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We analyzesurface codes, the topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-
tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical value~the accuracy threshold!, encoded information can
be protected arbitrarily well in the limit of a large code block. This phase transition
can be accurately modeled by a three-dimensionalZ2 lattice gauge theory with
quenched disorder. We estimate the accuracy threshold, assuming that all quantum
gates arelocal, that qubits can be measured rapidly, and that polynomial-size clas-
sical computations can be executed instantaneously. We also devise a robust recov-
ery procedure that does not require measurement or fast classical processing; how-
ever, for this procedure the quantum gates are local only if the qubits are arranged
in four or more spatial dimensions. We discuss procedures for encoding, measure-
ment, and performing fault-tolerant universal quantum computation with surface
codes, and argue that these codes provide a promising framework for quantum
computing architectures. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1499754#

I. INTRODUCTION

The microscopic world is quantum mechanical, but the macroscopic world is classical
fundamental dichotomy arises because a coherent quantum superposition of two readily
guishable macroscopic states is highly unstable. The quantum state of a macroscopic
rapidly decoheresdue to unavoidable interactions between the system and its surroundings

Decoherence is so pervasive that it might seem to preclude subtle quantum interf
phenomena in systems with many degrees of freedom. However, recent advances in the th
quantum error correction suggest otherwise.1,2 We have learned that quantum states can be c
erly encoded so that the debilitating effects of decoherence, if not too severe, can be re
Furthermore, fault-tolerant protocols have been devised that allow an encoded quantum sta
reliably processed by a quantum computer with imperfect components.3 In principle, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coherent qu
states, informationprocessingcan prevent informationloss. In this article, we will study a par-
ticular approach to quantum fault tolerance that has notable advantages: in this approach, b
thesurface codesintroduced in Refs. 4 and 5, the quantum processing needed to control erro

a!CALT-68-2346
b!Electronic mail: edennis@princeton.edu
c!Electronic mail: kitaev@iqi.caltech.edu
d!Electronic mail: alandahl@theory.caltech.edu
e!Author to whom correspondence should be addressed. Electronic mail: preskill@theory.caltech.edu
44520022-2488/2002/43(9)/4452/54/$19.00 © 2002 American Institute of Physics

d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



articu-

high
elow a
is

met by
s
if the
ne

ch we
antum
of the

alysis.
dware
er. It is

codes
gates,

speed
spatial
sical.
ments;
er from
nded
d in a
old can
can be

ble
ntum
is not

put-
fault-
orates

ticular

ec. IV,
el with
odel

as been
ation
e limit
bility
nts are
d
e
not be
correct

4453J. Math. Phys., Vol. 43, No. 9, September 2002 Topological quantum memory

Downloade
especially nice locality properties. For this reason, we think that surface codes suggest a p
larly promising approach to quantum computing architecture.

One glittering achievement of the theory of quantum fault tolerance is thethreshold theorem,
which asserts that an arbitrarily long quantum computation can be executed with arbitrarily
reliability, provided that the error rates of the computer’s fundamental quantum gates are b
certain critical value, theaccuracy threshold.6–10The numerical value of this accuracy threshold
of great interest for future quantum technologies, as it defines a standard that should be
designers of quantum hardware. The critical error probability per gatepc has been estimated a
pc*1024; very roughly speaking, this means that robust quantum computation is possible
decoherence time of stored qubits is at least 104 times longer than the time needed to execute o
fundamental quantum gate,11 assuming that decoherence is the only source of error.

This estimate of the accuracy threshold is obtained by analyzing the efficacy of aconcat-
enated code, a hierarchy of codes within codes, and it is based on many assumptions, whi
will elaborate in Sec. II. For now, we just emphasize one of these assumptions: that a qu
gate can act on any pair of qubits, with a fidelity that is independent of the spatial separation
qubits. This assumption is clearly unrealistic; it is made because it greatly simplifies the an
Thus this estimate will be reasonable for a practical device only to the extent that the har
designer is successful in arranging that qubits that must interact are kept close to one anoth
known that the threshold theorem still applies if quantum gates are required to be local,7,12 but for
this realistic case careful estimates of the threshold have not been carried out.

We will perform a quite different estimate of the accuracy threshold, based on surface
rather than concatenated codes. This estimate applies to a device with strictly local quantum
if the device is controlled by a classical computer that is perfectly reliable, and whose clock
is much faster than the clock speed of the quantum computer. In this approach, some
nonlocality in effect is still allowed, but we demand that all the nonlocal processing be clas
Specifically, an error syndrome is extracted by performing local quantum gates and measure
then a classical computation is executed to infer what quantum gates are needed to recov
error. We will assume that this classical computation, which actually requires a time bou
above by a polynomial in the number of qubits in the quantum computer, can be execute
constant number of time steps. Under this assumption, the existence of an accuracy thresh
be established and its value can be estimated. If we assume that the classical computation
completed in a single time step, we estimate that the critical error probabilitypc per qubit and per
time step satisfiespc>1.731024. This estimate applies to the accuracy threshold for relia
storageof quantum information, rather than for reliable processing. The threshold for qua
computation is not as easy to analyze definitively, but we will argue that its numerical value
likely to be substantially different.

We believe that principles of fault tolerance will dictate the shape of future quantum com
ing architectures. In Sec. II we compile a list of hardware features that are conducive to
tolerant processing, and outline the design of a fault-tolerant quantum computer that incorp
surface coding. We review the properties of surface codes in Sec. III, emphasizing in par
that the qubits in the code block can be arranged in aplanar sheet,13,14 and that errors in the
syndrome measurement complicate the recovery procedure. The core of the article is S
where we relate recovery from errors using surface codes to a statistical-mechanical mod
local interactions. In the~unrealistic! case where syndrome measurements are perfect, this m
becomes the two-dimensional Ising model with quenched disorder, whose phase diagram h
studied by Monte Carlo simulations. These simulations indicate that if the syndrome inform
is put to optimal use, error recovery succeeds with a probability that approaches one in th
of a large code block, if and only if both phase errors and bit-flip errors occur with a proba
per qubit less than about 11%. In the more realistic case where syndrome measureme
imperfect, error recovery is modeled by a three-dimensionalZ2 gauge theory with quenche
disorder, whose phase diagram~to the best of our knowledge! has not been studied previously. Th
third dimension that arises can be interpreted as time—since the syndrome information can
trusted, we must repeat the measurement many times before we can be confident about the
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



model
optimal
c. V to
covery
s: for
s, and
racy

mount
show

remain
lyze
can be

uantum
herence
ow that

surface
llows
nable
ow
d fault-

ption
neously
oes not
eshold.
ss the

com-
of our
imple-
ons
st
d how
etails of

puta-
mputer
noisy

ind

mber
uce the

r in
ubits
bits in

time
hrough

4454 J. Math. Phys., Vol. 43, No. 9, September 2002 Dennis et al.

Downloade
way to recover from the errors. We argue that an order-disorder phase transition of this
corresponds to the accuracy threshold for quantum storage, and, furthermore, that the
recovery procedure can be computed efficiently on a classical computer. We proceed in Se
prove a rather crude lower bound on the accuracy threshold, concluding that the error re
procedure is sure to succeed in the limit of a large code block under suitable condition
example, if in each round of syndrome measurement, qubit phase errors, qubit bit-flip error
syndrome bit errors all occur with probability below 1.14%. Tighter estimates of the accu
threshold could be obtained through numerical studies of the quenched gauge theory.

In deriving this accuracy threshold for quantum storage, we assumed that an unlimited a
of syndrome data could be deposited in a classical memory, if necessary. But in Sec. VI we
that this threshold, and a corresponding accuracy threshold for quantum computation,
intact even if the classical memory is limited to polynomial size. Then in Sec. VII we ana
quantum circuits for syndrome measurement, so that our estimate of the accuracy threshold
reexpressed as a fidelity requirement for elementary quantum gates. We conclude that our q
memory can resist decoherence if gates can be executed in parallel, and if the qubit deco
time is at least 6000 times longer than the time needed to execute a gate. In Sec. VIII we sh
encoded qubits can be accurately prepared and reliably measured. We also describe how a
code with a small block size can be built up gradually to a large block size; this procedure a
us to enter a qubit in an unknown quantum state into our quantum memory with reaso
fidelity, and then to maintain that fidelity for an indefinitely long time. We explain in Sec. IX h
a universal set of quantum gates acting on protected quantum information can be execute
tolerantly.

Most of the analysis of the accuracy threshold in this article is premised on the assum
that qubits can be measured quickly and that classical computations can be done instanta
and perfectly. In Sec. X we drop these assumptions. We devise a recovery procedure that d
require measurement or classical computation, and infer a lower bound on the accuracy thr
Unfortunately, though, the quantum processing in our procedure is not spatially local unle
dimensionality of space is at least four. Section XI contains some concluding remarks.

This article analyzes applications of surface coding to quantum memory and quantum
putation that could in principle be realized in any quantum computer that meets the criteria
computational model, whatever the details of how the local quantum gates are physically
mented. It has also been emphasized4,5 that surface codes may point the way toward realizati
of intrinsically stable quantum memories~physicalfault tolerance!. In that case, protection again
decoherence would be achieved without the need for active information processing, an
accurately the protected quantum states can be processed might depend heavily on the d
the implementation.

II. FAULT TOLERANCE AND QUANTUM ARCHITECTURE

To prove that a quantum computer with noisy gates can perform a robust quantum com
tion, we must make some assumptions about the nature of the noise and about how the co
operates. In fact, similar assumptions are needed to prove that a classical computer with
gates is robust.15 Still, it is useful to list these requirements—they should always be kept in m
when we contemplate proposed schemes for building quantum computing hardware:

~i! Constant error rate. We assume that the strength of the noise is independent of the nu
of qubits in the computer. If the noise increases as we add qubits, then we cannot red
error rate to an arbitrarily low value by increasing the size of the code block.

~ii ! Weakly correlated errors. Errors must not be too strongly correlated, either in space o
time. In particular, fault-tolerant procedures fail if errors act simultaneously on many q
in the same code block. If possible, the hardware designer should strive to keep qu
the same block isolated from one another.

~iii ! Parallel operation. We need to be able to perform many quantum gates in a single
step. Errors occur at a constant rate per unit time, and we are to control these errors t
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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information processing. We could never keep up with the accumulating errors exce
doing processing in different parts of the computer at the same time.

~iv! Reusable memory. Errors introduce entropy into the computer, which must be flushed
by the error recovery procedure. Quantum processing transfers the entropy from the
that encode the protected data to ‘‘ancilla’’ qubits that can be discarded. Thus fresh a
qubits must be continually available. The ability to erase~or replace! the ancilla quickly is
an essential hardware requirement.16

In some estimates of the threshold, additional assumptions are made. While not strictl
essary to ensure the existence of a threshold, these assumptions may be useful, either beca
simplify the analysis of the threshold or because they allow us to increase its numerical
Hence these assumptions, too, should command the attention of the prospective hardw
signer:

~i! Fast measurements. It is helpful to assume that a qubit can be measured as quickly
quantum gate can be executed. For some implementations, this may not be a re
assumption—measurement requires the amplification of a microscopic quantum effe
macroscopic signal, which may take a while. But by measuring a classical error synd
for each code block, we can improve the efficiency of error recovery. Furthermore,
can measure qubits and perform quantum gates conditioned on classical measu
outcomes, then we can erase ancilla qubits by projecting onto the$u0&,u1&% basis and
flipping the qubit if the outcome isu1&.

~ii ! Fast and accurate classical processing. If classical processing is faster and more accur
than quantum processing, then it is beneficial to substitute classical processing for qu
processing when possible. In particular, if the syndrome is measured, then a cla
computation can be executed to determine how recovery should proceed. Ideally, th
sical processors that coordinate the control of the quantum computer should be inte
into the quantum hardware.

~iii ! No leakage. It is typically assumed that, though errors may damage the state of the
puter, the qubits themselves remain accessible—they do not ‘‘leak’’ out of the devic
fact, at least some types of leakage can be readily detected. If leaked qubits, once de
can be replaced easily by fresh qubits, then leakage need not badly compromise
mance. Hence, a desirable feature of hardware is that leaks are easy to detect and

~iv! Nonlocal quantum gates. Higher error rates can be tolerated, and the estimate of the th
old is simplified, if we assume that two-qubit quantum gates can act on any pair of q
with a fidelity independent of the distance between the qubits. However useful, th
sumption is not physically realistic. What the hardware designer can and should do, th
is try to arrange that qubits that will need to interact with one another are kept close t
another. In particular, the ancilla qubits that absorb entropy should be carefully integ
into the design.12

If we do insist that all quantum gates are local, then another desirable feature
following.

~v! High coordination number. A threshold theorem applies even if qubits form a on
dimensional array.7,12 But local gates are more effective if the qubits are arranged in th
dimensions, so that each qubit has more neighbors.

Suppose, then, that we are blessed with an implementation of quantum computation tha
all of our desiderata. Qubits are arranged in a three-dimensional lattice, and can be proje
measured quickly. Reasonably accurate quantum gates can be applied in parallel to single q
to neighboring pairs of qubits. Fast classical processing is integrated into the qubit array.
these conditions planar surface codes provide an especially attractive way to operate the q
computer fault-tolerantly.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We may envision our quantum computer as a stack of planar sheets, with a protected
qubit encoded in each sheet. Adjacent to each logical sheet is an associated sheet of ancill
that are used to measure the error syndrome of that code block; after each measuremen
ancilla qubits are erased and then immediately reused. Encoded two-qubit gates can be pe
between neighboring logical sheets, and any two logical sheets in the stack can be broug
contact by performing swap gates that move the sheets through the intervening layers of
and ancilla qubits. As a quantum circuit is executed in the stack, error correction is contin
applied to each logical sheet to protect against decoherence and other errors. Portions of th
are designated as ‘‘software factories,’’ where special ancilla states are prepared and purifie
software is then consumed during the execution of certain quantum gates that cannot be
mented directly.

A notable feature of this design~or other fault-tolerant designs! is that most of the information
processing in the device is devoted to controlling errors, rather than moving the compu
forward. How accurately must the fundamental quantum gates be executed for this error con
be effective, so that our machine is computationally powerful? Our goal in this article is to ad
this question.

III. SURFACE CODES

We will study the family of quantum error-correcting codes introduced in Refs. 4 and 5. T
codes are especially well suited for fault-tolerant implementation, because the procedure fo
suring the error syndrome is highly local.

A. Toric codes

For the code originally described in Refs. 4 and 5, it is convenient to imagine that the q
are in one-to-one correspondence with the links of a square lattice drawn on a torus, or, e
lently, drawn on a square with opposite edges identified. Hence we will refer to them as
codes.’’ Toric codes can be generalized to a broader class of quantum codes, with each cod
class associated with a tessellation of a two-dimensional surface. Codes in this broader cla
be called ‘‘surface codes.’’

