
Quantum Supremacy

The key to theoretical quantum supremacy arguments is the (apparently) enormous difference between 
classical and quantum post-selected computation.  

But the primary modern application of theoretical QS is to argue for hardness of sampling devices that 
implement limited computational models that fall short of being universal.  One example is sampling bosons 
in linear optical networks.  Another example, which we will focus on, are “commuting” quantum circuits.  

Last time we followed the early history of these arguments, where they were used to show that adiabatic 
computation in the ground state of a stoquastic Hamiltonian cannot be universal unless the PH collapses.

QS also provides evidence for the hardness of sampling output distributions of quantum circuits.  There 
is no classical poly-time algorithm to sample these distributions exactly unless the PH collapses.



Quantum Supremacy

Instantaneous quantum polynomial-time (IQP): a class of circuits which starts in            , applies 
polynomially many gates which are diagonal in the Z basis, then Hadamard and measure.   

The name IQP comes from the commuting nature of the intermediate gates.  This means that they can be 
applied in any order, and hence may “all be applied at once” (though this may be experimentally difficult).
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IQP was introduced in “Classical simulation of commuting quantum computations implies collapse of 
the polynomial hierarchy”, Bremner, Jozsa, and Shepherd, 2010.  
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Therefore the main ingredient needed to establish this result is a proof that PostIQP = PP.

This is done by showing PostIQP = PostBQP.  In other words, we need to show that adding post-
selection to IQP circuits suffices to make them universal.  

A convenient universal gate set for BQP is   

All of these are diagonal except the Hadamard gate.  So what we really need is to use post-selection to 
intersperse H gates throughout any IQP circuit, to obtain an arbitrary BQP circuit.

Any ideas for using post-selection (together with all the ancilla qubits you want) to insert H gates into 
an IQP circuit? (we haven’t discussed it in class, but some may know the idea from elsewhere…)
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The construction that allows us to insert Hadamard gates into an IQP circuit using ancillas and post-
selection is closely related to a general construction called ``gate teleportation.’’

Gate teleportation is an analog of state teleportation, for unitary operators.  It has many uses in
quantum computation.  It underlies the measurement-based model of quantum computation, and is 
used in fault-tolerant QC (where “magic states” are consumed to teleport T gates into a Clifford circuit )

As with state teleportation, gate teleportation requires making a measurement with various possible 
outcomes that may scramble the gate that is being teleported.  

In most settings one must use an adaptive correction to descramble the gate after the measurement.  
But with post-selection, we can just post-select on measurement outcomes that do not require a 
correction.  (as in state teleportation, if we measure           then there is no correction).     
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The most basic form of gate teleportation is the following identity:

Where m is the measurement outcome, 0 or 1.  Let                                    , so the state after CZ and H is: 
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A mild generalization of the previous identity is the following:

This holds because        commutes with CZ, and so it as if we input the state             into the circuit 
identity on the previous slide.  
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Returning to the setting of IQP, Bremner, Jozsa, and Shepherd use the following identity:
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Once we have PostIQP = PostBQP, it follows that no classical algorithm can efficiently sample the exact 
output distribution of an IQP circuit unless the PH collapses.  

This “exact” condition can be weakened to “sampling to multiplicative error on each amplitude”,  

To get to a more meaningful notion of approximation (additive error), the usual technique is to relate 
these output distributions to quantities that are believed to be hard to classically compute.

Bremner, Montanaro, Shepherd.  2015
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Note also that the output distribution of nonadaptive MBQC also yields quantum supremacy, for the 
same reasons as IQP.    To my knowledge there is no ideal reference for this statement, because it 
became common knowledge before anyone wrote about it.  

Another point is that if U is a constant-depth quantum circuits that yields quantum supremacy, then 

Is a k-local Hamiltonian, with k = O(1), which has the ground state              .  Therefore sampling the 
ground state of this (gapped, frustration-free) Hamiltonian yields QS.  Note also that H is stoquastic, so 
H’ samples the ground state of a stoquastic H in a rotated basis.
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Even if we accept the conjectures about complex-temperature partition functions being hard to 
compute, and so we believe IQP circuits are hard to simulate up to additive error, we can ask what 
happens to this sampling complexity when we introduce noise into the system.  

