
Upper Bounds in Quantum Complexity

Review: QMA is the set of problems with a succinct quantum witness that can be verified efficiently by a QC.  
The local Hamiltonian problem and the consistency of reduced density matrices problem are QMA-complete.  

The “interesting” part of both of these results was to show that these problems are QMA-hard (“lower 
bounding the complexity”).  In contrast, putting them in QMA (“upper bounds”) was relatively easy.

Today we turn to the converse subject: upper bounding the power of quantum complexity classes (and the 
hardness of quantum-related tasks) in terms of classical complexity classes. 

In computational physics, we want to upper bound the hardness of quantum-related tasks by showing they 
are in P (or BPP).  

In complexity theory, we have more options because we can prove upper bounds involving powerful wizards.  
For example, if some restricted version of LH is in NP, then that could be an important and surprising result.
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Consider BQP, the class of problems solvable by a quantum computer with bounded error in polynomial 
time.  How powerful does a classical computation need to be to simulate BQP?

This can be done in the classical complexity class EXP, which is analogous to P but runs for exponential time.

One brute-force method would be to use an exponential amount of time and space (memory) to simulate 
classically simulate BQP by matrix-vector multiplication in the full Hilbert space.  [proof by MATLAB]

Definition (exponential time).                    if  there exists a polynomial p and a verifier                  such that
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Let’s get an explicit worst-case upper bound on the asymptotic runtime of this classical simulation.

Suppose the quantum circuit has n qubits, starts in         , and has m gates                       that are 
at most 2-local.  How much time and space does MATLAB use, in the worst case?

A                  matrix has      .   Therefore these time and space bounds require a sparse representation 
of the matrix.   How many entries are in each row of the matrix (assume U is 2-local)?

Note that in general we may not be able to parallelize any of the gates. (can you give an example?)
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This description of a MATLAB program shows that                           .  What about                            ?  

We can show                              in two ways.  One would be to write a loop that goes over all possible 
witnesses (precision?) and simulates the circuit evaluated on each witness.   This would take:

Another method to show                             would be to use MATLAB to solve the local Hamiltonian problem.  
The Hamiltonian on n qubits is a                 matrix.   An N x N matrix can be diagonalized in time                by 
Gaussian elimination (or a little faster by better methods).  MATLAB has “eigs” for sparse matrices.

The number of non-zero entries per row of the Hamiltonian is upper bounded by a constant times the 
number of local terms, so it is polynomial.  Therefore the eigs-based simulation of LH requires
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So far these results are relatively straightforward: everything we can do with a polynomial amount of 
quantum space seems to be brute-force simulable using an exponential amount of classical resources.  

We can obtain a tighter upper bound on BQP by changing the way we represent quantum mechanics.  
Instead of the Schrodinger representation we’ve used so far, we’ll shift to the Feynman representation.

If the output state of the quantum circuit is                                       , then the acceptance probability is 

Where                             .   The Feynman path integral expresses this probability as a sum over exponentially 
many “paths”,
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Therefore we can compute the acceptance probability of a BQP circuit as

It takes time                 , so each contribution to this circuit path integral takes poly(n) time to compute. 

Each path                         is described by                                bits.  For a given                         , how long does it 
take to compute the amplitude   
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More importantly, each amplitude only takes poly(n) space to compute.  We can loop through the 
amplitudes and keep a running total of the sum of all amplitudes we’ve seen so far.  

The important point is that although the algorithm still requires an exponential amount of time, it now only 
needs a polynomial amount of space.   

Each amplitude takes poly(n) space to compute, then we can add it to the running total and erase / reset 
the bits that we used to compute the amplitude.  By erasing as we go, we are careful to never use more 
than poly(n) space.  This algorithm needs resources:

The set of problems that a classical computer can solve in polynomial space, with no restriction on time, is 
PSPACE.  Therefore we have                                                   .
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The Feynman representation allows us to see                                     .  To get a better feel for PSPACE, we can 
describe a PSPACE-complete problem called OTHER END OF THIS LINE (OEOTL).   

Therefore G contains vertices of degree at most 2, so it is a union of paths, cycles, and isolated vertices.

Let G = (V,E) be a directed graph where every vertex is associated with an n bit string.  The edges are 
represented by polynomial sized circuits S and P, with an edge from u to v if 

OEOTL: Given that the vertex 00…0 has an outgoing edge and no incoming edge, find the other end of this line.
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Using the path integral we can get tighter upper bounds.  Next we will show                        . 

Recall that PP is the class probabilistic polynomial time.  It removes the restriction of bounded-error 
from BPP.  As a result, the completeness and soundness for PP are arbitrarily close to ½.  Therefore PP is 
the class of problems you can solve efficiently with probability better than random guessing.  

Definition (Probabilistic Polynomial-time).                   if  there exists polynomials p and q, and a verifier                  
such that

Can we see that                                   ?  But how to imagine putting EotL in PP? 
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How do we use the circuit path integral to show that                        ? 

Hint: recall that {Hadamard, Toffoli} is a universal set of quantum gates in which every amplitude is real 
in the computational basis.  

To simulate a BQP circuit, we want to decide whether the circuit outputs 1 at least 2/3s of the time, or 
no more than 1/3 of the time, promised that one of these is the case.

The standard tactic for a PP machine is to put in the tiniest possible amount of effort, and then try to 
guess the answer.  Since it only has to do the tiniest bit better than random guessing.  

Therefore the PP machine will select a single random path that contributes to the path integral.  If that 
path contributes a positive amplitude then it accepts, and if it contributes a negative amplitude it rejects.  
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We’ve established                       .   What about                          ?  