A surface code is a special type of ‘‘stabilizer code.’’17,18 A ~binary! stabilizer code can be
characterized as the simultaneous eigenspace with eigenvalue one of a set of mutually com
check operators~or ‘‘stabilizer generators’’!, where each generator is a ‘‘Pauli operator.’’ We u
the notation

I 5S 1 0

0 1D , X5S 0 1

1 0D , ~1!

Y5S 0 2 i

i 0 D , Z5S 1 0

0 21D ~2!

for the 232 identity and Pauli matrices; a Pauli operator acting onn qubits is one of the 22n

tensor product operators

$I ,X,Y,Z% ^ n. ~3!

For the toric code defined by theL3L square lattice on the torus, there are 2L2 links of the
lattice, and hence 2L2 qubits in the code block. Check operators are associated with each sit
with each elementary cell~or ‘‘plaquette’’! of the lattice, as shown in Fig. 1. The check opera
at sites acts nontrivially on the four links that meet at the site; it is the tensor product

Xs5 ^ l {sXl ~4!
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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acting on those four qubits, times the identity acting on the remaining qubits. The check op
at plaquetteP acts nontrivially on the four links contained in the plaquette, as the tensor pro

ZP5 ^ l PPZl , ~5!

times the identity on the remaining links.
AlthoughX andZ anticommute, the check operators are mutually commuting. Obviously

operators commute with site operators, and plaquette operators with plaquette operato
operators commute with plaquette operators because a site operator and a plaquette ope
either on disjoint sets of links, or on sets whose intersection contains two links. In the former
the operators obviously commute, and in the latter case, two canceling minus signs arise w
site operator commutes through the plaquette operator. The check operators generate an
group, the code’s stabilizer.

The check operators can be simultaneously diagonalized, and the toric code is the sp
which each check operator acts trivially. Because of the periodic boundary conditions, each
plaquette operator can be expressed as the product of the otherL221 such operators; the produc
of all L2 site operators or allL2 plaquette operators is the identity, since each link operator oc
twice in the product, andX25Z25I . There are no further relations among these operators; th
fore, there are 2•(L221) independent check operators, and hence two encoded qubits~the code
subspace is four-dimensional!.

A Pauli operator that commutes with all the check operators will preserve the code sub
What operators have this property? To formulate the answer, it is convenient to recall
standard mathematical terminology. A mapping that assigns an element ofZ25$0,1% to each link
of the lattice is called a~Z2-valued! one-chain. In a harmless abuse of language, we will also u
the term one-chain~or simply chain! to refer to the set of all links that are assigned the value 1
such a mapping. The one-chains form a vector space overZ2—intuitively, the sumu1v of two
chainsu andv is a disjoint union of the links contained in the two one-chains. Similarly, ze
chains assign elements ofZ2 to lattice sites and two-chains assign elements ofZ2 to lattice
plaquettes; these also form vector spaces. A linear boundary operator] can be defined that take
two-chains to one-chains and one-chains to zero-chains: the boundary of a plaquette is the
the four links comprising the plaquette, and the boundary of a link is the sum of the two si
the ends of the link. A chain whose boundary is trivial is called acycle.

Now, any Pauli operator can be expressed as a tensor product ofX’s ~andI ’s! times a tensor
product ofZ’s ~andI ’s!. The tensor product ofZ’s andI ’s defines aZ2-valued one-chain, where

FIG. 1. Check operators of the toric code. Each plaquette operator is a tensor product ofZ’s acting on the four links
contained in the plaquette. Each site operator is a tensor product ofX’s acting on the four links that meet at the site.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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links acted on byZ are mapped to 1 and links acted on byI are mapped to 0. This operato
trivially commutes with all of the plaquette check operators, but commutes with a site opera
and only if an even number ofZ’s act on the links adjacent to the site. Thus, the correspond
one-chain must be a cycle. Similarly, the tensor product ofX’s trivially commutes with the site
operators, but commutes with a plaquette operator only if an even number ofX’s act on the links
contained in the plaquette. This condition can be more conveniently expressed if we consid
dual lattice, in which sites and plaquettes are interchanged; the links dual to those on whichX acts
form a cycle of the dual lattice. In general, then, a Pauli operator that commutes with the sta
of the code can be represented as a tensor product ofZ’s acting on a cycle of the lattice, times
tensor product ofX’s acting on a cycle of the dual lattice.

Cycles are of two distinct types. A one-cycle ishomologically trivial if it can be expressed a
the boundary of a two-chain@Fig. 2~a!#. Thus, a homologically trivial cycle on our square latti
has an interior that can be ‘‘tiled’’ by plaquettes, and a product ofZ’s acting on the links of the
cycle can be expressed as a product of the enclosed plaquette operators. This operator is t
a product of the check operators—it is contained in the code stabilizer and acts trivially o
code subspace. Similarly, a product ofX’s acting on links that comprise a homologically trivia
cycle of the dual lattice is also a product of check operators. Furthermore,any element of the
stabilizer group of the toric code~any product of the generators! can be expressed as a product
Z’s acting on a homologically trivial cycle of the lattice timesX’s acting on a homologically
trivial cycle of the dual lattice.

But a cycle could be homologically nontrivial, that is, not the boundary of anything@Fig.
2~b!#. A product of Z’s corresponding to a nontrivial cycle commutes with the code stabil
~because it is a cycle!, but is not contained in the stabilizer~because the cycle is nontrivial!.
Therefore, while this operator preserves the code subspace, it acts nontrivially on encoded
tum information. Associated with the two fundamental nontrivial cycles of the torus, then, ar
encoded operationsZ̄1 and Z̄2 acting on the two encoded qubits. Associated with the two d
cycles of the dual lattice are the corresponding encoded operationsX̄1 andX̄2 , as shown in Fig. 3.

A Pauli operator acting onn qubits is said to haveweight w if the identity I acts onn2w
qubits and nontrivial Pauli matrices act onw qubits. Thedistance dof a stabilizer code is the
weight of the minimal-weight Pauli operator that preserves the code subspace and acts non
within the code subspace. If an encoded state is damaged by the action of a Pauli operato
weight is less than half the code distance, then we can recover from the error successf
applying the minimal weight Pauli operator that returns the damaged state to the code su
~which can be determined by measuring the check operators!. For a toric code, the distance is th
number of lattice links contained in the shortest homologically nontrivial cycle on the lattic
dual lattice. Thus in the case of anL3L square lattice drawn on the torus, the code distanc
d5L.

The great virtue of the toric code is that the check operators are so simple. Measuring a

FIG. 2. Cycles on the lattice.~a! A homologically trivial cycle bounds a region that can be tiled by plaquettes.
corresponding tensor product ofZ’s lies in the stabilizer of the toric code.~b! A homologically nontrivial cycle is not a
boundary. The corresponding tensor product ofZ’s commutes with the stabilizer but is not contained in it. It is a logic
operation that acts nontrivially in the code subspace.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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operator requires a quantum computation, but because each check operator involves ju
qubits in the code block, and these qubits are situated near one another, the measuremen
executed by performing just a few quantum gates. Furthermore, the ancilla qubits used
measurement can be situated where they are needed, so that the gates act on pairs of qubit
in close proximity.

The observed values of the check operators provide a ‘‘syndrome’’ that we may use to
nose errors. If there are no errors in the code block, then every check operator takes the v
Since each check operator is associated with a definite position on the surface, a site of the
or the dual lattice, we may describe the syndrome by listing all positions where the check
tors take the value21. It is convenient to regard each such position as the location of a par
a ‘‘defect’’ in the code block.

If errors occur on a particular chain~a set of links of the lattice or dual lattice!, then defects
occur at the sites on theboundaryof the chain. Evidently, then, the syndrome is highly ambiguo
as many error chains can share the same boundary, and all generate the same syndro
example, the two chains shown in Fig. 4 end on the same two sites. If errors occur on one o

FIG. 3. Basis for the operators that act on the two encoded qubits of the toric code. The logical operatorsZ̄1 and Z̄2 are
tensor products ofZ’s associated with the fundamental nontrivial cycles of the torus constructed from links of the la

The complementary operatorsX̄1 and X̄2 are tensor products ofX’s associated with nontrivial cycles constructed fro
links of the dual lattice.

FIG. 4. The highly ambiguous syndrome of the toric code. The two site defects shown could arise from errors on eit
of the two chains shown. In general, error chains with the same boundary generate the same syndrome, and err
that are homologically equivalent act on the code space in the same way.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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chains, we might incorrectly infer that the errors actually occured on the other chain. Fortun
though, this ambiguity need not cause harm. IfZ errors occur on a particular chain, then b
applyingZ to each link ofany chain with the same boundary as the actual error chain, we
successfully remove all defects. Furthermore, as long as the chosen chain ishomologicallycorrect
~differs from the actual error chain by the one-dimensional boundary of a two-dimension
gion!, then the encoded state will be undamaged by the errors. In that event, the product
actualZ errors and theZ’s that we apply is contained in the code stabilizer and therefore
trivially on the code block.

Heuristically, an error chain can be interpreted as a physical process in which a defe
nucleates, and the two members of the pair drift apart. To recover from the errors, we lay d
‘‘recovery chain’’ bounded by the two defect positions, which we can think of as a phy
process in which the defects are brought together to reannihilate. If the defect world line con
of both the error chain and the recovery chain is homologically trivial, then the encoded qua
state is undamaged. But if the world line is homologically nontrivial~if the two members of the
pair wind around a cycle of the torus before reannihilating!, then an error afflicts the encode
quantum state.

B. Planar codes

If all check operators are to be readily measured with local gates, then the qubits of the
code need to be arranged on a topologically nontrivial surface, the torus, with the ancilla
needed for syndrome measurement arranged on an adjacent layer. In practice, the toroida
ogy is likely to be inconvenient, especially if we want qubits residing in different tori to inte
with one another in the course of a quantum computation. Fortunately, surface codes
constructed in which all check operators are local and the qubits are arranged on planar she13,14

The planar topology will be more conducive to realistic quantum computing architectures.
In the planar version of the surface code, there is a distinction between the check opera

the boundary of the surface and the check operators in the interior. Check operators in the
are four-qubit site or plaquette operators, and those at the boundary are three-qubit op
Furthermore, the boundary has two different types of edges as shown in Fig. 5. Along a ‘‘pla
edge’’ or ‘‘rough edge,’’ each check operator is a three-qubit plaquette operatorZ^ 3. Along a ‘‘site
edge’’ or ‘‘smooth edge,’’ each check operator is a three-qubit site operatorX^ 3.

As before, in order to commute with the code stabilizer, a product ofZ’s must act on an even
number of links adjacent to each site of the lattice. Now, though, the links acted upon byZ’s may
comprise anopenpath that begins and ends on a rough edge. We may then say that the one

FIG. 5. A planar quantum code.~a! At the top and bottom are the ‘‘plaquette edges’’~or ‘‘rough edges’’! where there are
three-qubit plaquette operators, and at the left and right are the ‘‘site edges’’~or ‘‘smooth edges’’! where there are

three-qubit site operators. The logical operationZ̄ for the one encoded qubit is a tensor product ofZ’s acting on a chain

running from one rough edge to the other, and the logical operationX̄ is a tensor product ofX’s acting on a chain of the
dual lattice running from one smooth edge to the other. For the lattice shown, the code’s distance isL58. ~b! Site and
plaquette defects can appear singly, rather than in pairs. An isolated site defect arises from an error chain that e
rough edge, and an isolated plaquette defect arises from a dual error chain that ends at a smooth edge.
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comprised of all links acted upon byZ is a cyclerelative to the rough edges. Similarly, a product

of X’s that commutes with the stabilizer acts on a set of links of the dual lattice that comp
cycle relative to the smooth edges.

Cycles relative to the rough edges come in two varieties. If the chain contains an even n
of the free links strung along the rough edge, then it can be tiled by plaquettes~including the
boundary plaquettes!, and so the corresponding product ofZ’s is contained in the stabilizer. We
say that the relative one-cycle is a relative boundary of a two-chain. However, a chain
stretches from one rough edge to another is not a relative boundary—it is a representativ
nontrivial relative homology class. The corresponding product ofZ’s commutes with the stabilize

but does not lie in it, and we may take it to be the logical operationZ̄ acting on an encoded logica
qubit. Similarly, cycles relative to the smooth edges also come in two varieties, and a prod
X’s associated with the nontrivial relative homology cycle of the dual lattice may be taken

the logical operationX̄ @see Fig. 5~a!#.
A code with distanceL is obtained from a square lattice, if the shortest paths from rough e

to rough edge, and from smooth edge to smooth edge, both containL links. The lattice hasL2

1(L21)2 links, L(L21) plaquettes, andL(L21) sites. Now all plaquette and site operators
independent, which is another way to see that the number of encoded qubits isL21(L21)2

22L(L21)51.
The distinction between a rough edge and a smooth edge can also be characterized

behavior of the defects at the boundary, as shown in Fig. 5~b!. In the toric codes, defects alway
appear in pairs, because every one-chain has an even number of boundary points. But fo
codes, individual defects can appear, since a one-chain can terminate on a rough edge.
propagating site defect can reach the rough edge and disappear. But if the site defect reac
smooth edge, it persists at the boundary. Similarly, a plaquette defect can disappear at the
edge, but not at the rough edge.

Let us briefly note some generalizations of the toric codes and planar codes that we
described. First, there is no need to restrict attention to lattices that have coordination numb
each site and plaquette. Any tessellation of a surface~and its dual tessellation! can be associated
with a quantum code. Second, we may consider surfaces of higher genus. For a closed or
Riemann surface of genusg, 2g qubits can be encoded—each time a handle is added to

surface, there are two new homology cycles and hence two new logicalZ̄’s. The distance of the
code is the length of the shortest nontrivial cycle on lattice or dual lattice. For planar code
may consider a surface withe distinct rough edges separated bye distinct smooth edges. The
e21 qubits can be encoded, associated with the relative one-cycles that connect one roug
with any of the others. The distance is the length of the shortest path reaching from one
edge to another, or from one smooth edge to another on the dual lattice. Alternatively, w
increase the number of encoded qubits stored in a planar sheet by punching holes in the latt
example, if the outer boundary of the surface is a smooth edge, and there areh holes, each
bounded by a smooth edge, thenh qubits are encoded. For each hole, a cycle on the lattice

encloses the hole is associated with the corresponding logicalZ̄, and a path on the dual lattic

from the boundary of the hole to the outer boundary is associated with the logicalX̄.
If ~say! phase errors are more common than bit-flip errors, quantum information can be

more efficiently with anasymmetricplanar code, such that the distance from rough edge to ro
edge is longer than the distance from smooth edge to smooth edge. However, these asym
codes are less convenient for processing of the encoded information.

The surface codes can also be generalized to higher dimensional manifolds, with l
operations again associated with homologically nontrivial cycles. In Sec. X, we will discu
four-dimensional example.
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C. Fault-tolerant recovery

A toric code defined on a lattice of linear sizeL has block size 2L2 and distanceL. Therefore,
if the probability of error per qubit isp, the number of errors expected in a large code block is
orderpL2, and therefore much larger than the code distance.

