
Upper Bounds in Quantum Complexity

We’ve established                       .   What about                          ?  

We could imagine looping through some discretized description of the set of all possible quantum witness 
states.  Such a proof could work, but needs to be explicit about how to search over witness states.

Another way to show                          would be to show that we can solve the local Hamiltonian problem 
in PP.   This is the route we will take, using a Feynman path integral.  

Given a local Hamiltonian                                                      and two real numbers (a,b) with
we seek to decide between two cases:  

YES:

NO:
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To distinguish between these cases, define                         , where                        .  The eigenvalues of G are
contained in the interval [0,1], and the largest eigenvalue is                                 .  

We will consider a “partition function”                         .  

In a YES instance we have                 , and in a NO instance                 , with   

Can we upper bound Z for NO instances in terms of        , and lower bound Z for YES instances with        ? 

YES:

NO:

So L = poly(n) suffices to make the ratio of partition functions between the two cases exponentially large.
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Expanding Z as a path integral:

More compactly: 

We can compute the amplitudes on at a time using polynomial space.  We can put all the positive 
amplitudes on one side of the ledger, and the negative amplitudes on the other side.

Equivalently, since the ratio                    is exponentially large, we can decide between the two cases with 
probability better than random guessing, just by looking at the amplitude of a single random path. 
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From the perspective of the Feynman path integral, the power of quantum computing (BQP, or even 
QMA) comes from the ability to approximate exponentially large alternating sums.

These path integrals add up exp many amplitudes, which may be positive or negative and thus undergo 
many cancellations, and the result depends on what is left over.  This is interference.  

It’s a bit like the year 2000 US presidential election: +50 million votes for Bush, +50 million votes for 
Gore, and Bush won because he led by 537 votes in the Florida recount.    

The close ties between quantum complexity and alternating sums raises a question.  What is the 
complexity of quantum systems described by path integrals with all positive amplitudes?

Aaronson: “as far as I’m concerned, Feynman got the Nobel Prize for showing                         .”   … 
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Returning to the “partition function”: 

We could put aside H for a moment, and rephrase the local Hamiltonian problem as “deciding the 
largest eigenvalue of a Hermitian matrix.”

What happens to the complexity of estimating this sum if all the terms have a nonnegative amplitudes?

A sufficient condition for the amplitudes to all be nonnegative would be for G to be a matrix with 
nonnegative entries (in the basis of the         ).   

In what follows we will (1) motivate the case of nonnegative G in terms of the Hamiltonian, and (2) 
establish a protocol with a classical prover and classical verifier for solving this restricted version of LH.
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An example of a Hamiltonian giving rise to a nonnegative matrix G, consider the Ising model:

We want to understand H as a matrix in the computational basis, and show that it can shifted and 
rescaled into a nonnegative matrix G.  

The ZZ terms are on the diagonal, so we can control the sign of those (make them all positive or 
negative) by shifting the energy by a constant.     

(one may specify this Ising model as the “ferromagnetic transverse Ising spin chain”)

What about the off-diagonal matrix elements of H in the computational basis?



Upper Bounds in Quantum Complexity

The off-diagonal elements of               are (real and) nonnegative, so the off-diagonal elements of H are 
real and non-positive. 

Any H with all real and non-positive matrix elements in a basis B can be rescaled and shifted into a 
nonnegative matrix in that basis.  Physicist say Hamiltonians with this property “do not have a sign 
problem”, and in quantum information we call these Hamiltonians stoquastic.  

Therefore, after shifting the ground energy to zero,                                  is a nonnegative matrix. 

“Stoquastic” = “Quantum” + “Stochastic.”   These Hamiltonians have some properties in common with 
stochastic matrices.  The key point is that their ground state path integrals are nonnegative sums, instead 
of alternating sums, and this will limit the complexity of the stoquastic local Hamiltonian problem.
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Before using a path integral to solve the stoquastic local Hamiltonian problem using a classical prover 
and classical verifier, it’s worth noting that stoquastic Hamiltonians are ubiquitous in nature.  

Besides the ferromagnetic transverse Ising chain, all generalized transverse Ising models are stoquastic:

The ferromagnetic Heisenberg model is also stoquastic.  

