrelated.

• The observables in a probability theory can only be measured in expectation.   We can use independent 
samples to quickly estimate expectation values using Hoeffding’s theorem.

• There are many notions of distance between states in a probability theory.   Arguably the most operationally 
meaningful is the total variation distance, which bounds the difference in expectations of observables.



Generalized Probability Theory
• In wave theory, quantities such as energy are proportional to the square of the amplitude of a wave, which is 

called the magnitude.  

• Interference occurs because we add wave forms with real-valued amplitudes, and then square the result:

• As in a probability theory, quantum theory considers a vector space of dimension equal to the number of 
possible events.  Each event is now associated with a real or complex valued amplitude.   The squared 
magnitude of the amplitudes represent probabilities, and so the states are unit vectors in the 2-norm.

e.g. quantum state on the space of n “quantum coins” or up/down quantum spins

Quantum states:

Closed under any linear combinations that are normalized in the 2-norm, 



Generalized Probability Theory
• As before, we may associate outcomes of flipping our n quantum coins with the events space of n bit strings. 

• We may form observables just as in a probability theory, by considering a function f defined on the space of 
events corresponding to outcomes of these n bit strings, 

• However, a natural notion for the microscopic world is that the act of observation itself becomes likely to 
disturb the system.   A growing sense developed that certain observable quantities in quantum systems were 
incompatible, like position and momentum of particles in space, or spin along X , Y , Z directions.

• From the perspective of probability theory, we may assign a distribution to position outcomes, and to 
momentum outcomes, but the corresponding event spaces are fundamentally distinct and incompatible.

• Heisenberg realized that this could be accounted for in the generalized probability theory by associating an 
incompatible event space with a different basis!    



Generalized Probability Theory
• From this notion of a basis as an event space, we can now think of any physically observable quantity as a 

function on the appropriate event space (position, momentum, spin direction, etc).  

• If we have a quantum state and want to measure an observable then we project our state onto the 
appropriate basis, yielding complex amplitudes given by inner products, and then compute the expectation 
with respect to the resulting (squared magnitude) probability distribution.

• The idea that different observables have different event spaces (bases) motivates a basis-independent 
perspective of the state itself, we can view it as an abstract member of a vector space.   Once we choose a 
basis, then the coordinates of the vector in that basis are called the wave function.

• If an observable is a basis together with a real-valued function, then we could say the observable is a 
Hermitian operator.   The eigenvectors of the operator form the basis of events, and the eigenvalues of the 
operator associate the value of the observable that we associate with each event.

Inner Product Wave functionAbstract Vector Decomposition in 
particular basis



Generalized Probability Theory
• Unit vectors in the 2-norm, projections of vectors defined by inner products, and observables represented by 

eigenvalues of Hermitian operators.   All this structure belongs to a complex inner product space.

(A) A vector space over the field of complex numbers      .  Vectors denote (Dirac’s ket notation) 

• An inner product space with the additional property of being complete is called a Hilbert space.   

Positivity:    

Linearity:    

Skew-Symmetry:    

Complete in the 2-norm: 

• Axiom of States.  Quantum states are rays in Hilbert space.  A ray is an equivalence class
of scalar multiples of a state.   This notion appears because of normalization                    , which is equivalent 
to the squared magnitude of the components in any choice of basis summing to 1.  

(B) An inner product defined for all vectors which satisfies  



Generalized Probability Theory
• Axiom of States.  Quantum states are rays in Hilbert space.  A ray is an equivalence class

of scalar multiples of a state.   This notion appears because of normalization                    , which is equivalent 
to the squared magnitude of the components in any choice of basis summing to 1.  

• Every N-dimensional Hilbert space is isomorphic to         .   We are free to choose the representation of a 
vectors, and so we choose the basis vector to be a 1 in the i-th position,     

• With this choice, the abstract vectors               can be represented in components  

• And the inner product takes the familiar form of a complex dot product:



Generalized Probability Theory

• But since QM takes a basis-independent point of view (a vector is not just thought of as a list of coordinates , 
because that implies a choice of basis) it is useful to be aware of the abstract definition of “bras” like        . 

• Given any vector space     , one can consider the dual vector space       consisting of linear functionals that 
map vectors in     to real numbers,                            , 

• If        is a vector, then what is        ? The relationship of        (a “ket”) to        (a “bra”) is effectively the same as 
the relationship between a column vector  and a row vector.

• In mathematics, “functional” is a somewhat vague redundant term that is used mostly for historical reasons.  
A functional is a function that maps some higher dimensional object (like a function or vector) to a number.

• It turns out that for finite dimensional vector spaces, the dual space of linear functionals is always 
isomorphic to the original space, with every functional represented by the inner product with some vector:

• In QM, we represent the functional that is dual to         under this isomorphism by       .  Therefore the “bras” 
are also called “dual vectors” or “co-vectors.”   



Generalized Probability Theory
• We have seen that an observable is a function that assigns real numbers to events, so that we can compute 

expected values of the observable by averaging this function over the probability distribution on events.  We 
can think of an observable A as a collection of events             and values associated with those events.