However, the performance of a toric code is much better than would be guessed naively
on its distance. In principle,L/2 errors could suffice to cause damage to the encoded informa
But in fact this small number of errors can cause irrevocable damage only if the distribution
errors is highly atypical.

If the error probabilityp is small, then links where errors occur~‘‘error links’’ ! are dilute on
the lattice. Long connected chains of error links are quite rare, as indicated in Fig. 6. It is rela
easy to guess a way to pair up the observed defects that is homologically equivalent to the
error chain. Hence we expect that a number of errors that scaleslinearly with the block size can
be tolerated. That is, if the error probabilityp per link is small enough, we expect to be able
recover correctly with a probability that approaches one as the block size increases. We th
anticipate that there is an accuracy threshold for storage of quantum information using a
code.

Unfortunately, life is not quite so simple, because the measurement of the syndrome w
be perfect. Occasionally, a faulty measurement will indicate that a defect is present at a sit
though no defect is actually there, and sometimes an actual defect will go unobserved. He
population of real defects~which have strongly correlated positions! will be obscured by a popu
lation of phony ‘‘ghost defects’’ and ‘‘missing defects’’~which have randomly distributed pos
tions!, as in Fig. 7.

Therefore, we should execute recovery cautiously. It would be dangerous to blithely pr
by flipping qubits on a chain of links bounded by the observed defect positions. Since a
defect is typically far from the nearest genuine defect, this procedure would introduce
additional errors—what was formerly a ghost defect would become a real defect connec
another defect by a long error chain. Instead we must repeat the syndrome measurem
adequate number of times to verify its authenticity. It is subtle to formulate a robust rec
procedure that incorporates repeated measurements, since further errors accumulate as
surements are repeated and the gas of defects continues to evolve.

We know of three general strategies that can be invoked to achieve robust macroscopic

FIG. 6. Pairs of defects. If the error rate is small and errors on distinct links are uncorrelated, then connected erro
are typically short and the positions of defects are highly correlated. It is relatively easy to guess how the defects
be paired up so that each pair is the boundary of a connected chain.
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of a system that is subjected to microscopic disorder. One method is to introduce a hiera
organization in such a way that effects of noise get weaker and weaker at higher and highe
of the hierarchy. This approach is used by Ga´cs15 in his analysis of robust one-dimension
classical cellular automata, and also in concatenated quantum coding.6–10 A second method is to
introduce more spatial dimensions. A fundamental principle of statistical physics is that
systems with higher spatial dimensionality and hence higher coordination number are more
tant to the disordering effects of fluctuations. In Sec. X we will follow this strategy in devising
analyzing a topological code that has nice locality properties in four dimensions. From the
spective of block coding, the advantage of extra dimensions is that local check operators
constructed with a higher degree of redundancy, which makes it easier to reject faulty syn
information.

In the bulk of this article we will address the issue of achieving robustness through a
strategy, namely by introducing a modest amount of nonlocality into our recovery procedur
we will insist that all quantum processing is strictly local; the nonlocality will be isolated
classicalprocessing. Specifically, to decide on the appropriate recovery step, a classical c
tation will be performed whose input is an error syndrome measured at all the sites of the l
We will require that this classical computation can be executed in a time bounded by a polyn
in the number of lattice sites. For the purpose of estimating the accuracy threshold, w
imagine that the classical calculation is instantaneous and perfectly accurate.

Our approach is guided by the expectation that quantum computers will be slow and u
able while classical computers are fast and accurate. It is advantageous to replace quant
cessing by classical processing if the classical processing can accomplish the same task.

D. Surface codes and physical fault tolerance

In this article, we regard the surface codes as block quantum error-correcting code
properties that make them especially amenable to fault-tolerant quantum storage and comp
But we also remark here that because of the locality of the check operators, these code
another tempting interpretation that was emphasized in Refs. 4 and 5.

Consider a model physical system, with qubits arranged in a square lattice, and with a~local!
Hamiltonian that can be expressed as minus the sum of the check operators of a surfac
Since the check operators are mutually commuting, we can diagonalize the Hamiltonian
agonalizing each check operator separately, and its degenerate ground state is the code s
Thus, a real system that is described well enough by this model could serve as a robust q
memory.

The model system has several crucial properties. First of all, it has a mass gap, so
qualitative properties are stable with respect to generic weak local perturbations. Second

FIG. 7. Ghost defects. Since faults can occur in the measurement of the error syndrome, the measured syndrome
both genuine defects~lightly shaded! associated with actual errors and phony ‘‘ghost defects’’~darkly shaded! that arise at
randomly distributed locations. To perform recovery successfully, we need to be able to distinguish reliably betw
genuine defects and the ghost defects. The position that is shaded both lightly and darkly represents a genuine d
goes unseen due to a measurement error.
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two types of localized quasiparticle excitations, the site defects and plaquette defects. And
there is an exotic long-range interaction between a site defect and a plaquette defect.

The interaction between the two defects is exactly analogous to the Aharonov–Bohm
action between a localized magnetic fluxF and a localized electric chargeQ in two-spatial
dimensions. When a charge is adiabatically carried around a flux, the wave function of the s
is modified by a phase exp(iQF/\c) that is independent of the separation between charge and
Similarly, if a site defect is transported around a plaquette defect, the wave function of the s
is modified by the phase21 independent of the separation between the defects. Formally,
phase arises because of the anticommutation relation satisfied byX and Z. Physically, it arises
because the ground state of the system is very highly entangled and thus is able to s
very-long-range quantum correlations. The protected qubits are encoded in the Aharonov–
phases acquired by quasiparticles that travel around the fundamental nontrivial cycles
surface; these could be measured in principle in a suitable quantum interference experime

It is useful to observe that the degeneracy of the ground state of the system is a nec
consequence of the unusual interactions among the quasiparticles.19,20A unitary operatorUS,1 can
be constructed that describes a process in which a pair of site defects is created, one memb
pair propagates around a nontrivial cycleC1 of the surface, and then the pair reannihilat
Similarly a unitary operatorUP,2 can be constructed associated with a plaquette defect that p
gates around a complementary nontrivial cycleC2 that intersectsC1 once. These operators com
mute with the HamiltonianH of the system and can be simultaneously diagonalized withH, but
US,1 andUP,2 do not commute with one another. Rather, they satisfy~in an infinite system!

UP,2
21 US,1

21 UP,2 US,1521. ~6!

The nontrivial commutator arises because the process in which~1! a site defect winds aroundC1 ,
~2! a plaquette defect winds aroundC2 , ~3! the site defect winds aroundC1 in the reverse
direction, and~4! the plaquette defect winds aroundC2 in the reverse direction is topologicall
equivalent to a process in which the site defect winds once around the plaquette defect.

BecauseUS,1 andUP,2 do not commute, they cannot be simultaneously diagonalized—ind
applyingUP,2 to an eigenstate ofUS,1 flips the sign of theUS,1 eigenvalue. Physically, there ar
two distinct ground states that can be distinguished by the Aharonov–Bohm phase that is ac
when a site defect is carried aroundC1 ; we can change this phase by carrying a plaquette de
aroundC2 . Similarly, the operatorUS,2 commutes withUS,1 and UP,2 but anticommutes with
UP,1 . Therefore there are four distinct ground states, labeled by theirUS,1 andUS,2 eigenvalues.

This reasoning shows that the topological interaction between site defects and plaque
fects implies that the system on an~infinite! torus has a generic four-fold ground-state degener
The argument is easily extended to show that the generic degeneracy on a genusg Riemann
surface is 22g. By a further extension, we see that the generic degeneracy isq2g if the Aharonov–
Bohm phase associated with winding one defect around another is

exp~2p ip/q!, ~7!

wherep andq are integers with no common factor.
The same sort of argument can be applied to planar systems with a mass gap in which

defects can disappear at an edge. For example, consider an annulus in which site defe
disappear at the inner and outer edges. Then states can be classified by the Aharonov–Boh
acquired by a plaquette defect that propagates around the annulus, a phase that flips in sign
defect propagates from inner edge to outer edge. Hence there is a two-fold degeneracy
annulus. For a disc withh holes, the degeneracy is 2h if site defects can disappear at an
boundary, orqh if the Aharonov–Bohm phase of site defect winding about plaquette defe
exp(2pip/q).

These degeneracies are exact for the unperturbed model system, but will be lifted slig
a weakly perturbed system of finite size. Loosely speaking, the effect of perturbations will
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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give the defects a finite effective mass, and the lifting of the degeneracy is associated
quantum tunneling processes in which a virtual defect winds around a cycle of the surfac
amplitudeA for this process has the form

A;C exp~2&~m* D!1/2L/\!, ~8!

whereL is the physical size of the shortest nontrivial~relative! cycle of the surface,m* is the
defect effective mass, andD is the minimal energy cost of creating a defect. The energy split
is proportional toA, and like A becomes negligible when the system is large compared to
characteristic lengthl[\(m* D)21/2.

In this limit, and at sufficiently low temperature, the degenerate ground state provid
reliable quantum memory. If a pair of defects is produced by a thermal fluctuation, and one
defects wanders around a nontrivial cycle before the pair reannihilates, then the encoded q
information will be damaged. These fluctuations are suppressed by the Boltzman
exp(2D/kT) at low temperature. Even if defect nucleation occurs at a non-negligible rate
could enhance the performance of the quantum memory by continually monitoring the state
defect gas. If the winding of defects around nontrivial cycles is detected and carefully reco
damage to the encoded quantum information can be controlled.

IV. THE STATISTICAL PHYSICS OF ERROR RECOVERY

One of our main objectives in this article is to invoke surface coding to establish an acc
threshold for quantum computation—how well must quantum hardware perform for qua
storage, or universal quantum computation, to be achievable with arbitrarily small probabil
error? In this section, rather than study the efficacy of a particular fault-tolerant protocol for
recovery, we will address whether the syndrome of a surface code is adequate in princi
protecting quantum information from error. Specifically, we will formulate an order paramete
distinguishes two phases of a quantum memory: an ‘‘ordered’’ phase in which reliable stor
possible, and a ‘‘disordered phase’’ in which errors unavoidably afflict the encoded qua
information. Of course, this phase boundary also provides an upper bound on the accuracy
old that can be reached by any particular protocol. The toric code and the planar surface cod
the same accuracy threshold, so we may study either to learn about the other.

A. The error model

Let us imagine that in a single time step, we will execute a measurement of each sta
operator at each site and each plaquette of the lattice. During each time step, new qubit
might occur. To be concrete and to simplify the discussion, we assume that all qubit erro
stochastic, and so can be assigned probabilities.~For example, errors that arise from decoheren
have this property.! We will also assume that the errors acting on different qubits are indepen
that bit-flip (X) errors and phase (Z) errors are uncorrelated with one another, and thatX andZ
errors are equally likely. Thus the error in each time step acting on a qubit with stater can be
represented by the quantum channel

r→~12p!2IrI 1p~12p!XrX1p~12p!ZrZ1p2YrY, ~9!

wherep denotes the probability of either anX error or aZ error. It is easy to modify our analysi
if some of these assumptions are relaxed; in particular, correlations betweenX andZ errors would
not cause much trouble, since we have separate procedures for recovery from theX errors and the
Z errors.

Faults can also occur in the syndrome measurement. We assume that these measureme
are uncorrelated. We will denote byq the probability that the measured syndrome bit is faulty
a given site or plaquette.

Aside from being uncorrelated in space, the qubit and measurement errors are also ass
be uncorrelated in time. Furthermore, the qubit and measurement errors are not correlated w
another. We assume thatp andq are known quantities—our choice of recovery algorithm depe
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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on their values. In Sec. VII, we will discuss howp and q can be related to more fundament
quantities, namely the fidelities of elementary quantum gates. There we will see that the exe
of the syndrome measurement circuit can introduce correlations between errors. Fortunatel
correlations~which we ignore for now! do not have a big impact on the accuracy threshold.

B. Defects in space–time

Because syndrome measurement may be faulty, it is necessary to repeat the measure
improve our confidence in the outcome. But since new errors may arise during the rep
measurements, it is a subtle matter to formulate an effective procedure for rejecting measu
errors.

Let us suppose, for a toric block of arbitrarily large size, that we measure the error synd
once per time step, that we monitor the block for an arbitrarily long time, and that we store
the syndrome information that is collected. We want to address whether this syndrome inform
enables us to recover from errors with a probability of failure that becomes exponentially sm
the size of the toric block increases. The plaquette check operators identify bit flips and th
check operators identify phase errors; therefore we consider bit-flip and phase error re
separately.

For analyzing how the syndrome information can be used most effectively, it is quite co
nient to envision athree-dimensionalsimple cubic lattice, with the third dimension representing
integer-valuedtime. We imagine that the error operation acts at each integer-valued timet, with a
syndrome measurement taking place in between eacht andt11. Qubits in the code block can now
be associated with timelike plaquettes, those lying in thetx andty planes. A qubit error that occur
at timet is associated with a horizontal~spacelike! link that lies in the time slice labeled byt. The
outcome of the measurement of the stabilizer operatorXs5X^ 4561 at sites, performed between
time t and timet11, is marked on the vertical~timelike! link connecting sites at time t and site
s at time t11. A similar picture applies to the history of theZP stabilizer operators at eac
plaquette, but with the lattice replaced by its dual.

On some of these vertical links, the measured syndrome is erroneous. We will repe
syndrome measurementT times in succession, and the ‘‘error history’’ can be described as a s
marked links on a lattice with altogetherT time slices. The error history encompasses both e
events that damage the qubits in the code block, and faults in the syndrome measurements
initial ( t50) slice are marked all uncorrected qubit errors that are left over from previous ro
of error correction; new qubit errors that arise at a later timet (t51,2,. . . ,T21) are marked on
horizontal links on slicet. Errors in the syndrome measurement that takes place between tt
and t11 are marked on the corresponding vertical links. Errors on horizontal links occur
probability p, and errors on vertical links occur with probabilityq.

For purposes of visualization, it is helpful to consider the simpler case of a quantum repe
code, which can be used to protect coherent quantum information from bit-flip errors if the
no phase errors~or phase errors if there are no bit-flip errors!. In this case we may imagine tha
qubits reside on sites of a periodically identified one-dimensional lattice~i.e., a circle!; at each link
the stabilizer generatorZZ acts on the two neighboring sites. Then there is one encoded qubit—
two-dimensional code space is spanned by the stateu000 . . . 0& with all spins ‘‘up,’’ and the state
u111 . . .& with all spins ‘‘down.’’ In the case where the syndrome measurement is repeat
improve reliability, we may represent the syndrome’s history by associating qubits with plaq
of a two-dimensional lattice, and syndrome bits with the timelike links, as shown in Figs. 8 a
Again, bit-flip errors occur on horizontal links with probabilityp and syndrome measureme
errors occur on vertical links with probabilityq.

