
Quantum Marginal Consistency

The k-local Hamiltonian problem is QMA-complete.  By the variational principle, the complexity of the 
problem is unchanged if we ask for a solution over the space of density matrices:

By linearity, this minimum can be expressed in terms of the local reduced density matrices:

Where        is the RDM of the k-qubits on which         acts on nontrivially.  How many independent parameters 
can there be in                      , as compared to    ?     Can we minimize over the                     ?



Quantum Marginal Consistency

The problem with minimizing over the RDMs                    is that we would also need to check that these local 
RDMs are consistent, that they could legitimately arise from some global state    . 

We touched on this issue briefly in the context of monogamy of entanglement.  If A shares a Bell state with 
B, then B cannot also share a Bell state with C, 

This example implies that not every choice for the local RDMs will be consistent with a global state.



Quantum Marginal Consistency

Given 3 qubits, A,B,C, and marginal states            and           , we ask when there is a              with 

It turns out that even for this case there is no analytic solution.  But if assume symmetry between B and C,

Then              is called a symmetric extension of           .   For this special case there is an elegant solution, the 
two-qubit state          has a symmetric extension if and only if    

Note that                        is sometimes called the purity of the state     since it is equal to 1 for pure states, and 
less than 1 for impure states.   



Quantum Marginal Consistency

Active learning: assume that                                                   is a symmetric extension of           which happens to 
be pure (a pure symmetric extension),  show that

Necessarily holds.



Quantum Marginal Consistency

Returning to the general case, we’ve recast the local Hamiltonian problem in terms of reduced density 
matrices, reducing from exp(n) to poly(n) parameters (matrix entries) used to describe the state:

In the context of NP (or MA), Merlin could give us a classical witness that describes these RDMs

However we believe that                            .   So the problem with such a witness must be our inability to check
for consistency of the RDMs.   This suggests a reduction from LH to marginal consistency.

Theorem: the marginal consistency problem is as  hard as the local Hamiltonian 
problem.  “Consistency of local density matrices is QMA-complete”, Liu 2006.   

Yi-Kai Liu



Quantum Marginal Consistency

And these marginals are consistent if and only if the graph is 3-colorable.   

Liu’s theorem generalizes an analogous statement in classical complexity theory: deciding whether marginal 
probability distributions are consistent with some global distribution is NP-hard.

In the classical case, the reduction is based on graph coloring (3-COLORING).  For each vertex u, we have a 
random variable that takes values in               .   For each edge there is a marginal which is uniform over 

Liu’s proof is based on a different kind of reduction.  Rather than mapping a specific instance of consistency 
to a specific instance of LH, it uses the ability to repeatedly solve the consistency problem (for different 
inputs) to solve any local Hamiltonian problem.  

In complexity theory, this ability to solve any problem in a class “on-demand” is called an oracle.  If A, B are 
classes then         is “A with an oracle for problems in B”, e.g.            . 



Quantum Marginal Consistency

Definition (CONSISTENCY):



Quantum Marginal Consistency

How would you show CONSISTENCY is in QMA?  (assume you can trust the prover to send many copies)

Liu’s proof is based on a different kind of reduction then we have seen so far.  

Rather than mapping a specific instance of consistency to a specific instance of LH, it uses the ability to 
repeatedly solve the consistency problem (for different inputs) to solve any local Hamiltonian problem. 

In complexity theory, this ability to solve any problem in a class “on-demand” is called an oracle.  If A, B are 
classes then         is “A with an oracle for problems in B”, e.g.            . 

Therefore showing CONSISTENCY is in QMA is the “easy direction”, and the interesting direction is to show 
that CONSISTENCY is QMA-hard by a reduction to the local Hamiltonian problem.  



Quantum Marginal Consistency

Liu’s reduction is based on a connection between the local Hamiltonian problem, and an important field of 
optimization known as convex programming.  

Definition (CONVEX PROGRAMMING): 

The membership oracle          takes as input a point                 and returns 1 if x is in K, and 0 if x is not in K. 

Note that while convex programming problems always have the form of optimizing a function over a convex 
set, there can be differences in the way the set is specified.  Instead of a membership oracle, the set could 
(for example) be defined implicitly by equations and inequalities.   



Quantum Marginal Consistency

Definition (CONVEX PROGRAMMING): 

In 2004, Bertsimas and Vempala gave a rigorous poly-time algorithm for a version of this problem.  Their 
algorithm is based on random walks.  Liu uses their result as a black box.  



Quantum Marginal Consistency

The local Hamiltonian can be cast in the form of a convex program:  

This version of the problem has a solution that involves exponentially many variables (matrix entries), so we 
recast it in a form with polynomially many variables,

Therefore if one has a membership oracle for the set                                                                         then its 
possible to apply the Bertismas and Vempala algorithm to solve the LH problem in poly-time! 



Quantum Marginal Consistency

Prior to being considered by quantum information theorists, the marginal consistency problem had a long 
history in quantum chemistry, where it is called the N-representability problem.    

In the context of electronic structure, the molecular Hamiltonian only depends on interactions involving at 
most two electrons at a time (2-RDMs).  The question of whether these (fermionic) 2-RDMs are consistent 
with some global fermionic wave function is the N-representability problem. 

The N-representability problem was shown to be QMA-complete in 2006 by Liu, Christandl, and Verstraete. 

The main thing that needs to be done is to recast spin Hamiltonians in terms of fermions (which is the 
opposite direction from the Jordan Wigner transformation…).  Each qubit i is a fermion with two modes a,b,

(Additional term enforcing 1 fermion per site)


