
Quantum Supremacy

Practical QS: perform some computational task on a well-controlled quantum device, which cannot be 
simulated in a reasonable time by the best-known classical algorithms and hardware.

Since proving                       seems to be beyond the capabilities of our current civilization, we lower the 
standards for theoretical QS.  One seeks to provide formal evidence that classical simulation is unlikely.

Theoretical QS: perform a computational task efficiently on a quantum device, and prove that task cannot 
be efficiently classically simulated.  

For example: 3-SAT is NP-complete, so it cannot be efficiently classical solved unless P = NP.

Theoretical QS: perform a computational task efficiently on a quantum device, and prove that task cannot 
be efficiently classically simulated unless “the polynomial Heierarchy collapses to the 3nd level.”  



Quantum Supremacy

Which is more difficult:

Task A: deciding if a circuit outputs 1 with probability at least 2/3s, or at most 1/3s

Task B: sampling from the output of an n-qubit circuit in the computational basis

A common feature of QS arguments is that they consider sampling problems, rather than decision 
problems.  They allow us to characterize the complexity of sampling measurements of quantum states.

Sampling from distributions is generically more difficult than approximating observables, since we can use 
samples to estimate observables, but not the other way around. 

One can imagine quantum systems whose local observables are easy to classically compute, but for which 
sampling the full state is computationally complex.

By moving from decision problems to sampling problems, we make the task of classical simulation much 
more difficult.  But if most useful problems have a decision form, what problem are we solving now?
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1.  We consider the class PostBQP, poly-time quantum circuits with the ability to post-select on 
measurement probabilities.  

All the various examples of theoretical QS are based on the same underlying argument.  Outline:

2.  In 2004, Aaronson showed that PostBQP = PP.  By Toda’s theorem,                        . 

4.  Now we consider quantum system, which may not be a universal QC.  But if we add the fantastical 
power of post selection, then this device could become universal.   Therefore, our device + postselection = 
PostBQP.   Therefore if we could simulate our device classically, then we could simulate our device + 
postselection in PostBPP.  Then PostBPP = PostBQP, and the PH collapses to the 3rd level.  

3.  In contrast, we can consider PostBPP, poly-time classical prob computation with the ability to post-
select on arbitrary measurement probabilities. But                                            , which is in the 3rd level of PH. 

This is the modern version, but the original arguments date back to “Adaptive Quantum Computation, Constant 
Depth Quantum Circuits and Arthur-Merlin Games.” Barbara M. Terhal, David P. DiVincenzo, 2002.  
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We begin unpacking this argument by defining classical post-selected computation.  

This definition of PostBPP is taken from the paper which first defined PostBPP, which is “The Complexity of 
Stoquastic Local Hamiltonian Problems.” Bravyi, DiVincenzo, Oliveira, Terhal, 2006.

The point is that the bit b (which is a Boolean proposition computed from the literals x,y) is the bit we 
post-select on.  At the end of the computation, we only compare about events with b = 1.  

We also have                                           , where the latter class is define by summing over exponentially many 
paths, as in our de-randomized definition of BPP.  This is used to show that PostBPP is in the 3rd level of PH.
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Next we define PostBQP and show that it is equal to PP.

“Quantum Computing, Postselection, and Probabilistic Polynomial-Time.” Aaronson, 2004.
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As Aaronson explains, upper bounding PostBQP by PP is not that different from upper bounding BQP by 
PP, since PP is already sensitive to low-probability events.
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The direction                                    is more interesting.  Recall that PP contains NP (and in fact all of PH), and 
so we do not expect BQP to contain PP.  Therefore post-selection must be used in an essential way to show     

We need to give a reduction, starting from an arbitrary problem in PP and then using quantum
computation + post selection to solve that problem.  

The definition of PP can be distilled down to the following: let                                        be efficiently
computable, and let                                        .   Decide whether                                           .  

We need to show that this problem is in PostBQP for any efficiently computable f.  The first step prepares:
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Before we can responsibly prepare the following state and proceed with the proof:

We need to take the safety training course on applying functions in superposition.  As long as f is an 
efficiently computable function, we can construct the following unitary as an efficient quantum circuit:

Keeping around a copy of x in the extra register makes the function reversible, and hence unitary.  Note 
that classical computers also let you apply functions in parallel:
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Now that we all have our training certificates, we can resume the proof:

Apply a Hadamard to n qubits, and postselect on them being in the state 00…0.  This results in                , 

At this point we have a single qubit state, whose amplitudes encode the accept/reject probabilities of the
original circuit. We are done if we learn these amplitudes by a measurement.  But because the interesting 
case is very close uniform, we use postselection to help the final readout.  
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Once we have PostBQP = PP, we know that quantum computing with postselection can solve problems 
that are believed to be outside of the polynomial hierarchy.  

This gives us formal evidence that PostBQP,                                              .  We would like “un-post-select both 
sides of this equation” to obtain                           .   

The argument is: if a BPP machine can simulate a BQP machine, then that same BPP with postselection
can simulate that same BQP machine with postselection.

This argument works formally, but comes with a strong caveat: the BPP simulation must be to within 
multiplicative error on the amplitudes.  If the BQP distribution is p, we demand there is some 
such that for all events x the BPP simulation samples from q with

Why is this level of precision needed?  (we can see the reason from the definitions we have so far).  
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Therefore these QS arguments allow us to rule out super-precise classical simulations of various quantum 
systems.  Either exact simulation, or “simulation up to multiplicative error”, are likely impossible.

