
Composite Systems: Two Qubits

To complete our discussion of entangling 2-qubit unitaries, let’s look at the Hamiltonians that 
generate them to understand what entangling time evolutions correspond to physically.

The unitary CNOT can be expressed as

We can start by thinking about Hamiltonians that generate single qubit Paulis.  What are           in:
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We can start by thinking about Hamiltonians that generate single qubit Paulis.  What are           in:

Take and 
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Therefore by symmetry we can do an X gate by turning on the Hamiltonian 

For           time units.   Now what about entangling gates like CNOT? 
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Therefore by symmetry we can do an X gate by turning on the Hamiltonian 

For           time units.   Now what about entangling gates like CNOT? 

The CNOT Hamiltonian should do nothing if the first qubit is in the state         , and if it is in the 
state        then it should turn on the H above to generate an X gate.  To generate CNOT turn on 

For           time units.   Evidently the operator above is an entangling Hamiltonian.  



Composite Systems: Two Qubits

Suppose we have two qubits and apply a spatially uniform magnetic field  along the z direction.  It 
creates an energy splitting of 2a, and assigns a higher energy to spin up         than spin down      .

Expanding the subscript notation,                                                .  Is this an entangling Hamiltonian?

This example generalizes to any Hamiltonian that acts independently on subsystems A and B.  
Evidently, entangling unitaries require physical interactions between the subsystems.

Intuitively it shouldn’t be entangling, because the uniform magnetic field acts on the two qubits 
independently.  Therefore it cannot create any correlations:
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Nuclear spin qubits: some of the 
earliest experiments to implement 
entangling gates used nuclear 
magnetic resonance (NMR).

Each Chloroform molecule (CHCL3) 
has two qubits, the nuclear spins 
of the carbon and hydrogen.

The molecules are placed in a strong magnetic field,                                                        . 

The nuclei emit EM radiation when they are in resonance with a a weak oscillating RF 
magnetic field, and the resonant frequency depends on the nuclear spin state (and chemical 
properties).  This enables measurement of the NMR qubits.

Other single-qubit terms can be generated by oscillating RF magnetic fields.
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A common strategy for showing that a 2-qubit gate is entangling is to apply local unitaries (tensor 
product unitaries) and use the freedom of global phase to relate it to a known entangling gate.

How can we use this NMR Hamiltonian to generate entanglement between the two qubits.  Is the 
ZZ interaction capable of creating entanglement?  For example we could consider:
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This gate, which is equivalent in entangling power to CNOT, is called CPHASE.  Based on the 
Hamiltonian for CNOT, we can generate CPHASE using

We are interested in entangling gates that are diagonal in the computational basis.  One such gate 
can be produced by applying a Hadamard to the target qubit in a CNOT:
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Every diagonal 4 x 4 matrix can be written using linear combinations of                                    , and
so the NMR Hamiltonian must suffice for generating CPHASE.

Summary: interactions are required to create entanglement and tensor product Hamiltonians are 
capable of generating entanglement. 



Component Subystems

So far we have discussed two-qubit states, observables, and unitary evolutions.  

But suppose two qubits A and B are originally prepared in some state, which may be entangled, 
and A and B are sent to two keepers in different locations: Alice and Bob.

Each of the qubit keepers is allowed to probe their qubit as they see fit, but right now they are not 
allowed to communicate or share notes about their results.

Each keeper has a component subsystem of the same joint quantum state.  If one of the keepers 
measures their subsystem, they will see outcomes.  Our best description of the reduced state of the 
subsystem should account for all the observed probabilities of these outcomes.

In a probability theory, this reduced state of the subsystem would be a marginal distribution.  But in 
quantum theory we have a distribution for each choice of basis, so it seems much more difficult to 
marginalize a quantum state in such a way to obtain the correct marginals on every subsystem.



Component Subystems

Take our example of an entangled state, 

Now suppose Alice holds the first qubit, and measures it in the 0/1.  We can compute the 
probability for her to see 0 and to see 1 by finding the full measurement distribution in the 0/1 
basis and computing its marginal.   We find an identical result in the +/- basis:

What quantum state                           on Alice’s subsystem is consistent with these measurements?



Component Subystems

There is no quantum state, at least of the kind we have discussed so far, which has these outcomes!

The reason this happens is that in losing or ignoring Bob’s subsystem, Alice now has incomplete 
information about the full system.   

For all she knows, Bob could have measured or interacted with his qubit in any way whatsoever.   

The state of her system is not a quantum state, it is a probability distribution of quantum states. 