Of course, as already noted in Sec. III C, we may also use a two-dimensional latti
represent the error configuration of the toric code, in the case where the syndrome measu
are perfect. In that case, we can collect reliable information by measuring the syndrome
shot, and errors occur on links of the two-dimensional lattice with probabilityp.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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C. Error chains, world lines, and magnetic flux tubes

In practice, we will always want to protect quantum information for some finite time. Bu
the purpose of investigating whether error correction will work effectively in principle, i
convenient to imagine that our repeated rounds of syndrome measurement extend indefinit
the past and into the future. Qubit errors are continually occurring; as defects are created in
propagate about on the lattice, and annihilate in pairs, the world lines of the defects form
loops in space–time. Some loops are homologically trivial and some are homologically nont
Error recovery succeeds if we are able to correctly identify the homology class of each c
loop. But if a homologically nontrivial loop arises that we fail to detect, or if we mistake
believe that a homologically nontrivial loop has been generated when none has been, the

FIG. 8. The two-dimensional lattice depicting a history of the error syndrome for the quantum repetition code, wit
running upward. Each row represents the syndrome at a particular time. Qubits reside on plaquettes, and two-qu
operators are measured at each vertical link. Links where the syndrome is nontrivial are shaded.

FIG. 9. An error history shown together with the syndrome history that it generates, for the quantum repetition code
where errors occurred are darkly shaded, and links where the syndrome is nontrivial are lightly shaded. Errors
zontal links indicate where a qubit flipped between successive syndrome measurements, and errors on verti
indicate where the syndrome measurement was wrong. Vertical links that are shaded both lightly and darkly are l
where a nontrivial syndrome was found erroneously. The chain of lightly shaded links~the syndrome! and the chain of
darkly shaded links~the errors! both have the same boundary.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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recovery will fail. For now, let us consider this scenario in which we continue to measur
syndrome forever—in Sec. VI, we will consider some issues that arise when we perform
correction for a finite time.

So let us imagine a particular history extending over an indefinite number of time slices
the observed syndrome marked on each vertical link, measurement errors marking selecte
cal links, and qubit errors marking selected horizontal links. For this history we may ide
several distinct one-chains~sets of links!. We denote byS the syndrome chaincontaining all
~vertical! links at which the measured syndrome is nontrivial (Xs521). We denote byE theerror
chain containing all links where errors have occurred, including both qubit errors on horiz
links and measurement errors on vertical links. ConsiderS1E, the disjoint union ofS and E
~S1E contains the links that are in eitherS or E, but not both!. The chainS1E represents the
‘‘actual’’ world lines of the defects generated by qubit errors, as illustrated in Fig. 9. Its ver
links are those on which the syndrome would be nontrivial were it measured without erro
horizontal links are events where a defect pair is created, a pair annihilates, or an existing
propagates from one site to a neighboring site. Since the world lines never end, the chainS1E has
no boundary,](S1E)50. EquivalentlyS andE have the same boundary,]S5]E.

Hence, the measured syndromeS reveals the boundary of the error chainE; we may write
E5S1C, where C is a cycle ~a chain with no boundary!. But any other error chainE85S
1C8, whereC8 is a cycle, has the same boundary asE and therefore could have caused the sa
syndrome. To recover from error, we will use the syndrome information to make a hypot
guessing that the actual error chain wasE85S1C8. Now, E8 may not be the same chain asE,
but, as long as the cycleE1E85C1C8 is homologically trivial~the boundary of a surface!, then
recovery will be successful. IfC1C8 is homologically nontrivial, then recovery will fail. We sa
that C and C8 are in the samehomology classif C1C8 is homologically trivial. Therefore,
whether we can protect against error hinges on our ability to identify not the cycleC, but rather
the homology class ofC.

Considering the set of all possible histories, let prob(E8) denote the probability of the erro
chain E8 ~strictly speaking, we should consider the total elapsed time to be finite for this p
ability to be defined!. Then the probability that the syndromeS was caused by any error cha
E85S1C8, such thatC8 belongs to the homology classh, is

prob~huS!5
(C8Phprob~S1C8!

(C8prob~S1C8!
. ~10!

Clearly, then, given a measured syndromeS, the optimal way to recover is to guess that t
homology classh of C is the class with the highest probability according to Eq.~10!. Recovery
succeeds ifC belongs to this class, and fails otherwise.

We say that the probability of error per qubit lies below the accuracy threshold if and o
the recovery procedure fails with a probability that vanishes as the linear sizeL of the lattice
increases to infinity. Therefore, below threshold, the cycleC actually belongs to the classh that
maximizes Eq.~10! with a probability that approaches one asL→`. It is convenient to restate thi
criterion in a different way that makes no explicit reference to the syndrome chainS. We may
write the relation between the actual error chainE and the hypothetical error chainE8 as E8
5E1D, whereD is the cycle that we calledC1C8 above. Let prob@(E1D)uE# denote the
normalized conditional probability for error chainsE85E1D that have the same boundary asE.
Then, the probability of error per qubit lies below threshold if and only if, in the limitL→`,

(
E

prob~E!• (
D nontrivial

prob@~E1D !uE#50. ~11!

Equation~11! says that error chains that differ from the actual error chain by a homologic
nontrivial cycle have probability zero. Therefore, the observed syndromeS is sure to point to the
correct homology class, in the limit of an arbitrarily large code block.
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This accuracy threshold achievable with toric codes can be identified with a phase tran
in a particular statistical physics model defined on a lattice. In a sense that we will make pr
the error chains are analogous to magnetic flux tubes in a superconductor, and the boundar
of the error chains are magnetic monopoles where these flux tubes terminate. Fixing the syn
pins down the monopoles, and the ensemble of chains with a specified boundary can be re
as a thermal ensemble. As the error probability increases, the thermal fluctuations of the flux
increase, and at the critical temperature corresponding to the accuracy threshold, the flu
condense and the superconductivity is destroyed.

A similar analogy applies to the case where the syndrome is measured perfectly, and
dimensional system describes the syndrome on a single time slice. Then the error cha
analogous to domain walls in an Ising ferromagnet, and the boundary points of the error cha
‘‘Ising vortices’’ where domain walls terminate. Fixing the syndrome pins down the vortices,
the ensemble of chains with a specified boundary can be interpreted as a thermal ensemble
error probability increases, the domain walls heat up and fluctuate more vigorously. At a c
temperature corresponding to the accuracy threshold, the domain walls condense and the
becomes magnetically disordered. This two-dimensional model also characterizes the ac
threshold achievable with a quantum repetition code, if the syndrome is imperfect and the
are subjected only to bit-flip errors~or only to phase errors!.

D. Derivation of the model

Let us establish the precise connection between our error model and the corresponding
tical physics model. In the two-dimensional case, we consider a square lattice with links
senting qubits, and assume that errors arise independently on each link with probabilityp. In the
three-dimensional case, we consider a simple cubic lattice. Qubits reside on the tim
plaquettes, and qubit errors arise independently with probabilityp on spacelike links. Measure
ment errors occur independently with probabilityq on timelike links. For now, we will make the
simplifying assumption thatq5p so that the model is isotropic; the generalization toqÞp is
straightforward.

An error chainE, in either two or three dimensions, can be characterized by a functionnE( l )
that takes a link, to nE(,)P$0,1%, wherenE(,)51 for each link, that is occupied by the chain
Hence the probability that error chainE occurs is

prob~E!5)
,

~12p!12nE(,)pnE(,)5F)
,

~12p!G•)
,

S p

12pD nE(,)

, ~12!

where the product is over all links of the lattice.
Now suppose that the error chainE is fixed, and we are interested in the probability dist

bution for all chainsE8 that have the same boundary asE. Note that we may expressE85E
1C, whereC is a cycle~a chain with no boundary! and consider the probability distribution fo
C. Then if nC(,)51 andnE(,)50, the link , is occupied byE8 but not byE, an event whose
probability ~aside from an overall normalization! is

S p

12pD nC(,)

. ~13!

But if nC(,)51 andnE(,)51, then the link, is not occupied byE8, an event whose probability
~aside from an overall normalization! is

S 12p

p D nC(,)

. ~14!

Thus a chainE85E1C with the same boundary asE occurs with probability
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prob~E8uE!})
,

exp~J,u,!; ~15!

here we have defined

u,5122nC~, !P$1,21%, ~16!

and the couplingJ, assigned to link, has the form

e22J,5H p/~12p!, for ,¹E,

~12p!/p, for ,PE.
~17!

Recall that the one-chain$,uul521% is required to be acycle—it has no boundary.
It is obvious from this construction that prob(E8uE) does not depend on how the chainE is

chosen—it depends only on the boundary ofE. We will verify this explicitly below.
The cycle condition satisfied by theul ’s can be expressed as

)
,{s

u,51; ~18!

at each sites, an even number of links incident on that site haveu,521. It is convenient tosolve
this condition, expressing theu,’s in terms of unconstrained variables. To achieve this in t
dimensions, we associate with each link, a link ,* of the dual lattice. Under this duality, sites are
mapped to plaquettes, and the cycle condition becomes

)
,* PP*

u,* 51. ~19!

To solve the constraint, we introduce variabless iP$1,21% associated with each sitei of the dual
lattice, and write

ui j 5s is j ~20!

wherei and j are nearest-neighbor sites.
Our solution to the constraint is not quite the most general possible. In the langua

differential forms, we have solved the conditiondu50 ~where u is a discrete version of a
one-form, andd denotes the exterior derivative! by writing u5ds, wheres is a zero-form. Thus
our solution misses the cohomologically nontrivial closed forms, those that are not exact.
language of homology, our solution includes all and only those cycles that are homolog
trivial—that is, cycles that bound a surface.

In three dimensions, links are dual to plaquettes, and sites to cubes. The cycle con
becomes, on the dual lattice,

)
P* PC*

uP* 51; ~21!

each dual cubeC* contains an even number of dual plaquettes that are occupied by the cycl
solve this constraint by introducing variabless,* P$1,21% on the dual links, and defining

uP* 5 )
,* PP*

s,* . ~22!
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In this case, we have solved a discrete version ofdu50, whereu is a two-form, by writingu
5ds, wheres is a one-form. Once again, our solution generates only the cycles that are h
logically trivial.

We have now found that, in two dimensions, the ‘‘fluctuations’’ of the error chainsE8 that
share a boundary with the chainE are described by a statistical-mechanical model with partit
function

Z@J,h#5(
$s i %

expS J(̂
i j &

Dh i j s is j , ~23!

wheree22J5p/(12p). The sum in the exponential is over pairs of nearest neighbors on a s
lattice, andh lP$1,21% is defined by

h,5H 1, if ,¹E* ,

21, if ,PE* .
~24!

Furthermore, if the error chainsE andE8 are generated by sampling the same probability dis
bution, then theh,’s are chosen at random subject to

h,5H 1, with probability 12p,

21, with probability p.
~25!

This model is the well-known ‘‘random-bond Ising model.’’ Furthermore, the relatione22J

5p/(12p) between the coupling and the bond probability defines the ‘‘Nishimori line’’21 in the
phase diagram of the model, which has attracted substantial attention because the model is
to have enhanced symmetry properties on this line.~For a recent discussion, see Ref. 22.!

Perhaps the interpretation of this random-bond Ising model can be grasped better if we
the original lattice rather than the dual lattice, so that the Ising spins reside on plaquettes as
10. The coupling between spins on neighboring plaquettes is antiferromagnetic on the lin
longing to the chainE ~whereh,521!, meaning that it is energetically preferred for the spins
antialign at these links. At links not inE ~whereh51!, it is energetically preferred for the spin
to align. Thus a linki j is excited if h i j s is j521. We say that the excited links constitu
‘‘domain walls.’’ In the case whereh,51 on every link, a wall marks the boundary between t
regions in which the spins point in opposite directions. Walls can never end, because the bo
of a boundary is zero.

FIG. 10. The ‘‘quenched’’ error chainE and the ‘‘fluctuating’’ error chainE8, as represented in the two-dimension
random-bond Ising model. Ising spins taking values in$61% reside on plaquettes, Ising vortices are located on the s
marked by filled circles, and the coupling between neighboring spins is antiferromagnetic along the pathE that connects
the Ising vortices. The links ofE8 comprise a domain wall connecting the vortices. The closed pathC5E1E8 encloses a
domain of spins with the value21.
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But if the h configuration is nontrivial, then the ‘‘walls’’ can end. Indeed each boundary p
of the chainE of links with h l521 is an endpoint of a wall, what we will call an ‘‘Ising vortex.
For example, for the configuration shown in Fig. 10, a domain wall occupies the chainE8 that
terminates on Ising vortices at the marked sites. The figure also illustrates that the model d
only on the boundary of the chainE, and not on other properties of the chain. To see this, imag
performing the change of variables

s i→2s i ~26!

on the shaded plaquettes of Fig. 10. A mere change of variable cannot alter the locations
excited links—rather, the effect is to shift the antiferromagnetic couplings from the chainE to a
different chainE8 with the same boundary.

In three dimensions, the fluctuations of the error chains that share a boundary with the
fied chainE are described by a model with partition function

Z@J,h#5 (
$s,%

expS J(
P

hPuPD , ~27!

whereuP5),PPs, and

hP5H 1, if P¹E* ,

21, if PPE* .
~28!

This model is a ‘‘random-plaquette’’Z2 gauge theory in three dimensions, which, as far as
know, has not been much studied previously. Again, we are interested in the ‘‘Nishimori lin
this model wheree22J5p/(12p), andp is the probability that a plaquette hashP521.

In this three-dimensional model, we say that a plaquetteP is excited if hPuP521. The
excited plaquettes constitute ‘‘magnetic flux tubes’’—these form closed loops on the or
lattice if hP51 on every plaquette. But at each boundary point of the chainE on the original
lattice ~each cube on the dual lattice that contains an odd number of plaquettes withhP521!, the
flux tubes can end. The sites of the original lattice~or cubes of the dual lattice! that contain
endpoints of magnetic flux tubes are said to be ‘‘magnetic monopoles.’’

E. Order parameters

As noted, our statistical-mechanical model includes a sum over those and only those chaE8
that arehomologically equivalentto the chainE. To determine whether errors can be correc
reliably, we want to know whether chainsE8 in a differenthomology class thanE have negligible
probability in the limit of a large lattice~or code block!. The relative likelihood of different
homology classes is determined by the free energy difference of the classes; in the ordered
we anticipate that the free energy of nontrivial classes exceeds that of the trivial classes
amount that increases linearly withL, the linear size of the lattice.

But for the purpose of finding the value of the error probability at the accuracy thresho
suffices to consider the model in an infinite volume~where there is no nontrivial homology!. In the
ordered phase where errors are correctable, large fluctuations of domain walls or flux tub
suppressed, while in the disordered phase the walls or tubes ‘‘dissolve’’ and cease to b
defined.

Thus, the phase transition corresponding to the accuracy threshold is a singularity,
infinite-volume limit, in the ‘‘quenched’’ free energy, defined as

@bF~J,h!#p[2(
$h%

Prob~h!• ln Z@J,h#, ~29!

where
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Prob~h!5)
,

~12p!12h,ph, ~30!

in two dimensions, or

Prob~h!5)
P

~12p!12hPphP ~31!

in three dimensions. The term ‘‘quenched’’ signifies that, although theh chains are generated a
random, we consider thermal fluctuations with the positions of the vortices or monopoles p
down. The inverse temperatureb is identical to the couplingJ. We use the notation@•#p to
indicate an average with respect to the quenched randomness, and we will denote by^•&b an
average over thermal fluctuations.

