
Quantum Theory: Unitary Dynamics
• Quantum dynamics should map quantum states to quantum states, which means they should preserve the 

2-norm.  These are called orthogonal transformations (over    ) and unitary transformations (over    ).

• Orthogonal and unitary transformations are defined as those linear transformations that preserve inner 
products.   Given a linear operator       on a vector space , there is a corresponding adjoint operator          
which acts on the dual space, so that the co-vector of is               .   In finite dimensional spaces, the 
matrix corresponding to       is the transpose conjugate of      .

• The property of preserving inner products means  for all                 , which implies    

This equation implies                     , in other words unitary evolution is always invertible.



Quantum Theory: Unitary Dynamics

Invertibility is just the tip of the iceberg.   This property implies that unitary transformations (or unitary 
matrices) form a group under multiplication.  A continuous group that is also a compact manifold.  The 
group U(d) of unitary transformations on a d-dimensional space is a classically studied Lie Group.

An immediate intuition for unitary transformations can be gained by the fact that they preserve inner 
products (and hence the 2-norm).  They preserve Euclidean distance, and are therefore rotations.

Consider a continuous one-parameter group of unitary transformations                              satisfying

Representing the homogeneous time-evolution of a quantum syste.  Stone’s theorem says that 

For some self-adjoint operator          (self-adjoint means                , which is equivalently called a 
Hermitian operator i.e. an observable…)



Quantum Theory: Unitary Dynamics

More generally, the instantaneous unitary time evolution of a quantum state             is generated by a 
(potentially time-dependent) Hermitian operator            , yielding the famous Schrodinger equation:

The operator           is called the Hamiltonian, and it turns out to correspond to an observable of 
fundamental importance called the energy of the quantum system. 

The point of “energy” is that it is conserved.  It is invariant under time relations.   In physics, 
symmetries correspond to conserved quantities, and energy is the conserved quantity corresponding 
to time translation symmetry.

This relationship of energy and time translation symmetry is what lies behind the Schrodinger 
equation.  A beautiful treatment can be found in Sakurai’s Graduate Physics QM book.   For us it is too 
much of a tangent and so we will accept it as the axiom of dynamics.



Quantum Computer: just like the stochastic gate model, but now all gates ( )  are unitary.



Axioms of QM

• Axiom of states.  States are rays in Hilbert space, or unit vectors in the 2-norm.

• Axiom of composition. The state of a composite system is a vector in the Hilbert space given by the tensor 
product of the Hilbert spaces of the component subsystems.

• Axiom of observables.   An observable is a set of events that are associated with real values, formally 
represented as a Hermitian operator.  Expectation values are given by inner products with this operator.   
(The dimension N of the Hilbert space of states is the number of events associated to each observable.)

• Axiom of Measurement.   Measuring a particular observable on a particular state returns a value associated 
with a particular event, after which the state is updated to the vector corresponding to that event.

• Axiom of Dynamics.  Quantum time-evolution is a unitary transformation.  This evolution is generated at 
each instant in time by a Hermitian operator called the Hamiltonian, which is the observable corresponding 
to energy, according to the Schrodinger equation.  



Physical Content in QM
The axiomatic description of QM given so far allows us to perform many calculations: given an 
explicit vector / matrix description of a state, unitary, and observable we can time-evolve the state 
with the unitary, and compute the expectation of the observable in the resulting state.   

This level of description suffices 
to understand the abstract 
operation of a quantum 
computer: the initial state is 
given, the unitary evolutions are 
given (as allowed combinations 
of local unitary gates), and the 
final state is sampled in the 
computational basis.   (also note 
that incompatible observables / 
event spaces are not needed to 
describe the quantum computation) 

Quantum Information Science deals almost entirely within this abstract framework, because it 
assumes that (within some general rules) we can engineer these basic building blocks (states, 
unitaries, etc).   But how is this done, how does QI manifest in physical systems?