This is an active area of research.  In Feb 2019 there was a notable paper which appears to simulate a 
large fraction of IQP circuits in classical poly-time, if the input state is slightly mixed 

For “a large fraction” of IQP circuits with input states of the above form, the authors give a time

To sample IQP output distributions within additive error     .    



Quantum Supremacy

“Efficient simulation of Clifford circuits with nonstabilizer input states.” Bu, Koh. 2019
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The term “Quantum Supremacy” is credited to a lecture by John Preskill, which is 
on the arxiv titled “Quantum computation and the entanglement frontier”, 2012.  

Quantum information science explores the frontier of highly complex quantum states, the 
"entanglement frontier." This study is motivated by the observation (widely believed but 
unproven) that classical systems cannot simulate highly entangled quantum systems 
efficiently, and we hope to hasten the day when well controlled quantum systems can 
perform tasks surpassing what can be done in the classical world. One way to achieve such 
"quantum supremacy" would be to run an algorithm on a quantum computer which solves 
a problem with a super-polynomial speedup relative to classical computers, but there may 
be other ways that can be achieved sooner, such as simulating exotic quantum states of 
strongly correlated matter. To operate a large scale quantum computer reliably we will need 
to overcome the debilitating effects of decoherence, which might be done using "standard" 
quantum hardware protected by quantum error-correcting codes, or by exploiting the 
nonabelian quantum statistics of anyons realized in solid state systems, or by combining 
both methods. Only by challenging the entanglement frontier will we learn whether Nature 
provides extravagant resources far beyond what the classical world would allow.

John Preskill
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Preskill’s words inspired Sergio Boixo and other researchers at Google to 
propose a scheme for achieving near-term practical quantum supremacy.
“Characterizing Quantum Supremacy in Near-Term Devices”, 2016.  

Sergio Boixo, UNM Physics PhD 2008

A major downside of theoretical QS, besides all of the 
assumptions that are involved, is that it only holds rigorously 
in the model of asymptotically large computations.

Instead, the Google team set out to show that a superconducting chip with 50 qubits, built by John Martinis 
(whose UCSB lab was acquired by Google around this time), could perform some well-defined task much 
more quickly than the worlds largest supercomputers.  

The task they chose to focus on is the one that is native to their device: random circuit sampling.  Several 
dozen random 1 and 2 qubit gates (taken from the Clifford + T architecture).   
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Given a random quantum circuit                    , how can we verify the QC implements it accurately? 

This is a hard problem, and Google’s solution is to use an exponential-time brute force classical 
simulation to verify the quantum computation.  

This may seem at first like circular logic: we need a classical computer to verify the output of the quantum 
computer, to make sure it is a distribution that no classical computer could sample. (?)  

Fortunately the practical setting allows us to break out of the cycle: the quantum computer will run for a few
seconds, and the best classical supercomputer running the best classical algorithms will take several weeks.   

We can approach the limits of the classical supercomputer along various curves (e.g. # of qubits vs depth), 
and then extrapolate beyond the classical limit of feasibility to declare quantum supremacy.  
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In more detail, we want to devise a metric or a YES/NO test that decides whether or not a classical computer 
could simulate the given quantum circuit.  

The output of a random circuit is not uniformly random over bit strings.  Some bit strings are more likely than
others. The histogram of these output probabilities is known to be a Porter-Thomas distribution,               . 

To perform the experiment, we sample bit strings from the device                    , and we use an exponential-
time classical computation to compute the probabilities of these output strings, 

Because the PT distribution is highly nonuniform, we expect to see several strings       (e.g. a 2/3s fraction)        
with output probabilities             that are above the median.  This metric is called “heavy-output generation” 
(HOG) and it comes from a simplification of Google’s original proposal by Aaronson and Chen in 2018.  