There are various ways to describe the phase transition in this system, and to specify a
parameter. For example, in the two-dimensional Ising system, we may consider a ‘‘disord
rameter’’F(x) that inserts a single Ising vortex at a specified positionx. To define this operator
we must consider either an infinite system or a finite system with a boundary; on the torus
vortices can only be inserted in pairs. But for a system with a boundary, we can consider a d
wall with one end at the boundary and one end in the bulk. In theferromagneticphase, the cost in
free energy of introducing an additional vortex atx is proportional toL, the distance fromx to the
boundary. Correspondingly we find

@^F~x!&b#p50 ~32!

in the limit L→`. The disorder parameter vanishes because we cannot introduce an is
vortex without creating an infinitely long domain wall. In the disordered phase, an addit
vortex can be introduced at finite free energy cost, and hence

@^F~x!&b#pÞ0. ~33!

On the torus, we may consider an operator that inserts not a semi-infinite domain wall
nating on a vortex, but instead a domain wall that winds about a cycle of the torus. Again,
ferromagnetically ordered phase, the cost in free energy of inserting the domain wall w
proportional toL, the minimal length of a cycle. Specifically, in our two-dimensional Ising s
model, consider choosing anh-chain and evaluating the corresponding partition function

Z@J,h#5exp@2bF~J,h!#. ~34!

Now choose a set of linksC of the original lattice that constitute a nontrivial cycle wound arou
the torus, and replaceh l→2h l for the corresponding links of the dual lattice,l PC* . Evaluate,
again, the partition function, obtaining

ZC@J,h#5exp@2bFC~J,h!#. ~35!

Then the free energy cost of the domain wall is given by

bFC~J,h!2bF~J,h!52 lnS ZC@J,h#

Z@J,h# D . ~36!

After averaging over$h%, this free energy cost diverges asL→` in the ordered phase, an
converges to a constant in the disordered phase.

There is also a dual order parameter that vanishes in the disordered phase—the spon
magnetization of the Ising spin system. Strictly speaking, the defining property of the non
magnetic disordered phase is that spin correlations decay with distance, so that
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lim
r→`

@^s0s r&b#p50 ~37!

in the disordered phase. Correspondingly, the mean squared magnetization per site,

m2[N22(
i , j

@^s is j&b#p , ~38!

where i , j are summed over all spins andN is the total number of spins, approaches a nonz
constant asN→` in the ordered phase, and approaches zero as a positive power of 1/N in the
disordered phase.

Similarly in our three-dimensional gauge theory, there is a disorder parameter that ins
single magnetic monopole, which we may think of as the end of a semi-infinite flux tube. A
natively, we may consider the free energy cost of inserting a flux tube that wraps around the
which is proportional toL in the magnetically ordered phase. In the three-dimensional mode
partition functionZC@J,h# in the presence of a flux tube wrapped around the nontrivial cycleC of
the original lattice is obtained by replacinghP→2hP on the plaquettes dual to the links ofC.
The magnetically ordered phase is called a ‘‘Higgs phase’’ or a ‘‘superconducting phase.
magnetically disordered phase is called a ‘‘confinement phase’’ because in this phase intro
an isolated electric charge has a infinite cost in free energy, and electric charges are confi
pairs by electric flux tubes.

An order parameter for the Higgs-confinement transition is the Wilson loop operator

W~C!5 )
,PC

s, ~39!

associated with a closed loopC of links on the lattice. This operator can be interpreted as
insertion of a charged particle source whose world line follows the pathC. In the confinement
phase, this world line becomes the boundary of the world sheet of an electric flux tube, so th
free energy cost of inserting the source is proportional to the minimal area of a surface boun
C; that is,

2 ln@^W~C!&b#p ~40!

increases like the area enclosed by the loopC in the confinement phase, while in the Higgs pha
it increases like the perimeter ofC. @A subtle point is that the relevant Wilson loop operator diffe
from that considered in Sec. 10 of Ref. 23. In that reference, the Wilson loop was modified s
the ‘‘Dirac strings’’ connecting the monopoles would be invisible. But in our case, the D
strings have a physical meaning~they comprise the chainE! and we are genuinely interested
how far the physical flux tubes~comprising the chainE8! fluctuate away from the Dirac strings!#

In the caseqÞp, our gauge theory becomes anisotropic—p controls the coupling and the
quenched disorder on the timelike plaquettes, whileq controls the coupling and the quenche
disorder on the spacelike plaquettes. The tubes of flux inE1E8 will be stretched in the time
direction forq.p and compressed in the time direction forq,p. Correspondingly, spacelike an
timelike Wilson loops will decay at different rates. Still, one expects that~for 0,q, 1

2! a single
phase boundary in thep–q plane separates the region in which both timelike and spacelike Wi
loops decay exponentially with area~confinement phase! from the region in which both timelike
and spacelike Wilson loops decay exponentially with perimeter. In the limitq→0, flux on the
spacelike plaquettes becomes completely suppressed, and the timelike plaquettes on disti
slices decouple, each described by the two-dimensional spin model described earlier. Simil
the limit p→0, the gauge theory reduces to decoupled one-dimensional spin models extend
the vertical direction, with a critical point atq5 1

2.
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F. Accuracy threshold

What accuracy threshold can be achieved by surface codes? We have found that in th
where the syndrome is measured perfectly (q50), the answer is determined by the value
critical point of the two-dimensional random-bond Ising model on the Nishimori line. This v
has been determined by numerically evaluating the domain wall free energy; recent stud
Honeckeret al.24 and Merz and Chalker25 find

pc50.109460.0002. ~41!

A surface code is a Calderbank–Shor–Steane~CSS! code, meaning that each stabilizer ge
erator is either a tensor product ofX’s or a tensor product ofZ’s.26,27If X errors andZ errors each
occur with probabilityp, then it is known that CSS codes exist with asymptotic rateR[k/n
~wheren is the block size andk is the number of encoded qubits! such that error recovery wil
succeed with probability arbitrarily close to one, where

R5122H2~p!; ~42!

hereH2(p)52p log2 p2(12p)log2(12p) is the binary Shannon entropy. This rate hits zero wh
p has the value

pc50.1100, ~43!

which marginally agrees with Eq.~41! within statistical errors. Thus the critical error probabili
is ~at least approximately! the same regardless of whether we allow arbitrary CSS codes or re
to those with a locally measurable syndrome. This result is analogous to the property th
classical repetition code achieves reliable recovery from bit-flip errors for any error proba
p, 1

2, the value for which the Shannon capacity hits zero. Note that Eq.~41! can also be inter-
preted as a threshold for the quantum repetition code, in the case where the bit-flip error ra
the measurement error rate are equal (p5q).

If measurement errors are incorporated, then the accuracy threshold achievable with
codes is determined by the critical point along the Nishimori line of the three-dimensionZ2

gauge theory with quenched randomness. In that model the measurement error probabilityq ~the
error weight for vertical links! and the bit-flip probabilityp ~the error weight for horizontal links!
are independent parameters. It seems that numerical studies of this quenched gauge theo
not been done previously, even in the isotropic case; work on this problem is in progress.

Since recovery is more difficult with imperfect syndrome information than with perfect
drome information, the numerical data on the random-bond Ising model indicate thatpc,0.11 for
any q.0. For the casep5q, we will derive the lower boundpc>0.0114 in Sec. V.

G. Free energy versus energy

In either the two-dimensional model~if q50! or the three-dimensional model~if q.0!, the
critical error probability along the Nishimori line provides a criterion for whether it is possibl
principle to perform flawless recovery from errors. In practice, we would have to exec
classical computation, with the measured syndrome as input, to determine how error re
should proceed. The defects revealed by the syndrome measurement can be brought tog
annihilate in several homologically distinct ways; the classical computation determines wh
these ‘‘recovery chains’’ should be chosen.

We can determine the right homology class by computing the free energy for each hom
class, and choosing the one with minimal free energy. In the ordered phase~error probability
below threshold! the correct sector will be separated in free energy from other sectors b
amount linear inL, the linear size of the lattice.

The computation of the free energy could be performed by, for example, the Monte
method. It should be possible to identify the homology class that minimizes the free energ
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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time polynomial inL, unless the equilibration time of the system is exponentially long. Suc
long equilibration time would be associated with spin-glass behavior—the existence of a
number of metastable configurations. In the random-bond Ising model, spin glass behavior
expected in the ferromagnetically ordered phase corresponding to error probability below t
old. Thus, we expect that in the two-dimensional model the correct recovery procedure c
computed efficiently for anyp,pc . Similarly, it is also reasonable to expect that, for err
probability below threshold, the correct recovery chain can be found efficiently in the t
dimensional model that incorporates measurement errors.

In fact, some folklore concerning the random-bond Ising model suggests that we can re
successfully by finding a recovery chain that minimizesenergy rather than free energy
Nishimori28 notes that along the Nishimori line, the free energy@bF(J)#p coincides with the
entropy of frustration; that is, theShannon entropyof the distribution of Ising vortices.~He
considered the isotropic two-dimensional model, but his argument applies just as well t
three-dimensional gauge theory, or to the anisotropic model withqÞp.! Thus, the singularity of
the free energy on the Nishimori line can be regarded as a singularity of this Shannon en
which is a purely geometrical effect having nothing to do with thermal fluctuations.

On this basis, Nishimori proposed that there is a vertical phase boundary in our m
occurring at a fixed value ofp for all temperatures below the critical temperature at the Nishim
point, as indicated in Fig. 11; further support for this conclusion was later offered by Kitatan29 If
this proposal is correct, then the critical error probability can be computed by analyzing the
transition at zero temperature, where the thermal entropy of the fluctuating chains can
glected. In other words, in the ordered phase, the chain of minimal energy with the same bo
as the actual error chain will with probability one be in the same homology class as the
chain, in the infinite-volume limit. Ordinarily, minimizing free energy and energy are quite
ferent procedures that give qualitatively distinct results. What might make this case differ
that the quenched disorder~the error chainE! and the thermal fluctuations~the error chainE8! are
drawn from the same probability distribution.

Minimizing the energy has advantages. For one, the minimum energy configuration
minimum weight chain with a specified boundary, which we know can be computed in a
polynomial inL using the perfect matching algorithm of Edmonds.30,31 Kawashima and Rieger32

computed the energetic cost of introducing a domain wall at zero temperature, and foupc

.0.10460.001. It is debatable whether this result is compatible with the valuepc.0.1094
60.0002 found by Honeckeret al.24 and Merz and Chalker25 at the Nishimori point, but in any
casepc at zero temperature is reasonably close topc on the Nishimori line.

Minimizing the energy is easier to analyze than minimizing the free energy, and at the

FIG. 11. The phase diagram of the random-bond Ising model, with the temperatureb21 on the vertical axis and the
probabilityp of an antiferromagnetic bond on the horizontal axis. The solid line is the boundary between the ferroma
~ordered! phase and the paramagnetic~disordered! phase. The dotted line is the Nishimori linee22b5p/(12p), which
crosses the phase boundary at the Nishimori pointN. It has been suggested that the phase boundary isvertical from the
point N to the horizontal axis.
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least the critical value ofp at zero temperature provides alower boundon pc along the Nishimori
line. In Sec. V we will derive a rigorous bound on the accuracy threshold in our error mode
considering the efficacy of the energy minimization procedure in the three-dimensional mo

V. CHAINS OF MINIMAL WEIGHT

A. The most probable world line

As argued in Sec. IV G, an effective way use the error syndrome in our three-dimens
model is to construct an error chain that has the minimal ‘‘energy’’—that is, we select from am
all error chains that have the same boundary as the syndrome chainS, the single chainEmin that
has the highest probability. In this section, we will study the efficacy of this procedure, an
obtain a lower bound on the accuracy threshold for quantum storage.

An error chainE with H horizontal links andV vertical links occurs with probability~aside
from an overall normalization!

S p

12pD HS q

12qD V

, ~44!

wherep is the qubit error probability andq is the measurement error probability. Thus we choo
Emin to be the chain with

]Emin5]S ~45!

that has theminimal value of

H• logS 12p

p D1V• logS 12q

q D ; ~46!

we minimize the effective length~number of links! of the chain, but with horizontal and vertica
links given different linear weights forpÞq. If the minimal chain is not unique, one of th
minimal chains is selected randomly.

Given the measured syndrome, and hence its boundary]S, the minimal chainEmin can be
determined on a classical computer, using standard algorithms, in a time bounded by a poly
of the number of lattice sites.30,31 If p andq are small, so that the lattice is sparsely populated
the sites contained in]S, this algorithm typically runs quite quickly. We assume this class
computation can be performed instantaneously and flawlessly.

B. A bound on chain probabilities

Recovery succeeds if our hypothesisEmin is homologically equivalent to the actual error cha
E that generated the syndrome chainS, and fails otherwise. Hence, we wish to bound the like
hood of homologically nontrivial paths appearing inE1Emin .

Consider a particular cycle on our space–time lattice~or in fact any connected path, wheth
or not the path is closed!. Suppose that this path containsH horizontal links andV vertical links.
How likely is it that E1Emin contains this particular set of links?

For our particular path withH horizontal links andV vertical links, letHm , Vm be the number
of those links contained inEmin , and letHe , Ve be the number of those links contained inE ~cf.
Fig. 12!. These quantities obey the relations

Hm1He>H, Vm1Ve>V, ~47!

and so it follows that

S p

12pD HmS q

12qD Vm

•S p

12pD HeS q

12qD Ve

<S p

12pD HS q

12qD V

. ~48!
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Furthermore, our procedure for constructingEmin ensures that

S p

12pD HeS q

12qD Ve

<S p

12pD HmS q

12qD Vm

. ~49!

This must be so because thee links and them links share the same boundary; were Eq.~49! not
satisfied, we could replace them links in Emin by the e links and thereby increase the value
@p/(12p)#Hm@q/(12q)#Vm. Combining the inequalities~48! and ~49! we obtain

S p

12pD HeS q

12qD Ve

<F S p

12pD HS q

12qD VG1/2

. ~50!

What can we say about the probability Prob(H,V) that a particular connected path with (H,V)
horizontal and vertical links is contained inE1Emin? There are altogether 2H1V ways to distribute
errors~links contained inE! at locations on the specified chain—each link either has an erro
not. And once the error locations are specified, the probability for errors to occur at those p
lar locations is

pHe~12p!H2HeqVe~12q!V2Ve5~12p!H~12q!VS p

12pD HeS q

12qD Ve

. ~51!

But with those chosen error locations, the cycle can be inE1Emin only if Eq. ~50! is satisfied.
Combining these observations, we conclude that

Prob~H,V!<2H1V~ p̃Hq̃V!1/2, ~52!

where

p̃5p~12p!, q̃5q~12q!. ~53!