We could imagine looping through some discretized description of the set of all possible quantum witness 
states.  Such a proof could work, but needs to be explicit about how to search over witness states.

Another way to show                          would be to show that we can solve the local Hamiltonian problem 
in PP.   This is the route we will take, using a Feynman path integral.  

Given a local Hamiltonian                                                      and two real numbers (a,b) with
we seek to decide between two cases:  

YES:

NO:
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To distinguish between these cases, define                         , where                        .  The eigenvalues of G are
contained in the interval [0,1], and the largest eigenvalue is                                 .  

We will consider a “partition function”                         .  

In a YES instance we have                 , and in a NO instance                 , with   

Can we upper bound Z for NO instances in terms of        , and lower bound Z for YES instances with        ? 

YES:

NO:

So L = poly(n) suffices to make the ratio of partition functions between the two cases exponentially large.
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Expanding Z as a path integral:

More compactly: 

We can compute the amplitudes on at a time using polynomial space.  We can put all the positive 
amplitudes on one side of the ledger, and the negative amplitudes on the other side.

Equivalently, since the ratio                    is exponentially large, we can decide between the two cases with 
probability better than random guessing, just by looking at the amplitude of a single random path. 
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From the perspective of the Feynman path integral, the power of quantum computing (BQP, or even 
QMA) comes from the ability to approximate exponentially large alternating sums.

These path integrals add up exp many amplitudes, which may be positive or negative and thus undergo 
many cancellations, and the result depends on what is left over.  This is interference.  

It’s a bit like the year 2000 US presidential election: +50 million votes for Bush, +50 million votes for 
Gore, and Bush won because he led by 537 votes in the Florida recount.    

The close ties between quantum complexity and alternating sums raises a question.  What is the 
complexity of quantum systems described by path integrals with all positive amplitudes?

Aaronson: “as far as I’m concerned, Feynman got the Nobel Prize for showing                         .”   … 
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Returning to the “partition function”: 

We could put aside H for a moment, and rephrase the local Hamiltonian problem as “deciding the 
largest eigenvalue of a Hermitian matrix.”

What happens to the complexity of estimating this sum if all the terms have a nonnegative amplitudes?

A sufficient condition for the amplitudes to all be nonnegative would be for G to be a matrix with 
nonnegative entries (in the basis of the         ).   

In what follows we will (1) motivate the case of nonnegative G in terms of the Hamiltonian, and (2) 
establish a protocol with a classical prover and classical verifier for solving this restricted version of LH.
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An example of a Hamiltonian giving rise to a nonnegative matrix G, consider the Ising model:

We want to understand H as a matrix in the computational basis, and show that it can shifted and 
rescaled into a nonnegative matrix G.  

The ZZ terms are on the diagonal, so we can control the sign of those (make them all positive or 
negative) by shifting the energy by a constant.     

(one may specify this Ising model as the “ferromagnetic transverse Ising spin chain”)

What about the off-diagonal matrix elements of H in the computational basis?
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The off-diagonal elements of               are (real and) nonnegative, so the off-diagonal elements of H are 
real and non-positive. 

Any H with all real and non-positive matrix elements in a basis B can be rescaled and shifted into a 
nonnegative matrix in that basis.  Physicist say Hamiltonians with this property “do not have a sign 
problem”, and in quantum information we call these Hamiltonians stoquastic.  

Therefore, after shifting the ground energy to zero,                                  is a nonnegative matrix. 

“Stoquastic” = “Quantum” + “Stochastic.”   These Hamiltonians have some properties in common with 
stochastic matrices.  The key point is that their ground state path integrals are nonnegative sums, instead 
of alternating sums, and this will limit the complexity of the stoquastic local Hamiltonian problem.
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Before using path integral to solve the stoquastic local Hamiltonian problem using a classical prover and 
classical verifier, it’s worth noting that stoquastic Hamiltonians are ubiquitous in nature.  

Besides the ferromagnetic transverse Ising chain, all generalized transverse Ising models are stoquastic:

The ferromagnetic Heisenberg model is also stoquastic.  

In physics, any H = T + U (kinetic + potential) for distinguishable particles (or bosons) is stoquastic e.g. 
particles hopping on a graph under the influence of a potential:   
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In contrast with the general local Hamiltonian problem which is QMA-complete, the stoquastic LH 
problem is in the classical class AM.  This is proven in “The complexity of stoquastic local Hamiltonian 
problems”.   Bravyi, Divincenzo, Oliviera, Terhal, 2006.    

We have already defined the class MA: Merlin sends a poly sized classical witness to Arthur, who verifies it 
using a BPP machine.  AM is similar, but now Arthur goes first: he can flip some coins and ask some 
questions before Merlin sends the witness.  

The Arthur-Merlin protocol for deciding stoquastic LH is based on approximating the partition function:

The proof illustrates a general theme in approximation algorithms called “the connection between 
sampling and counting.” 
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The first step is to reduce our sum over nonnegative weights to an unweighted counting problem.

Since the matrix elements of G are specified by m = poly(n) many bits, we can decompose G as an average:

where each G(t) is a binary matrix (a matrix with entries 0 and 1).  This decomposition is highly nonunique, 
there are many explicit choices one could make (it’s also inessential, but used in Bravyi et al.’s proof). 
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Now the trace is re-expressed as:

Where                                                 is a binary string of length (n + m)L, and F is a Boolean function: 

Therefore the original problem is reduced to counting the cardinality of the support of F, 
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Therefore the problem of deciding whether the ground state energy is large or small is now reduced to 
deciding whether      is large of small.   As Bravyi et al. phrase it:

Immediately after this line, the proof is concluded with the following argument. 
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