• To compute an expectation value, we project onto the basis of events for the observable and take the 
average with respect to the squared magnitudes of the components.   Define the Hermitian operator:

• Now the change of basis and averaging for expectation values is simply an inner product:

(m is the number of outcomes)

( is an outer product , 

compare with           )



Generalized Probability Theory

• Axiom of Observables.  An observable A as a collection of events             and values associated with 
those events, conveniently represented as a Hermitian operator:

• So that the change of basis and averaging for expectation values is an inner product:



Generalized Probability Theory
• Depending on the context of the model, it may be appropriate to update the state / probability vector

describing the system after making a measurement.  

• An exactly similar update occurs after measurements in QM. From the perspective of GPT, there is no mystery 
in “collapsing the wave function”.  In classical theory, measurement identifies the state of the system with a 
particular event.  The only new thing is that QM allows for incompatible sets of events.

• For example, if all I know is that I flipped n fair coins, then I would describe the system by a uniform 
distribution.   But if I learn the parity of the associated bit string (the number of tails mod 2) then I would 
“update  my prior” and describe the system instead by a uniform distribution over strings of the correct parity.



Generalized Probability Theory
• In QM, an observable is a set of events              together we associated real values        .  Therefore it is natural for

a measurement of the observable that yields “a” to inform us that the system is in the state .  

Axiom of Measurement.   Measurement of an observable  on the state          yields one of

possible outcomes      with corresponding probabilities                                       .  If the outcome is       then 

the state of the system immediately after the measurement  is:



Generalized Probability Theory

• Composition of subsystems in QM is a direct generalization of composition in probability theories.   The 
Hilbert space of a composite system is the tensor product of the component Hilbert spaces.

• These states which contain no quantum correlations (“entanglement”) are called product states.  They are 
described by a number of parameters that is linear in the number of subsystems (instead of exponential).
Exercise: write out the resulting prob distributions for a product state, and see the product rule for probs.

• Just as in classical probability theories, the joint state of a composite system consisting of independent and 
uncorrelated states on the component subsystems is given by the tensor product

Axiom of Composition.  The joint state of a composite system is a vector in the tensor product Hilbert space of 
the component subsystem Hilbert spaces.   The joint state of two subsystems is a tensor product of states on 
the component subsystems iff the resulting states are uncorrelated.



Summary of (static) Axioms of QM

• Axiom of states.  States are rays in Hilbert space, or unit vectors in the 2-norm.

• Axiom of composition. The state of a composite system is a vector in the Hilbert space given by the tensor 
product of the Hilbert spaces of the component subsystems.

• Axiom of observables.   An observable is a set of events that are associated with real values, formally 
represented as a Hermitian operator.  Expectation values are given by inner products with this operator.

• Axiom of Measurement.   Measuring a particular observable on a particular state returns a value associated 
with a particular event, after which the state is updated to the vector corresponding to that event.

• The remaining axiom we will need before moving onto the content of the theory is related to dynamics: the 
time evolution of quantum states. To motivate this we will return to classical probability theories and 
describe a dynamics that maps probability vectors to other probability vectors.



A closer look at probability theory

Suppose we want to simulate a biased coin                           .  We flip our fair coin 
enough times to make at least many events, and call one of these “tails.”   

The notion of stochastic dynamics that describes the evolution of probability 
distributions can also be motivated from an algorithmic perspective.

This simple method of simulation could be called “binning”, because in general we 
flip our coin many times and group together (“bin”) sets of coin flip events to 
match the event probabilities in the system being simulated.



A closer look at probability theory

In general it will be computationally complex to determine the bins that 
correspond to a given probability distribution.  

For example, consider the uniform distribution over the set of all combinatorial 
graphs (defined by vertices and edges) that have 40 vertices.   This probability 
distribution is well-defined, but how can we sample from it?  We don’t even know 
the normalization constant?   



A closer look at probability theory
Markov chains: powerful algorithmic technique for sampling desired 
distributions.   Evolve with stochastic matrices that conserve probability.  

P maps probability distributions to probability distributions.

N x N Stochastic Matrix P:

Terminology: a Markov chain is a stochastic process, a  
stochastic matrix is an algebraic object.  



A closer look at probability theory

N x N Stochastic Matrix P:

Represent P as a graph: the indices i,j are vertices, and the Pij are 
edges between them. 

 

 

 

 

1/8

1/6

1/6

1/6

1/4

1/2



A closer look at probability theory

N x N Stochastic Matrix P:

P has one eigenvalue equal to 1, and all eigenvalues less than 
or equal to 1 in magnitude.  

Therefore if P is designed so that the desired distribution is an 
eigenvector with eigenvalue 1, and all other eigenvectors are 
less than 1 in absolute value, then repeatedly applying P will 
approximately prepare the desired distribution.



A closer look at probability theory

Stationary Distribution: 

N x N Stochastic Matrix P:



A closer look at probability theory

While Markov chains are most commonly taken to be “homogeneous” (the same stochastic matrix applied 
at every time step), we can also consider inhomogeneous (time dependent) stochastic evolutions. 