But two quantum states that are close in trace distance are effectively indistinguishable, so what we would 
really like to do is rule out classically sampling distributions that are close in trace distance.

For this we need additional arguments and assumptions.  Typically we want to go from a worst-case 
hardness (or approximating an amplitude) to an average-case hardness (the amplitudes are hard to 
compute on average).

Therefore one way to have all quantum supremacy arguments collapse is to show that, sure exact classical 
simulation is inefficient, but approximate classical simulation could be.  Despite dating back to 2002, QS 
arguments only became prominent in 2011 and later.

The gold standard problems are the ones like factoring: in                         and apparently not in P.  The shift 
to considering exact or super-precise sampling problems is in some sense a sign of desperation.
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As mentioned, the arguments about PostBPP and PostBQP originated from investigations of stoquastic
Hamiltonians by the group at IBM.   It’s worth understand their motivation.

In 2000, Farhi, Goldstone, Gutmann, and Sipser proposed a quantum algorithm for solving optimization 
problems.   They called it the quantum adiabatic algorithm because it operates by the adiabatic theorem.

The goal is to solve discrete optimization problems: minimize                                 .  To do this we define 

So that the ground state of         corresponds to the bit string that minimizes f.  Now introduce a simple 
transverse field, begin its ground state, and slowly interpolate to the final Hamiltonian: 
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Begin in the ground state of the beginning Hamiltonian at s = 0, then increase s sufficiently slowly so as to 
remain in the ground state of H(s) until s = 1, at which point the ground state solves the problem.

To characterize “sufficiently slowly” set s = t/T for a time scale T > 0, and evolve with H(t).   The adiabatic 
theorem implies this algorithm works if   

We could either imagine building this Hamiltonian in a hardware device (“analog”), or using Hamiltonian 
simulation to evolve with H(t) on a digital quantum computer.  Note that the latter can handle sparse 
matrices and so writing H_p in terms of Pauli Z operators is not necessarily required.
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This algorithm was immediately controversial, because it proposed to solve NP-complete problems with a 
quantum computer.  The computer scientists immediately set out to prove the algorithm fails in general 
(which happens if the spectral gap is exponentially small).  

But this quantum adiabatic algorithm (which later became known as quantum adiabatic optimization, or
quantum annealing) is just too compelling.  No matter how many problems or failures people find with 
the algorithm, it continues to hold interest.  

Shortly after the work of Farhi et al. in the MIT physics and CS departments , Seth Lloyd (who is also at MIT, 
in the EE department) proposed an implementation of Farhi’s algorithm using superconducting flux qubits.

Lloyd plugged in units to describe energy gaps in terms of Ghz, and concluded there was no way for the 
algorithm to work: even if the gap closes as 1/n, it will be lost to noise above 10s of qubits.
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Lloyd did not patent his proposed architecture of Farhi’s adiabatic algorithm.

Perhaps it would have been a good idea to do so, because around 2004 a quantum computing startup 
was founded in Canada: D-Wave Systems Inc.  From the beginning their vision was to accumulate 
hardware patents on route to building a quantum annealer with flux qubits.  

From 2004-2012 D-Wave attracted 10s of millions in venture capital, but they did so at the expense of their 
reputation: they made outlandish claims about what quantum annealing could do.  

This greatly irked the quantum computer scientists, who set out to prove that D-Wave’s model of quantum 
computation is classically simulable.



Quantum Supremacy

By 2004, IBM had built up an expert team of quantum researchers.  About corporate politics, who can say, 
but this directly preceeded the burst of discovery by the IBM group about stoquastic Hamiltonians…

The D-Wave quantum annealing Hamiltonian is stoquastic.  In fact Bravyi et al. make a point of saying that 
every effective spin interaction that can be engineered from superconduting flux qubits is stoquastic.    

We’ve already seen the fact that the stoquastic LH problem is in AM, which provides formal evidence for 
the reduced complexity of ground states used in stoquastic quantum annealing.

But AM is still too powerful to place limits on quantum annealing, since AM contains NP.  Therefore we 
would like to limit the complexity of stoquastic adiabatic computation, without relying on a wizard.
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This was the reason to consider PostBPP in “The Complexity of Stoquastic Local Hamiltonian Problems.”  
There it is shown that sampling the outputs of stoquastic adiabatic computation is in PostBPP, so StoqAQC
cannot be universal for quantum computation unless the PH collapses.   

The proof is based on path integral Monte Carlo and rejection sampling:

We already said we can sample from the ground state (or thermal state) of stoquastic H if we can sample 
from   .  We can write down a random walk to do this, but we can’t determine the number of steps the 
walk needs to converge.  But with postselection we can replace the Markov chain by rejection sampling. 
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One of the greatest open problems in Hamiltonian complexity is to show that stoquastic adiabatic 
computation can be simulated in polynomial-time.  I have worked on this problem for 10 years!

However, due to Hastings, we have (pathological) counterexamples to solving this conjecture by any existing
QMC method.  Therefore we need new ideas for QMC methods, or for ruling out counterexamples.  

In APS March Meeting 2019, D-Wave announced new QA Hamiltonians with nonstoquastic interactions.  But 
the stoquastic simulation conjecture continues to hold great interests amongst the QI complexity theorists.

In 2012, D-Wave opened their devices with over 100 qubits to academic researchers.  Now they have over 
4000 qubits.  The device is interesting but has not yet found any quantum speedup.   

The reason they have not found a speedup is that QMC works very well in practice.  Therefore since 2012 
we have accumulated a lot of empirical evidence for this “stoquastic simulation conjecture.”