We can now bound the probability thatE1Emin contains any connected path with (H,V) links
~whether an open path or a cycle! by counting such paths. We may think of the path as a walk
the lattice~in the case of a cycle we randomly choose a point on the cycle where the walk b

FIG. 12. The error chainE ~darkly shaded! and one possible choice for the chainEmin ~lightly shaded!, illustrated for a
636 torus in two dimensions. In this caseE1Emin contains a homologically nontrivial cycle of length 8, which contai
He54 links of E andHm54 links of Emin .
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



osed
t any

e
use
ating
sed

may

y
f

l

odes

ith a

links.
of
a

4479J. Math. Phys., Vol. 43, No. 9, September 2002 Topological quantum memory

Downloade
and ends!. Actually, our primary interest is not in how long the walk is~how many links it
contains!, but rather in how far it wanders—in particular we are interested in whether a cl
walk is homologically nontrivial. The walks associated with connected chains of errors visi
given link at most once, but it will suffice to restrict the walks further, to beself-avoiding walks
~SAWs!—those that visit any givensite at most once~or in the case of a cycle, revisit only th
point where the walk starts and ends!. This restriction proves adequate for our purposes, beca
given any open error walk that connects two sites, we can always obtain a SAW by elimin
some closed loops of links from that walk. Similarly, given any homologically nontrivial clo
walk, we can obtain a closed SAW~a self-avoiding polygon, or SAP! by eliminating some links.

If we wish to consider the probability of an error per unit time in the encoded state, we
confine our attention to SAWs that lie between two time slices separated by the finite timeT. @In
fact, we will explain in Sec. VI why we can safely assume thatT5O(L).# Such a SAW can begin
at any one ofL2

•T lattice sites of our three-dimensional lattice~and in the case of a SAP, we ma
arbitrarily select one site that it visits as its ‘‘starting point.’’! If nSAP(H,V) denotes the number o
SAPs with (H,V) links and a specified starting site, then the probability ProbSAP(H,V) that E
1Emin contains any SAP with (H,V) links satisfies

ProbSAP~H,V!<L2T•nSAP~H,V!•2H1V~ p̃Hq̃V!1/2. ~54!

The upper bound Eq.~54! will be the foundation of the results that follow.
The encoded quantum information is damaged ifE1Emin contains homologically nontrivia

paths. At a minimum, the homologically nontrivial~self-avoiding! path must contain at leastL
horizontal links. Hence we can bound the failure probability as

Probfail<(
V

(
H>L

ProbSAP~H,V!<L2T(
V

(
H>L

nSAP~H,V!•~4p̃!H/2~4q̃!V/2. ~55!

C. Counting anisotropic self-avoiding walks

We will obtain bounds on the accuracy threshold for reliable quantum storage with toric c
by establishing conditions under which the upper bound Eq.~55! rapidly approaches zero asL gets
large. For this analysis, we will need bounds on the number of self-avoiding polygons w
specified number of horizontal and vertical links.

One such bound is obtained if we ignore the distinction between horizontal and vertical
The first step of a SAP on a simple~hyper!cubic lattice ind dimensions can be chosen in any
2d directions, and each subsequent step in at most 2d21 directions, so for walks containing
total of , links we obtain

nSAP
(d) ~, !<2d~2d21!,21, d dimensions. ~56!

Some tighter bounds are known33,34 in the casesd52,3:

nSAP
(2) ~, !<P2~, !~m2!,, m2'2.638, ~57!

and

nSAP
(3) ~, !<P3~, !~m3!,, m3'4.684, ~58!

whereP2,3(,) are polynomials.
Since a SAP withH horizontal andV vertical links has,5H1V total links, we may invoke

Eq. ~58! together with Eq.~55! to obtain

Probfail<L2T(
V

(
H>L

P3~H1V!•~4m3
2 p̃!H/2~4m3

2 q̃!V/2. ~59!
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Provided that

p̃,~4m3
2!21, q̃,~4m3

2!21, ~60!

we have

~4m3
2 p̃!H/2

•~4m3
2 q̃!V/2<~4m3

2 p̃!L/2 ~61!

for every term appearing in the sum. Since there are altogether 2L2T horizontal links andL2T
vertical links on the lattice, the sum overH,V surely can have at most 2L4T2 terms, so that

Probfail,Q3~L,T!•~4m3
2 p̃!L/2, ~62!

whereQ3(L,T) is a polynomial. To ensure that quantum information can be stored with arbitr
good reliability, it will suffice that Probfail becomes arbitrarily small asL gets large~with T
increasing no faster than a polynomial ofL!. Thus Eq.~60! is sufficient for reliable quantum
storage. Numerically, the accuracy threshold is surely attained provided that

p̃,q̃,~87.8!2150.0113, ~63!

or

p,q,0.0114. ~64!

Not only does Eq.~62! establish a lower bound on the accuracy threshold, it also shows
below threshold, the failure probability decreases exponentially withL, the square root of the
block size of the surface code.

Equation~64! bounds the accuracy threshold in the casep5q, where the sum in Eq.~55! is
dominated by isotropic walks withV;H/2. But for q,0.0114, higher values ofp can be toler-
ated, and forq.0.0114, there is still a threshold, but the condition onp is more stringent. To
obtain stronger results than Eq.~64! from Eq. ~55!, we need better ways to count anisotrop
walks, with a specified ratio ofV to H.

One other easy case is theq→0 limit ~perfect syndrome measurement!, where the only walks
that contribute are two-dimensional SAPs confined to a single time slice. Then we have

Probfail,Q2~L,T!•~4m2
2 p̃!L/2 ~65!

@whereQ2(L,T) is a polynomial# provided that

p̃5p~12p!,~4m2
2!21'~27.8!2150.0359, ~66!

or

p,0.0373; ~67!

the threshold value ofp can be relaxed to at least 0.0373 in the case where syndrome mea
ments are always accurate.

This estimate ofpc is considerably smaller than the valuepc.0.109460.0002 quoted in Sec
IV F, obtained from the critical behavior of the random-bond Ising model. That discrepancy
a surprise, considering the crudeness of our arguments in this section. If one accepts the re
the numerical studies of the random-bond Ising model, and Nishimori’s argument that the
boundary of the model is vertical, then apparently constructing the minimum weight chain
more effective procedure than our bound indicates.

One possible way to treat the caseqÞp would be to exploit an observation due to d
Gennes,35 which relates the counting of SAPs to the partition function of a classicalO(N) spin
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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model in the limitN→0. This spin model is anisotropic, with nearest-neighbor couplingsJH on
horizontal links andJV on vertical links, and its~suitably rescaled! free energy density has th
high-temperature expansion

f ~JH ,JV!5(
H,V

nSAP~H,V!~JH!H~JV!V. ~68!

This expansion converges in the disordered phase of the spin system, but diverges in the m
cally ordered phase. Thus, the phase boundary of the spin system in theJH –JV plane can be
translated into an upper bound on the storage accuracy threshold in thep–q plane, through the
relations

p̃5JH
2 /4, q̃5JV

2/4, ~69!

obtained by comparing Eqs.~68! and ~55!.
To bound the failure probability for a planar code rather than the toric code, we should

the ‘‘relative polygons’’ that stretch from one edge of the lattice to the opposite edge. This ch
has no effect on the estimate of the threshold.

VI. ERROR CORRECTION FOR A FINITE TIME INTERVAL

In estimating the threshold for reliablestorageof encoded quantum information, we hav
found it convenient to imagine that we perform error syndrome measurement forever, witho
beginning or end. ThusS1E is a cycle~whereS is the syndrome chain andE is the error chain!
containing the closed world lines of the defects. Though some of these world lines m
homologically nontrivial, resulting in damage to the encoded qubits, we can recover from
damage successfully if the chainS1E8 ~whereE8 is our estimated error chain! is homologically
equivalent toS1E. The analysis is simplified because we need to consider only the errors
have arisen during preceding rounds of syndrome measurement, and need not consider a
existing errors that were present when the round of error correction began.

However, if we wish to perform acomputationacting on encoded toric blocks, life will not b
so simple. In our analysis of the storage threshold, we have assumed that the complete sy
history of an encoded block is known. But when two blocks interact with one another in
execution of a quantum gate, the defects in each block may propagate to the other block. T
assemble a complete history of the defects in any given block, we would need to take into a
the measured syndrome of all the blocks in the ‘‘causal past’’ of the block in question. In prin
this is possible. But in practice, the required classical computation would be far too comp
perform efficiently—inT parallelized time steps, with two-qubit gates acting in each step,
conceivable that defects from as many as 2T different blocks could propagate to a given bloc
Hence, if we wish to compute fault-tolerantly using toric codes, we will need to intervene
perform recovery repeatedly. Since the syndrome measurement is imperfect and the defe
tions cannot be precisely determined, errors left over from one round of error correction may
problems in subsequent rounds.

Intuitively, it should not be necessary to store syndrome information for a very long peri
recover successfully, because correlations decay exponentially with time in our stati
mechanical model. To take advantage of this property, we must modify our recovery proce

A. Minimal-weight chains

Consider performing syndrome measurementT times in succession~starting at timet50!,
generating syndrome chainS and error chainE. Let the error chainE contain any qubit errors tha
were already present when the syndrome measurements began. Then the chainS1E consisting of
all defect world lines contains both closed loops and open paths that end on the fina
slice—we say thatS1E is closed relative to the final time slice, or] rel(S1E)50. The open
connected paths contained inS1E are of two types: pairs of defects created prior tot50 that
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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have persisted untilt5T ~if the world line contains links on the initial time slice!, and pairs of
defects created aftert50 that have persisted untilt5T ~if the world line contains no links on the
initial slice!.

The syndromeS could have been caused by any error chainE8 with the samerelative
boundary asE. To reconstruct the world lines, we should choose anE8 that is likely given the
observedS. A reasonable procedure is to choose the chainE8 with ] relE85] relS that minimizes
the weight Eq.~46!.

The chainS1E8 can be projected onto the final time slice—the projected chainP(S1E8)
contains those and only those horizonal links that are contained inS1E8 on an odd number of
time slices. Of course,E8 has the same projection asS1E8; the syndrome chainS contains only
vertical links so that its projection is trivial. The projectionP(E8) is our hypothesis about which
links have errors on the final time slice. AfterP(E8) is constructed, we may performX’s or Z’s
on these links to compensate for the presumed damage. Note that, to constructE8, we do not need
to store all ofS in our ~classical! memory—only the relative boundary ofS is needed.

Actually, any homologically trivial closed loops inP(E8) are harmless and can be safe
ignored. Each homologically nontrivial world line modifies the encoded information by the lo
operationX̄ or Z̄. Thus, after the hypothetical closed world lines are reconstructed, we
compensate for the homologically nontrivial closed loops by applyingX̄ and/or Z̄ as needed.
Projecting the open world lines inE8 onto the final time slice produces a pairing of the presum
positions of surviving defects on the final slice. These defects are removed by performingZ’s or
X’s along a path connecting the pair that is homologically equivalent to the projected chai
connects them. Thus, this recovery step in effect brings the paired defects together to an
harmlessly.

Of course, our hypothesisE8 will not necessarily agree exactly with the actual error chainE.
ThusE1E8 contains open chains bounded by the final time slice. Where these open chain
the final time slice, defects remain that our recovery procedure has failed to remove.

B. Overlapping recovery method

The procedure of constructing the minimal-weight chainE8 with the samerelative boundary
asS is not as effective as the procedure in which we continue to measure the syndrome fore
the latter case, we are in effect blessed with additional information about where monopole
appear in the future, at times later thanT, and that additional information allows us to make
more accurate hypothesis about the defect world lines. However, we can do nearly as wel
use a procedure that stores the syndrome history for only a finite time, if we recognize th
older syndrome is more trustworthy than the more recent syndrome. In our statistical p
model, the fluctuating closed loops inE1E8 do not grow indefinitely large in either space or
time. Therefore, we can reconstruct anE8 that is homologically equivalent toE quasilocally in
time—to pair up the monopoles in the vicinity of a given time slice, we do not need to know
error syndrome at times that are much earlier or much later.

So, for example, imagine measuring the syndrome 2T times in succession~starting at time
t50!, and then constructingE8 with the same relative boundary asS. The chainE8 can be split
into two disjoint subchains, as indicated in Fig. 13. The first part consists of all connected c
that terminate on two monopoles, where both monopoles lie in the time interval 0<t,T; call this
part Eold8 . The rest ofE8 we call Ekeep8 . To recover, we flip the links in the projectionP(Eold8 ),
after which we may erase from memory our record of the monopoles connected byEold8 ; only
Ekeep8 ~indeed only the relative boundary ofEkeep8 ! will be needed to perform the next recovery ste

In the next step we measure the syndrome anotherT times in succession, fromt52T to t
53T21. Then we choose our newE8 to be the minimal-weight chain whose boundary relative
the new final time slice is the union of the relative boundary ofS in the interval 2T<t,3T and
the relative boundary ofEkeep8 left over from previous rounds of error correction. We call th
procedure the ‘‘overlapping recovery method’’ because the minimal-weight chains that are
structed in successive steps occupy overlapping regions of space–time.
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If we chooseT to be large compared to the characteristic correlation time of our statis
physics model, then only rarely will a monopole survive for more than one round, and the am
of syndrome information we need to store will surely be bounded. Furthermore, for suchT, this
overlapping recovery method will perform very nearly as well as if an indefinite amoun
information were stored.

The timeT should be chosen large enough so that connected chains inE1E8 are not likely to
extend more than a distanceT in the time direction. Arguing as in Sec. V C@and recalling that the
numbernSAW(,) of self-avoiding walks of length, differs from the numbernSAP(,) of self-
avoiding polygons of length, by a factor polynomial in,#, we see that a connected cha
containingH horizontal links andV vertical links occurs with a probability

Prob~H,V!<Q38~H,V!~4m3
2p̃!H/2~4m3

2q̃!V/2, ~70!

whereQ38(H,V) is a polynomial. Furthermore, a connected chain with temporal extentT must
have at leastV52T vertical links if both ends of the chain lie on the final time slice. Therefore
probability Prob(H,V) is small compared to the failure probability Eq.~62!, so that our procedure
with finite memory differs in efficacy from the optimal procedure with infinite memory b
negligible amount, provided that

T@
L

2
•

log~4m3
2p̃!21

log~4m3
2q̃!21 . ~71!

In particular, if the measurement error and qubit error probabilities are comparable (q.p), it
suffices to chooseT@L, whereL is the linear size of the lattice.