Another possibility is to consider composite systems, with stochastic matrices on the full system defined in 
terms of tensor products of stochastic matrices on subsystems.   If , and              are 
stochastic matrices defined on              respectively, then a joint stochastic evolutions we can consider is:   

This joint Markov chain independently evolves each of the component subsystems.  Therefore it is incapable 
of generating correlations across subsystems.

To create correlations we must include stochastic matrices that act across two or more subsystems.  



By combining the notion of inhomogenous Markov chains, and stochastic matrices formed by tensor 
products, we can consider a model of stochastic circuits ( are stochastic matrices = “gates”):



Simulate the model on a computer: brute-force exponential-time simulation of the probability vector?   



Simulate the model on a computer: brute-force exponential-time simulation of the probability vector?
Efficient simulation by “random walk”!   



Universality:  what gates do we need to include? It suffices to have a classical reversible circuit together 
with ancillary fair coins as input.   (for those who know: analogous to “Clifford + magic state QC”)    



Irreversibility:  When are stochastic gates invertible?  Consider the simple case of an input that is either 0 
or 1, passing through a fair coin flip gate:

Nielson and Chuang mention in a comparison of classic logic gates and “quantum gates”, that the former 
are discrete and the latter continuous.  One may disagree with this because stochastic gates form a 
continuous set, but the price that must be paid for consider these gates is time-irreversibility.



Dynamics for Probability Theories

• Stochastic matrices map probability distributions to probability distributions (i.e. they preserve 
normalization and nonnegativity).   

• We can evolve probability distributions according to either homogeneous (time-independent) or 
inhomogeneous (time-dependent) Markov processes / stochastic matrices.

• For composite systems, one can form stochastic matrices by taking tensor products or stochastic matrices 
that act “locally” on a constant number of component subsystems.

• A fundamental property of stochastic evolutions is time-irreversibility.   The very notion of a stationary 
distribution implies the time-irreversibility of stochastic process.



Quantum Theory: Unitary Dynamics
• Quantum dynamics should map quantum states to quantum states, which means they should preserve the 

2-norm.  These are called orthogonal transformations (over    ) and unitary transformations (over    ).

• Orthogonal and unitary transformations are defined as those linear transformations that preserve inner 
products.   Given a linear operator       on a vector space , there is a corresponding adjoint operator          
which acts on the dual space, so that the co-vector of is               .   In finite dimensional spaces, the 
matrix corresponding to       is the transpose conjugate of      .

• The property of preserving inner products means  for all                 , which implies    

This equation implies                     , in other words unitary evolution is always invertible.



Quantum Theory: Unitary Dynamics

Invertibility is just the tip of the iceberg.   This property implies that unitary transformations (or unitary 
matrices) form a group under multiplication.  A continuous group that is also a compact manifold.  The 
group U(d) of unitary transformations on a d-dimensional space is a classically studied Lie Group.

An immediate intuition for unitary transformations can be gained by the fact that they preserve inner 
products (and hence the 2-norm).  They preserve Euclidean distance, and are therefore rotations.

Consider a continuous one-parameter group of unitary transformations                              satisfying

Representing the homogeneous time-evolution of a quantum syste.  Stone’s theorem says that 

For some self-adjoint operator          (self-adjoint means                , which is equivalently called a 
Hermitian operator i.e. an observable…)



Quantum Theory: Unitary Dynamics

More generally, the instantaneous unitary time evolution of a quantum state             is generated by a 
(potentially time-dependent) Hermitian operator            , yielding the famous Schrodinger equation:

The operator           is called the Hamiltonian, and it turns out to correspond to an observable of 
fundamental importance called the energy of the quantum system. 

The point of “energy” is that it is conserved.  It is invariant under time relations. In physics,
symmetries correspond to conserved quantities, and energy is the conserved quantity corresponding 
to time translation symmetry.

This relationship of energy and time translation symmetry is what lies behind the Schrodinger 
equation.  A beautiful treatment can be found in Sakurai’s Graduate Physics QM book.   For us it is too 
much of a tangent and so we will accept it as the axiom of dynamics.



Quantum Computer: just like the stochastic gate model, but now all gates ( )  are unitary.



Axioms of QM

• Axiom of states.  States are rays in Hilbert space, or unit vectors in the 2-norm.

• Axiom of composition. The state of a composite system is a vector in the Hilbert space given by the tensor 
product of the Hilbert spaces of the component subsystems.

• Axiom of observables.   An observable is a set of events that are associated with real values, formally 
represented as a Hermitian operator.  Expectation values are given by inner products with this operator.

• Axiom of Measurement.   Measuring a particular observable on a particular state returns a value associated 
with a particular event, after which the state is updated to the vector corresponding to that event.

• Axiom of Dynamics.  Quantum time-evolution is a unitary transformation.  This evolution is generated at 
each instant in time by a Hermitian operator called the Hamiltonian, which is the observable corresponding 
to energy, according to the Schrodinger equation.  