Density Matrices
Suppose A is an observable, and we have a quantum system in the state          with probability        ,
And the state         with probability       .  Then the expectation of A should be    

In contrast, any superposition of          and           will give rise to unwanted cross terms like 

As long as                   are orthogonal states, we can express the expectation above as  

This new object     , which represents a probability distribution over quantum states, is a Hermitian 
matrix with nonnegative eigenvalues that sum to 1.  It is called a density matrix and it will suffice to 
describe the reduced state of component subsystems.



Density Matrices
To see that density matrices are the right choice for describing component subsystems, we can 
consider an observable A which acts only on the first qubit of an entangled state:

The expectation value is

Which can equivalently be expressed as 



Density Matrices
To compute the marginal of a probability distribution, we sum over all possible events on the 
subsystem being ignored.  The density matrix of a subsystem A , for the joint state         on A/B is:

where          is a basis for        and          is a basis for          .    

This operation which maps to        is called the partial trace (over the subsystem B, in this 
case).   It is as fundamental in quantum theory as the notion of a marginal distribution in probability.

We have already seen that a joint distribution with intricate correlations can have marginal 
distributions that are flat and boring.  A similar thing happens for entangled states!  (e.g.         ).  



Density Matrices
To compute the marginal of a probability distribution, we sum over all possible events on the 
subsystem being ignored.  The density matrix of a subsystem A , for the joint state         on A/B is:

where          is a basis for        and          is a basis for          .    

This operation which maps to        is called the partial trace (over the subsystem B, in this 
case).   It is as fundamental in quantum theory as the notion of a marginal distribution in probability.



Density Matrices
Definition: A density matrix is a probability distribution over a set of quantum states,

Equivalently, any Hermitian operator with nonnegative eigenvalues and trace 1 can be put into the 
above form by diagonalization.  Therefore a density matrix satisfies:

1.

2. is positive semi-definite:                       for all states

3.   



Density Matrices

The trace of the square of the density matrix tells us whether the state is pure, since

The quantum states we have described until now are called pure states.  A pure state corresponds to a 
density matrix whose distribution is only supported on one state:

Where the inequality is saturated if and only if                 for some i.  Therefore 

With equality iff is a pure state.



Density Matrices
A key reason why we cannot ignore density matrices is that closed systems are an idealization.  Every 
quantum subsystem in the real world is a subsystem (of the universe).

Whether we can describe a physical system by a pure state depends on whether it shares 
correlations with any other systems.  If it does not (at least to a good approximation), then

So that the reduced state of the subsystem is relatively pure,                                                             . 
Engineering this near total lack of correlations is a major challenge, and so in general we must regard 
our quantum systems as open (not closed) and describe them by density operators.  



Density Matrices

We have already seen that                        is a basis for the set of 2 x 2 Hermitian matrices, so for any qubit 
density matrix we have 

1. Compute the determinant.  

2. Find conditions on the vector        which yield a valid density matrix.  What about a pure state?

3. Relate the conditions on       to our prior discussion of the Bloch sphere.

4. How do the components of      relate to Pauli expectation values?  Consider the Frobenius inner product.



Density Matrices

Suppose we have a general bipartite state              , and the RDM on subsystem A is 

Since the                form a basis for        , we may express                                                         for some states

of           , where             are complex coefficients.    

Compute                                               and show  that                               and                      . The form   

is called the Schmidt decomposition of              .    



Density Matrices

The Schmidt decomposition can also be viewed as a singular value decomposition.  Starting from 

We view           as an                 matrix, where                                                             .    

Since        is not square, it does not in general have an eigendecomposition.   But it does have a singular 
value decomposition, so there exists an                unitary U, an                 unitary V, and an  
diagonal matrix                                          with nonnegative entries, such that

These unitaries U,V make the decomposition of               “diagonal” ,  

And so the singular values          are the Schmidt coefficients in the Schmidt decomposition, and the SVD 
provides an alternative to the partial trace for practical computation of the RDM.



Density Matrices

According to our definitions,              is unentangled if and only if              .  Larger values for      correspond 
to states with “more entanglement.”     

Now we can see that              is entangled if and only if  the RDMs                are impure.   Do states with 
Schmidt rank 1 share any correlations across the cut?

The Schmidt decomposition provides us with out first quantitative definition of entanglement.   The 
number of nonzero Schmidt values is called the Schmidt rank     , and it quantifies entanglement. 

What is the Schmidt rank of the Bell state                                                      ?   In general when the Schmidt

rank across a cut is equal to the dimension of one of the subsystems, the state is maximally entangled.