In physics, any H = T + U (kinetic + potential) for distinguishable particles (or bosons) is stoquastic e.g. 
particles hopping on a graph under the influence of a potential:   
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In contrast with the general local Hamiltonian problem which is QMA-complete, the stoquastic LH 
problem is in the classical class AM.  This is proven in “The complexity of stoquastic local Hamiltonian 
problems”.   Bravyi, Divincenzo, Oliviera, Terhal, 2006.    

We have already defined the class MA: Merlin sends a poly sized classical witness to Arthur, who verifies it 
using a BPP machine.  AM is similar, but now Arthur goes first: he can flip some coins and ask some 
questions before Merlin sends the witness.  

The Arthur-Merlin protocol for deciding stoquastic LH is based on approximating the partition function:

The proof illustrates a general theme in approximation algorithms called “the connection between 
sampling and counting.” 
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The first step is to reduce our sum over nonnegative weights to an unweighted counting problem.

Since the matrix elements of G are specified by m = poly(n) many bits, we can decompose G as an average:

where each G(t) is a binary matrix (a matrix with entries 0 and 1).  This decomposition is highly nonunique, 
there are many explicit choices one could make (it’s also inessential, but used in Bravyi et al.’s proof). 
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Now the trace is re-expressed as:

Where                                                 is a binary string of length (n + m)L, and F is a Boolean function: 

Therefore the original problem is reduced to counting the cardinality of the support of F, 
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Therefore the problem of deciding whether the ground state energy is large or small is now reduced to 
deciding whether      is large of small.   As Bravyi et al. phrase it:

Immediately after this line, the proof is concluded with the following argument. 
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This proves that the stoquastic local Hamiltonian problem can be solved in AM.  In contrast, the general 
LH problem is QMA-complete, so in this way stoquastic H have less ground state complexity.

But what about computational physics, can we use the nonnegativity of stoquastic path integrals to 
simulate some quantum systems efficiently, even without the help of a powerful prover?

The answer turns out to be yes: because stoquastic path integrals are nonnegative, we can define a 
distribution on the space of paths.  We can use a Markov chain to sample from that distribution, and then 
use those samples to compute physical observables by the Monte Carlo method.  

Methods which use this approach are called quantum Monte Carlo methods.  The particular variant we 
are describing is called “path integral Monte Carlo.”  It was the first and still the best in practice (for spin 
systems), and was proposed by Suzuki, “Monte Carlo simulations of quantum spin systems”, 1977.
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The path integrals we’ve defined in terms of the matrix G apply to ground states.  We can get also include 
thermal states by working with the physical partition function:

Each                 is a nonnegative matrix, and so we may define a probability distribution over paths:

The marginal distribution is: 

Therefore, if we can sample from      we can sample from the thermal state!
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Our distribution over paths has a form resembling a classical Gibbs distribution: the probability density is 
easy to compute given                      , but the partition function Z is not easy to compute.

With more arithmetic, one can formally relate our path integral for Z to a classical partition function.  This 
is called “the correspondence between quantum systems in D spatial dimensions, and classical systems in 
D + 1 spatial dimensions.”  This correspondence is well studied in 1980s physics because it relates the 
critical phenomena of the two models, critical exponents, etc.  

But the applicability of the correspondence is widely misunderstood due to sloppyness: it only applies to 
stoquastic Hamiltonians, and it only applies to equilibrium (thermal or ground state) path integrals.  

Suzuki, “Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: 
Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin 
Correlations.”  1976.  
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Anyway, back to this form that resembles a classical Gibbs distribution:

Where at this moment, x and y are shorthand for configurations of our state space, which is a space of 
paths                    . In constructing P we choose which configurations to transition between, for example it is 
common to stipulate that x and y differ by flipping a single bit.   

To sample from      , one constructs a stochastic matrix P which satisfies detailed balance  

The Metropolis probabilities satisfy detailed balance: 
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Therefore if H is stoquastic, its thermal path integrals are nonnegative and we can in principle sample from 
them by a Markov chain and use this to calculate observables by Monte Carlo.  

To get a general result about this rate of convergence, we should choose a premise that excludes NP-hard
problems. The case of ferromagnetic systems (all spins want to align, on any graph and in any dimension), 
was solved by Bravyi and Gosset in 2017.  

But how long does the Markov chain take to converge?  To see that this is a major issue, note that our NP-
complete 3-SAT Hamiltonians are also stoquastic.

The case of simulating 1D stoquastic systems, was solved by me during my PhD.  ☺