Thus we see that the syndrome history need not be stored indefinitely for our rec
procedure to be robust. The key to fault tolerance is that we should not overreact to syn
information that is potentially faulty. In particular, if we reconstruct the world lines of the def
and find open world lines that do not extend very far into the past, it might be dangerous to
the accuracy of these world lines and respond by bringing the defects together to annihila

FIG. 13. The ‘‘overlapping recovery’’ method, shown schematically. All monopoles~boundary points of the error syn
drome chain! are indicated as filled circles, including both monopoles left over from earlier rounds of error recovery~those
in the shaded region below the dotted line! and monopoles generated after the previous round~those in the unshaded regio
above the dotted line!. Also shown is the minimum weight chainE8 that connects each monopole to either anoth
monopole or to the current time slice. The chainE8 containsEold8 , whose boundary lies entirely in the shaded region, a
the remainderEkeep8 . In the current recovery step, errors are corrected on the horizontal links ofEold8 , and its boundary is
then erased from the recorded syndrome history. The boundary ofEkeep8 is retained in the record, to be dealt with in a futu
recovery step.
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world lines that persist for a time comparable toL are likely to be trustworthy. In our overlappin
recovery scheme, we take action to remove only these long-lived defects, leaving those o
recent vintage to be dealt with in the next recovery step.

C. Computation threshold

Our three-dimensional model describes the history of a single code block; hence its
transition identifies a threshold for reliable storage of quantum information. Analyzing the th
old for reliable quantumcomputationis more complex, because we need to consider interact
between code blocks.

When two encoded blocks interact through the execution of a gate, errors can propaga
one block to another, or potentially from one qubit in a block to another qubit in the same b
It is important to keep this error propagation under control. We will discuss in Sec. IX ho
universal set of fault-tolerant quantum gates can be executed on encoded states. For no
consider the problem of performing a circuit consisting of CNOT gates acting on pairs of enc
qubits. The encoded CNOT gate with block 1 as its control and block 2 as its target c
implementedtransversally—that is, by performing CNOT gates in parallel, each acting on a q
in block 1 and the corresponding qubit in block 2. A CNOT gate propagates bit-flip errors
control to target and phase errors from target to control. Let us first consider the case in
storage errors occur at a constant rate, but errors in the gates themselves can be neglect

Suppose that a transversal CNOT gate is executed at timet50, propagating bit-flip errors
from block 1 to block 2, and imagine that we wish to correct the bit-flip errors in block 2.
suppose that many rounds of syndrome measurement are performed in both blocks befo
after t50. Denote byS1 andS2 the syndrome chains in the two blocks, and byE1 andE2 the error
chains. Due to the error propagation, the chainS21E2 in block 2 has a nontrivial boundary at th
t50 time slice. Therefore, to diagnose the errors in block 2 we need to modify our proced

We may divide each syndrome chain and error chain into two parts, a portion lying in the
of the t50 time slice, and a portion lying in its future. Then the chain

S1,before1S2,before1S2,after1E1,before1E2,before1E2,after ~72!

has a trivial boundary. Therefore, we can estimateE1,before1E2,before1E2,after by constructing the
minimal chain with the same boundary asS1,before1S2,before1S2,after. Furthermore, because of th
error propagation, it isE1,before1E2,before1E2,after whose horizontal projection identifies the dam
aged links in block 2 aftert50.

If in each block the probability of error per qubit and per time step isp, while the probability
of a syndrome measurement error isq, then the error chainE1,before1E2,before1E2,afterhas in effect
been selected from a distribution in which the error probabilities are (2p(12p),2q(12q)) before
the gate and (p,q) after the gate. Obviously, these errors are no more damaging than if the
probabilities had been (2p(12p),2q(12q)) at all times, both before and aftert50. Therefore, if
(p,q) lies below the accuracy threshold for accurate storage, then error rates (2p(12p),2q(1
2q)) will be below the accuracy threshold for a circuit of CNOT gates.

Of course, the transversal CNOT might itself be prone to error, damaging each qubi
probabilitypCNOT, so that the probability of error is larger on thet50 slice than on earlier or late
slices. However, increasing the error probability fromp to p1pCNOT on a single slice is surely no
worse than increasing the probability of error top1pCNOT on all slices. For a givenq, there is a
threshold valuepc(q), such that forp,pc(q) a circuit of CNOTs is robust if the gates ar
flawless; then the circuit with imperfect gates is robust provided thatp1pCNOT,pc(q).

By such reasoning, we can infer that the accuracy threshold for quantum computat
comparable to the threshold for reliable storage, differing by factors of order one. Further
below threshold, the probability of error in an encoded gate decreases exponentially withL, the
linear size of the lattice. Therefore, to execute a quantum circuit that containsT gates with
reasonable fidelity, we should chooseL5O(logT), so that the block size 2L2 of the code is
O(log2 T).
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VII. QUANTUM CIRCUITS FOR SYNDROME MEASUREMENT

In our model with uncorrelated errors, in which qubit errors occur with probabilityp per time
step and measurement errors occur with probabilityq, we have seen in Sec. IV that it is possib
to identify a sharp phase boundary between values of the parameters such that error corre
sure to succeed in the limit of a large code block, and values for which error correction nee
succeed. How can we translate this accuracy threshold, expressed as a phase boundary inp–q
plane, into a statement about how well the hardware in our quantum memory must perfo
order to protect quantum states effectively? The answer really depends on many details ab
kinds of hardware that are potentially at our disposal. For purposes of illustration, we will relp
andq to the error probabilities for the fundamental gates in a particular computational mod

A. Syndrome measurement

Whenever a check operatorXs or ZP is measured, a quantum circuit is executed in which e
of the qubits occurring in the check operator interacts with an ancilla, and then the anc
measured to determine the result. Our task is to study this quantum circuit to determine h
faults in the circuit contribute top and toq. To start we must decide what circuit to study.

For many quantum codes, the design of the syndrome measurement circuit involves sub
If the circuit is badly designed, a single error in the ancilla can propagate to many qubits
code block, compromising the effectiveness of the error correction procedure. To evad
problem, Shor3 and Steane36 proposed two different methods for limiting the propagation of er
from ancilla to data in the measurement of the check operators of a stabilizer code. In
method, to extract each bit of the error syndrome, an ancilla ‘‘cat state’’ is prepared that co
as many qubits as the weight of the check operator. The ancilla interacts with the data code
and then each qubit of the ancilla is measured; the value of the check operator is the parity
measurement outcomes. In Steane’s method, the ancilla is prepared as an encoded block~contain-
ing as many qubits as the length of the code!. The ancilla interacts with the data, each qubit in t
ancilla is measured, and a classical parity check matrix is applied to the measurement outco
extract the syndrome. In either scheme, each ancilla qubit interacts with only a single qubit
data, so that errors in the ancilla cannot seriously damage the data. The price we pay
overhead involved in preparing the ancilla states and verifying that the preparation is corre

We could use the Shor method or the Steane method to measure the stabilizer of a
code, but it is best not to. We can protect against errors more effectively by using just a
ancilla qubit for the measurement of each check operator, avoiding all the trouble of preparin
verifying ancilla states. The price we pay is modest—a single error in the ancilla might prop
to become two errors in the data, but we will see that these correlated errors in the data are
damaging.

So, we imagine placing a sheet of ancilla qubits above the qubits of a planar code
Directly above the sites is the ancilla qubit that will be used to measureXs , and directly above
the center of the plaquetteP is the ancilla qubit that will be used to measureZP . We suppose tha
CNOT gates can be executed acting on a data qubit and its neighboring ancilla qubits. The
for measuring the plaquette operatorZ^ 4 and the site operatorX^ 4 are shown in Fig. 14.

We have included the Hadamard gates in the circuit for measuring the site operator to s
that the ancilla qubit is initially prepared in theX51 state, and the final measurement is

FIG. 14. Circuits for measurement of the plaquette (Z^ 4) and site (X^ 4) stabilizer operators.
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measurement ofX, while in the case of the plaquette operator measurement the ancilla is pre
in the Z51 state andZ is measured at the end. But we will suppose that our computer
measureX as easily as it can measureZ; hence in both cases the circuit is executed in six ti
steps~including preparation and measurement!, and there is really no Hadamard gate.

B. Syndrome errors and data errors

We will assume that all errors in the circuit are stochastic~for example, they could be error
caused by decoherence!. We will consider both ‘‘storage errors’’ and ‘‘gate errors.’’ In each tim
step, the probability that a ‘‘resting’’ qubit is damaged will be denotedps . For simplicity, we will
assume that an error, when it occurs, is one of the Pauli operatorsX, Y, or Z. ~The analysis of the
circuit is easily generalized to more general models of stochastic errors.! In our analysis, we will
always make a maximally pessimistic assumption about which error occurred at a par
position in the circuit. If a gate acts on a qubit in a particular time step, we will assume that
is still a probabilityps of a storage error in that step, plus an additional probability of error du
the execution of the gate. We denote the probability of an error in the two-qubit CNOT ga
pCNOT; the error is a tensor product of Pauli operators, and again we will always make maxi
pessimistic assumptions about which error occurs at a particular position in the circuit. If a s
error and gate error occur in the same time step, we assume that the gate error acts first, f
by the storage error. When a single qubit is measured in the$u0&,u1&% basis,pm is the probability
of obtaining the incorrect outcome.~If a storage error occurs during a measurement step,
assume that the error precedes the measurement.! And when a fresh qubit is acquired in the sta
u0&, pp denotes the probability that its preparation is faulty~it is u1& instead!.

In a single cycle of syndrome measurement, each data qubit participates in the measu
of four stabilizer operators: two site operators and two plaquette operators. Each of thes
surements requires four time steps~excluding the preparation and measurement steps!, as a single
ancilla qubit is acted upon by four sequential CNOTs. But to cut down the likelihood of sto
errors, we can execute the four measurement circuits in parallel, so that every data qubit
pates in a CNOT gate in every step. For example, for each plaquette and each site, we may
CNOT gates that act on the four edges of the plaquette or the four links meeting at the site
counterclockwise order north–west–south–east. The CNOT gates that act on a given data
then, alternate between CNOTs with the data qubit as control and CNOTs with the data q
target, as indicated in Fig. 15.

For either a site check operator or a plaquette check operator, the probability that the
surement is faulty is

qsingle5pp14pCNOT16ps1pm1h. o., ~73!

where ‘‘1h. o.’’ denotes terms of higher than linear order in the fundamental error probabil
The measurement can fail if any one of the CNOT gates has an error, if a storage error
during any of the six time steps needed to execute the circuit~including the preparation and

FIG. 15. Gates acting on a given qubit in a complete round of syndrome measurement. Data qubits on links
north–south orientation participate successively in measurements of check operators at the site to the south, the
to the east, the site to the north, and the plaquette to the west. Qubits on links with an east–west orientation pa
successively in measurements of check operators at the plaquette to the south, the site to the east, the plaquette to
and the site to the west.
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measurement step!, or because of a fault in the initial preparation or final measurement of
ancilla qubit. By omitting the higher order terms we are actuallyoverestimating q. For example,
ps is the probability that a storage error occurs in the first time step, disregarding whether
additional errors occur in the circuit.

We have used the notationqsingle in Eq. ~73! to emphasize that this is an estimate of t
probability of an isolated error on a vertical~timelike! link. More troublesome are syndrom
measurement errors that are correlated with qubit errors. These arise if, say, a qubit suffeZ
error that is duly recorded in the syndrome measurement of one of the two adjoining sites b
the other. In our space–time picture, then, there is a timelike plaquette with an error on one
horizontal links and one of its vertical links. We will refer to this type of correlated error a
‘‘vertical hook’’—hook because the two links with errors meet at a 90° angle, and vertical bec
one of the links is vertical~and to contrast with the case of a horizontal hook which we w
discuss later!.

We can estimate the probability of a vertical hook on a specified timelike plaquette by
sidering the circuits in Fig. 15. The qubit in question participates in the measurement of tw
check operators, through the two CNOT gates in the circuit in which the data qubit is the tar
the CNOT. A vertical hook can arise due to a fault that occurs in either of these CNOT gates
a time in between the execution of these gates. Hence the probability of a vertical hook is

qhook53pCNOT12ps1h. o.; ~74!

faults in any of three different CNOT gates, or storage errors in either of two time steps
generate the hook. Note that the hook on the specified plaquette has a unique orientation;
of the two site operator measurements that the data qubit participated in is the one that
detect the error. Of course, the same formula forqhook applies if we are considering the measur
ment of the plaquette operators rather than the site operators.

A CNOT gate propagatesX errors from control qubit to target qubit, andZ errors from target
to control. Thus we do not have to worry about a vertical hook that arises from an error
ancilla bit that propagates to the data. For example, if we are measuring a plaquette operat
X errors in the ancilla damage the syndrome bit whileZ errors in the ancilla propagate to the da
the result is a vertical error in theX-error syndrome that is correlated with a horizontalZ-error in
the data. This correlation is not problematic because we deal withX errors andZ errors separately
However, propagation of error from ancilla to data also generates correlated horizontal erro
we need to worry about. In the measurement of, say, the plaquette operatorZP5Z^ 4, Z errors~but
not X errors! can feed back from the ancilla to the data. Feeding back fourZ’s means no error a
all, becauseZ^ 4 is in the code stabilizer, and feeding back threeZ’s generates the errorIZZZ,
which is equivalent to the singleZ errorZIII . Therefore, the only way to get a double qubit err
from a single fault in the circuit is through an error in the second or third CNOT, or throug
ancilla storage error in between the second and third CNOT.~The second CNOT might applyZ to
the ancilla but not to the data, and thatZ error in the ancilla can then feed back to two data qub
or the third CNOT could applyZ to both ancilla and data, and theZ error in the ancilla can then
feed back to one other data qubit.! Because of the order we have chosen for the execution of
CNOTs, this double error, when it occurs, afflicts the southeast corner of the plaquette~or equiva-
lently the northwest corner, which has the same boundary!. We will refer to this two-qubit error as
a ‘‘horizontal hook,’’ because the two horizontal errors meet at a 90° angle. Similarly,
propagation during the measurement of the site operatorXs can produceX errors on the north and
west links meeting at that site. One should emphasize that the only correlatedXX or ZZ errors that
occur with a probability linear in the fundamental error probabilities are these hooks. This
blessing—correlated errors affecting two collinear links would be more damaging.

Feedback from the measurement of a plaquette operator can produceZZ hooks but notXX
hooks, and feedback from the measurement of a site operator can produceXX hooks but notZZ
hooks. Thus, in each round of syndrome measurement, the probability of aZZ hook at a plaquette
or anXX hook at a site is
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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phook52pCNOT1ps1h. o. ~75!

~Remember that a ‘‘hook’’ means twoZ’s or two X’s; in addition, an error in a single CNOT gat
could induce, say, anX error in the data and aZ error in the ancilla that subsequently feeds ba
but correlatedX andZ errors will not cause us any trouble.!

Now we need to count the ways in which a single error can occur in the data during a
of syndrome measurement. First suppose that we measure a single plaquette operatorZP , and
consider the scenarios that lead to a singleZ error in the data. TheZ error can arise either becaus
a gate or storage error damages the data qubit directly, or because an error in the ancilla fee
to the data. Actually, single errors occur with slightly different probabilities for different d
qubits acted on by the circuit. The worst case occurs for the first and last qubit acted on
circuit; the probability that the circuit produces a single error that acts on the first~or last! qubit is

psingle,Z
ZP,1

5psingle,Z
ZP,4

5pCNOT16ps1pCNOT1ps1h. o. ~76!