“In general figuring out the Hamiltonian needed to describe a particular physical system is a very 
difficult problem – much of twentieth century physics has been concerned with this problem –
which requires substantial input from experiment in order to be answered. From our point of The 
postulates of quantum mechanics this is a problem of detail to be addressed by physical theories 
built within the framework of quantum mechanics – what Hamiltonian do we need to describe 
atoms in such-and-such a configuration – and is not a question that needs to be addressed by the 
theory of quantum mechanics itself

Most of the time in our discussion of quantum computation and quantum information we won’t 
need to discuss Hamiltonians, and when we do, we will usually just posit that some matrix is the 
Hamiltonian as a starting point, and proceed from there, without attempting to justify the use of 
that Hamiltonian.”

- Nielson and Chuang, page 82. 

“Mike and Ike” on Hamiltonians



Physical Content in QM
The derivation or explanation of the physical origin of the unitaries that describe the evolution of a 
QM system involves several ingredients.

Step 1.   Identify the relevant physical observables that describe the system.   

These may be position and momentum for particles moving in space, or charge and magnetic 
flux in electrical circuits, or directional components of angular momentum / particle spin. 



Physical Content in QM

Step 2.   Determine the representation of the physical observables as linear operators / matrices.

Given a single observable , we can choose the associated basis of events to be the 
standard basis of unit vectors. Together with the real values associated with those events, this allows 
us to construct a representation of the observable as a diagonal matrix: 

Now given a second observable                                  , associated with 
some incompatible basis of events, how to represent B as a matrix?

Representation theory is an area of mathematics that is concerned with representing abstract groups 
or algebras in terms of matrices.  In short, to determine the matrix representation of B in the basis in 
which A is diagonal, it will suffice for us to know the algebraic relations between A and B (and 
possibly other observables that enter into the description of this system)



Physical Content in QM

Step 2.   Determine the representation of the physical observables as linear operators / matrices.

The representations we seek are determined by algebraic relations called commutators:

A complete set of observables for a system forms a C*-algebra.  This refers to closure under 
properties including addition, multiplication, multiplication by scalars, and taking adjoints. 

There is a direct prescription to determine the commutators for a set of physical observables which 
was put forth by Dirac, called “canonical quantization”, which builds on Hamilton’s classical mechanics.



Physical Content in QM

Step 2.   Determine the representation of the physical observables as linear operators / matrices.

The Poisson bracket of A, B is defined by: 

In classical mechanics, observables A,B are real-valued functions of generalized coordinates          
(which can be thought of as generalizations of position and momentum). 

Dirac’s brilliant prescription of canonical quantization is to promote Poisson brackets to commutators:

We won’t get into the mathematical justification (based on the “symplectic structure” of the classical 
Hamiltonians equations), but if you like this prescription works because of the correspondence principle.



Physical Content in QM

Step 3.   Find the Hamiltonian by expressing the energy in terms of physical observables.

Once the relevant physical variables describing the system have been identified, the next step is to express 
the collective energy of the system in terms of observables corresponding to the constituent parts.   

In some cases this is done from first principles, by porting known energy functions from classical physics:

magnetic dipole (e.g. 
rotating charged particle) in 
an external magnetic field

= magnetic dipole
moment

Harmonic oscillator
(universal description 
of small oscillations)



Physical Content in QM

Step 3. Find the Hamiltonian by expressing the energy in terms of physical observables.

In other cases the Hamiltonian may be an effective description that one finds by beginning with 
a complicated first principles description and making approximations.

In some cases, we may only have a phenomenological description that is inferred from experiment 
without understanding the underlying physics, but this can still be used to make predictions.

Electrical circuits are an 
effective description, 
with observables like 
current, charge, voltage, 
and magnetic flux.

Magnetism in matter is 
explained by an 
effective theory of spin-
spin interactions.



Physical Content in QM

Step 4.   Determine the time-evolution by solving the Schrodinger equation. 

Once H is expressed in terms of physical observables which have known matrix representations, 
the matrix representation of H itself is known, and the Schrodinger equation / IVP:  

If H is time-independent                     then the solution to the initial value problem is: 

becomes a system of N coupled linear differential equations, in which time t is the independent 
variable and the components of the wave function are the unknown functions. 



Physical Content in QM

Step 4.   Determine the time-evolution by solving the Schrodinger equation. 

This solution in terms of the matrix exponential can be computed with the eigendecomposition:

The eigendecomposition of an N x N Hermitian matrix can be computed in time               by 
Gaussian elimination, so this is relatively efficient in the dimension of the system.

The eigenstates of H correspond to events with a definite energy, which may be measurable, so 
diagonalizing H has additional purpose besides time evolution.  



Physical Content in QM
The Schrodinger equation relates energy H to rate of change         of a state. 

This relation of energy and time grew in part from the 19th century connection between time 
translation symmetry and an associated conserved quantity (which we call energy), which 
culminated in the theory of relativity (which sees energy as the time-analog of spatial momentum).

More directly, Schrodinger’s equation followed from the Planck-Einstein relation between the 
energy E of a photon and its angular frequency    : 

Schrodinger’s equation is really: and the Hamiltonians also have    ‘s  

The point is that      is a constant that reflects the scale of quantum effects, relative to our choice of 
fundamental units.   If our fundamental units are macroscopic quantities like meters, kilograms, 
and seconds, then    is small.  But to simplify formulas while doing theory, we always take               



Physical Content in QM

Step 4.   Determine the time-evolution by solving the Schrodinger equation. 

Step 1.   Identify the relevant physical observables that describe the system.   

Step 3.   Find the Hamiltonian by expressing the energy in terms of physical observables.

Step 2.   Determine the representation of the physical observables as linear operators / matrices.

We now have an axiomatic description of QM, together with 4 step process for describing 
physical systems quantum mechanically.  We are now ready to explore the consequences!



“I think I can safely say 

that nobody understands 

quantum mechanics….”

Richard Feynman
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“I think I can safely say 

that nobody understands 

quantum mechanics….”

Richard Feynman

“…in mathematics 

you don’t understand 

things, you just get 

used to them.”

Niels Bohr

“QM makes perfect sense as 

an L2 generalization of 

probability theory, to include 

amplitude interference and 

incompatible sets of events.”

“If quantum 

mechanics hasn't 

profoundly shocked 

you, you haven't 

understood it yet.”

John von Neumann

Arrogant 21st

century person



Quantum Bits

Therefore arbitrary states may be expressed as 

The simplest quantum system is 2-dimensional, it is called a “qubit” which is short for quantum bit.

The standard basis vectors are defined to be 

Following our four step process for populating the theory with physical content, the next question is: 
what are the physical observables for a qubit?



Quantum Bits

The Stern-Gerlach experiment suggests that we can measure the quantum spin of the electron along 
any choice of spatial direction, and obtain two possible measurement outcomes.   For each spatial 
axis     we can measure the spin along      and obtain one of two possible outcomes.  



Quantum Bits

Classically, spin is a 3-vector , so the three observables                        form a 
basis for the full set of observables.   Each measurements in the SG experiment has two outcomes, so 
we are looking for a 2 x 2 Hermitian matrix to represent each of . 

It turns out that the set of Poisson brackets                        (and hence commutators of these operators 
after canonical quantization) is closed.  The commutators are given by

These commutator relations are known to Mathematicians as defining a basis for the Lie algebra for 
SU(2).  The important point is that the representation theory for this algebra is well understood.



Quantum Bits

We will use these operators                        so frequently that we will simply call them                   (note 
that sometimes texts define                            but we are relatively unconcerned about constants.)

A 2 x 2 representation of the algebra of observables satisfying these commutation relations takes:  

These Pauli matrices are the fundamental observables associated to qubits.  Commit these 
commutator relations and matrix representations to memory (“minus i up high”).  



Quantum Bits
We first consider the Pauli matrix that is easiest to diagonalize:

Therefore (by choice of convention) the computational basis corresponds to the eigenstates of 
Pauli Z.  For an arbitrary state, the expectation value of the spin along the Z direction is

The eigenvectors of this matrix are                                                             , and hence satisfy 



Quantum Bits
The next Pauli matrix to consider is Pauli X:

These satisfy                                                              .  We can relate these to the computational basis:

The eigenvectors of this matrix are named                 and are given by 



Quantum Bits
The last (and least) Pauli matrix is

Which again are the +/- 1 eigenstates.  The reason that Y is often neglected is that  

The eigenvectors of this matrix don’t have common names, but are sometimes called 

So we can account for the action of Y by a combination of X, Z, and a global phase.  In all 
seriousness, Pauli Y is essential for completeness, but since two bases of incompatible events 
often suffice to describe quantum information processing, we will focus much more on X, Z.  



Quantum Bits
Bloch Sphere:

The point is that single qubit states can be 
specified by two real angles,         , which 
establish a correspondence between 2D 
complex unit vectors, and 3D real unit vectors.

Memorizing the Bloch sphere will let you more quickly see the 
expectations of                    for states written in components.  But
this geometric  picture does not generalize well to higher dimensions
(multiple qubits) and so we will not emphasize it.                  



Quantum Bits
Each Pauli operator has eigenvalues                , and so the Paulis are traceless: 

If we include the identity operator, then                        form a basis for 2 x 2 Hermitian matrices. 

How do you prove this?



Quantum Bits
Each Pauli operator has eigenvalues                , and so the Paulis are traceless: 

If we include the identity operator, then                        form a basis for 2 x 2 Hermitian matrices. 

How do you prove this?

Hermitian matrix has 4 real parameters.  ( )

2 x 2 matrices isomorphic to 1 x 4 vectors.

Frobenius Inner Product: 



Quantum Bits
Dropping the identity component, we can represent all traceless 2 x 2 Hermitian matrices by

Since every 2 x 2 Unitary matrix has the form                  for Hermitian A, and the identity component 
would only generate an irrelevant global phase, we can parameterize all 2 x 2 unitary matrices:



Quantum Bits
We have already encountered the first examples of single qubit unitaries: the Pauli matrices!  They do 
double-duty as Hermitian matrices that happen to be unitary.   If A is Hermitian and unitary, then  

Which is true of the Paulis, .   Memorize the action of these unitaries:   

Pauli X is a “bit flip” or NOT gate: Pauli Z is a “Phase flip”:



Quantum Bits
The next class of unitaries we may consider are rotations around the Z axis, called phase shift gates:

Note that 



Quantum Bits
The next class of unitaries are rotations around the Y axis, which rotate vectors in the X/Z plane:

Unitary matrices with real entries are called orthogonal matrices.  The rotation matrices above commonly 
appear in linear algebra as rotations of vectors in        .



Quantum Bits

This unitary transformation is called a Hadamard gate, hence the use of the symbol H (fortunately H is 
also Hermitian, so                  since H is Hermitian and unitary).

If we combine a          rotation in the XZ-plane, followed by a Z rotation we obtain

The Hadamard gate is extremely important because it is the change of basis between Z and X.  Memorize:



Quantum Bits

The Hadamard gate changes between the +/- basis and the 0/1 basis, so its no surprise that

Some other operator transformations worth memorizing include:

From the matrix form                                    it is clear that if kets transform like                         then  

(change of basis for operators)

So conjugating X with Z yields –X, and conjugating Z with X yields –Z.



Quantum Bits
Notice that we have some unitaries that map Pauli operators to Pauli operators: this includes the 
Hadamard gate, and also the Paulis themselves.  

Let                                  be the Pauli group.   What unitaries have the property that  

So far we have Hadamard, and                    .  Are there any others?  



Quantum Bits
Notice that we have some unitaries that map Pauli operators to Pauli operators: this includes the 
Hadamard gate, and also the Paulis themselves.  

Let                                  be the Pauli group.   What unitaries have the property that  

So far we have Hadamard, and                    .  Are there any others?  If there is a unitary matrix 
that takes X to Z, then there must be another taking X to Y, by symmetry. 

The set of unitaries that map Pauli operators to Pauli operators is called the Clifford Group.  Clifford 
unitary transformations are of interest because they map any string of Paulis as input to a string of Paulis
as output, in an efficiently computable way.  The single qubit Clifford Group is generated by H and p.



Qubits: Observables and Unitaries

• Qubits are the simplest quantum systems, representing by vectors in the Hilbert space 

• Whether by considering classical angular momentum and applying canonical quantization, or by choosing a 
convenient basis for the set of Hermitian matrices, we arrive at the Pauli matrices as qubit observables.

• The Pauli matrices are traceless, Hermitian and unitary (and hence are their own matrix inverse).  According 
to the Bloch sphere representation they measure spin along the cartesian directions X,Y,Z.

• We formed several 2 x 2 single qubit unitary matrices by exponentiating linear combinations of Pauli 
matrices.  Of particular interest are the Clifford transformations, which map Paulis to Paulis.