The first two terms arise from gate errors and storage errors that damage the data qubit d
For the first qubit, the last two terms arise from the case in which aZ error in the ancilla is fed
back to the data by each of the last three CNOTs—the resultingIZZZ error is equivalent to aZIII
error becauseZZZZ is in the code stabilizer. For the fourth qubit, the last two terms arise from
error fed back by the last CNOT gate in the circuit. On the other hand, for the second and
qubit acted on by the circuit, it is not possible for just a single error to feed back; e.g., if the
feeds back to the third qubit, it will feed back to the fourth as well, and the result will be a h
instead of a single error. Hence, the probability of a single error acting on the second or third
is

psingle,Z
ZP,2

5psingle,Z
ZP,3

5pCNOT16ps1h. o.; ~77!

there is no feedback term. If we are measuring a site operatorXs , thenX errors might feed back
from the ancilla to the data, butZ errors will not. Therefore, for each of the four qubits acted
by the circuit, the probability that a singleZ error results from the execution of the circuit, actin
on that particular qubit, is

psingle,Z
Xs 5pCNOT16ps1h. o.; ~78!

again there is no feedback term.
In a single round of syndrome measurement, each qubit participates in the measurem

four check operators, two site operators and two plaquette operators. For the plaquette o
measurements, depending on the orientation of the link where the qubit resides, the qubit
either the first qubit in one measurement and the third in the other, or the second in one a
fourth in the other. Either way, the total probability of a singleZ error arising that afflicts tha
qubit is

psingle54pCNOT16ps1pCNOT1ps1h. o.55pCNOT17ps1h. o., ~79!

with the 4pCNOT16ps arising from direct damage to the qubit and thepCNOT1ps from feedback
due to one of the four check operator measurements. The same equation applies to the pro
of a singleX error arising at a given qubit in a single round of syndrome measurement.

C. Error-chain combinatorics

With both single errors and hooks to contend with, it is more complicated to estimat
failure probability, but we can still obtain useful upper bounds. In fact, the hooks do not m
the estimate of the accuracy threshold as much as might have been naively expected. E
information is damaged ifE1Emin contains a homologically nontrivial~relative! cycle, which can
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y, the
.
o

or.
f error

r only
on

s
the

walks

the

r
most

these
t

at

cted

ibute

e

e
t those

nient
by

4489J. Math. Phys., Vol. 43, No. 9, September 2002 Topological quantum memory

Downloade
wrap around the code block with either a north–south or east–west orientation. Either wa
cycle contains at leastL links all with thesameorientation, whereL is the linear size of the lattice
A horizontal hook introduces two errors withdifferent orientations, which is not as bad as tw
errors with the same orientation. Similarly, a vertical hook contains only one horizontal err

There are two other reasons why the hooks do not badly compromise the effectiveness o
correction. While single errors can occur with any orientation, horizontal hooks can appea
on the northwest corner of a plaquette~hooks on southeast corners are equivalent to hooks
northwest corners and should not be counted separately!, and vertical hooks on timelike plaquette
have a unique orientation, too. Therefore, hooks have lower ‘‘orientational entropy’’ than
single errors, which means that placing hooks on self-avoiding walks reduces the number of
of a specified length. And, finally,phook is smaller thanpsingle, andqhook is smaller thanqsingle,
which further reduces the incentive to include hooks inE1Emin .

We will suppose thatEmin is constructed by the same procedure as before, by minimizing
weight

H log psingle
21 1V logqsingle

21 . ~80!

To simplify later expressions, we have replacedp/(12p) by p here, which will weaken our uppe
bound on the failure probability by an insignificant amount. Note that our procedure finds the
probable chain under the assumption that only single errors occur~no hooks!. If phook andqhook are
assumed to be known, then in principle we could retool our recovery procedure by taking
correlated errors into account in the construction ofEmin . To keep things simple we will no
attempt to do that. Then, as before, for any connected subchain ofE1Emin with H horizontal links
andV vertical links, the numbersHe andVe of horizontal and vertical links of the subchain th
are contained inE must satisfy

psingle
He qsingle

Ve <psingle
H/2 qsingle

V/2 . ~81!

To bound the failure probability, we wish to count the number of ways in which a conne
chain with a specified number of horizontal links can occur inE1Emin , keeping in mind that the
error chainE could contain hooks as well as single errors. Notice that a hook might contr
only a single link toE1Emin , if one of the links contained in the hook is also inEmin . But since
phook,psingle and qhook,qsingle, we will obtain an upper bound on the failure probability if w
pessimistically assume that all of the errors inE1Emin are either two-link hooks occurring with
probabilitiesphook,qhook or single errors occuring with probabilitiespsingle,qsingle. If the He hori-
zontal errors on a connected chain includeHhook horizontal hooks andVhook vertical hooks, then
there areHe22Hhook2Vhook single horizontal errors andVe2Vhook single vertical errors; once th
locations of the hooks and the single errors are specified, the probability that errors occur a
locations is no larger than

~psingle!
He22Hhook2Vhook~phook!

Hhook
•~qsingle!

Ve2Vhook~qhook!
Vhook

,psingle
H/2 S phook

psingle
2 D Hhook

qsingle
V/2 S qhook

psingleqsingle
D Vhook

. ~82!

Because a horizontal hook contains two errors with different orientations, it will be conve
to distinguish between links oriented east–west and links oriented north–south. We denoteH1

the number of horizontal links in the connected chain with east–west orientation and byH2 the
number of horizontal links with north–south orientation; then clearly

Hhook<H1 , Hhook<H2 . ~83!

To estimate the threshold, we will bound the probability that our connected chain hasH1>L; of
course, the same expression bounds the probability thatH2>L.
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For a specified connected chain, suppose that altogetherHe of the horizontal links andVe of
the vertical links have errors, and that there areHhook horizontal hooks andVhook vertical hooks,
so that there areHe22Hhook2Vhook single horizontal errors andVe2Vhook single vertical errors.
In how many ways can we distribute the hooks and single errors along the path? Since
horizontal hook contains a link with north-south orientation, there are no more than (Hhook

H2 ) ways

to choose the locations of the horizontal hooks; similarly there are no more than (Vhook

V ) ways to

choose the locations of the vertical hooks.~Actually, we have given short shrift here to a slig
subtlety. Once we have decided that a vertical hook will cover a particular vertical link, there
be two ways to place the hook—it might cover either one of two adjacent horizontal l
However, for the hook to be free to occupy either position, the orientation of the second hori
link must be chosen in one of only two possible ways. Thus the freedom to place the hook
ways is more than compensated by the reduction in the orientational freedom of the othe
zontal link by a factor of25, and can be ignored. A similar remark applies to horizontal hoo!
Then there are no more than 2H11H222Hhook2Vhook ways to place the single horizontal errors amo
the remaining horizontal links, and no more than 2V2Vhook ways to place the single vertical erro
among remainingV2Vhook vertical links on the chain. Now consider counting the self-avoid
paths starting at a specified site, where the path is constructed from hooks, single errors,
links of Emin . Whenever we add a horizontal hook to the path there are at most two choices f
orientation of the hook, and whenever we add a vertical hook there are at most four choices
there are no more than 2Hhook4Vhook ways to choose the orientations of the hooks. For the remai
H11H222Hhook1V22Vhook links of the path, the orientation can be chosen in no more than
ways. Hence, the total number of paths with a specified number of horizontal links, horiz
hooks, vertical links, and vertical hooks is no more than

S H2

Hhook
D S V

Vhook
D •2H11H222Hhook2Vhook2V2Vhook

•2Hhook4Vhook
•5H11H222Hhook1V22Vhook. ~84!

Combining this counting of paths with the bound Eq.~82! on the probability of each path, w
conclude that the probability thatE1Emin contains a connected path with specified starting s
containingH1 links with east–west orientation,H2 links with north–south orientation,V vertical
links, Hhook horizontal hooks, andVhook vertical hooks, is bounded above by

S H2

Hhook
D S phook

50psingle
2 D Hhook

~100psingle!
(H11H2)/2

•S V
Vhook

D S qhook

25psingleqsingle
D Vhook

•~100qsingle!
V/2.

~85!

HereHhook can take any value from zero toH2 , andVhook can take any value from zero toV. We
can sum overHhook and Vhook, to obtain an upper bound on the probability of a chain with
unspecified number of hooks:

~100psingle!
(H11H2)/2S 11

phook

50psingle
2 D H2

•~100qsingle!
V/2S 11

qhook

25psingleqsingle
D V

. ~86!

Finally, since a path can begin at any ofL2T sites, and since there are two types of homologica
nontrivial cycles, the probability of failure Probfail satisfies the bound

Probfail,2L2T (
H1>L

~100psingle!
H1/2

• (
H2>0

F100psingleS 11
phook

50psingle
2 D 2GH2/2

• (
V>0

F100qsingleS 11
qhook

25psingleqsingle
D 2GV/2

. ~87!

This sum will be exponentially small for largeL provided that
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psingle,
1

100
, q,

1

100
,

phook,5 psingle
2 S 1

Apsingle

210D , ~88!

qhook,
5

2
psingleqsingleS 1

Aqsingle

210D .

Of course, makingpsingle andqsingle smaller can only make things better. Our conditions onphook

andqhook in Eq. ~88! are not smart enough to know this—forpsingle sufficiently small, we find that
making it still smaller gives us amore stringent condition onphook, and similarly for qhook.
Clearly, this behavior is an artifact of our approximations. Thus, for a givenpsingle andqsingle, we
are free to choose any smaller values ofpsingleandqsingle in order to obtain more liberal condition
on phook and qhook from Eq. ~88!. Our expression that boundsphook achieves its maximum for

psingle5( 3
40)

2, and for fixedpsingle, our expression that boundsqhook achieves its maximum for

qsingle5( 1
20)

2. We therefore conclude that for recovery to succeed with a probability that
proaches one as the block size increases, it suffices that

psingle,
9

1600, qsingle,
1

400,

phook,
3
32•

9
1600, qhook,

1
16•

9
1600. ~89!

Comparing to our expressions forqsingle, psingle, andphook, we see that, unlessqsingle is dominated
by preparation or measurement errors, these conditions are all satisfied provided that

qhook53pCNOT12ps,3.531024. ~90!

If the probability of a CNOT error is negligible, then we obtain a lower bound on the critical e
probability for storage errors,

~ps!c.1.731024. ~91!

In view of the crudeness of our combinatorics, we believe that this estimate is rather conser
if one accepts the assumptions of our computational model.

VIII. MEASUREMENT AND ENCODING

A. Measurement

At the conclusion of a quantum computation, we need to measure some qubits. If the
putation is being executed fault tolerantly, this means measuring an encoded block. How c
perform this measurement fault tolerantly?

Suppose we want to measure the logical operatorZ̄, that is, measure the encoded block in t
basis$u0̄&,u1̄&%. If we are willing to destroy the encoded block, we first measureZ for each qubit
in the block, projecting each onto the basis$u0&,u1&%. Were there no errors in the code block at t
time of the measurement, and were all measurements of the individual qubits performed
lessly, then we could choose any homologically nontrivial path on the lattice and evalua
parity of the outcomes for the links along that path. Even parity indicates that the encoded
is in the stateu0&̄, odd parity the stateu1&̄.

But the code blockwill contain some errors~not too many, we hope!, and some of the
measurements of the individual qubitswill be faulty. Since a single bit flip along the path cou
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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alter the parity of the measurement outcomes, we need to devise a fault-tolerant proced
translating the observed values of the individual qubits into a value of the encoded qubit.

One such procedure is to evaluate the parityZ^ 4 of the measurement outcomes at ea
plaquette of the lattice, determining the locations of all plaquette defects. These defects ca
either because defects were already present in the code block before the measurement,
could be introduced by the measurement itself. It is useful and important to recognize th
defects introduced by the measurement do not pose any grave difficulties. An isolated me
ment error at a single link will produce two neighboring defects on the plaquettes that conta
link. Widely separated defects can arise from the measurement only if there are many cor
measurement errors.

Therefore we can apply a suitable classical algorithm to remove the defects—for examp
choosing a chain of minimal total length that is bounded by the defect locations, which c
found in a polynomial-time classical computation. Flipping the bits on this chain correct
errors in the measurement outcomes, so that we can then proceed to evaluate the parity
nontrivial cycle. Assuming sufficiently small rates for the qubit and measurement errors
encoded qubit will be evaluated correctly, with a probability of error that is exponentially sma
large block size.

We can measureX̄ by the same procedure, by measuringX for each qubit, and evaluating a
site operatorsX^ 4 from the outcomes. After removal of the site defects by flipping bits appro

ately, X̄ is the parity along a nontrivial cycle of the dual lattice.

To measureZ̄ of a code block without destroying the encoded state, we can prepare an a

block in the encoded stateu0&̄, and perform a bitwise CNOT from the block to be measured i
the ancilla. Then we can measure the ancilla by the destructive procedure just descri

nondestructive measurement ofX̄ is executed similarly.

B. Encoding of known states

At the beginning of a quantum computation, we need to prepare encoded qubits in eige

of the encoded operations, for example the stateu0&̄ of the planar code, aZ̄51 eigenstate. If

syndrome measurement were perfectly reliable, the stateu0&̄ could be prepared quickly by th
following method: Start with the stateu0& ^ n wheren is the block size of the code. This is th
simultaneous eigenstate with eigenvalue 1 of all plaquette stabilizer operatorsZP5Z^ 4 and of the

logical operatorZ̄, but not of the site stabilizer operatorsXs5X^ 4. Then measure all the sit
operators. Since the site operators commute with the plaquette operators and the logical op
this measurement does not disturb their values. About half of the site measurements have o

Xs51 and about half have outcomeXs521; to obtain the stateu0&̄, we must remove all of the
site defects~sites whereXs521!. Thus we select an arbitrary one-chain whose boundary con
of the positions of all site defects, and we applyZ to each link of this chain, thereby imposin

Xs51 at each site. In carrying out this procedure, we might applyZ̄ to the code block by applying

Z to a homologically nontrivial path, but this has no effect since the state is aZ̄51 eigenstate.
Unfortunately, syndrome measurement is not perfectly reliable; therefore this procedure

generate longopenchains ofZ errors in the code block. To keep the open chains under control
need to repeat the measurement of both theX andZ syndromes of orderL times~whereL is the
linear size of the lattice!, and use our global recovery method. Then the initial configuration of
defects will be ‘‘forgotten’’ and the error chains in the code block will relax to the equilibri

configuration in which long open chains are highly unlikely. The probability of anX̄ error that
causes a flip of the encoded state will be exponentially small inL. We can prepare the encode

state withX̄51 by the dual procedure, starting with the state@(1/&) (u0&1u1&)] ^ n.
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C. Encoding of unknown states

Quantum error-correcting codes can protectunknowncoherent quantum states. This feature
crucial in applications to quantum computation—the operator of a quantum computer nee
‘‘monitor’’ the encoded quantum state to keep the computation on track. But to operate a qu
computer, we do not typically need toencodeunknown quantum states. It is sufficient to initializ
the computer by encoding known states, and then execute a known quantum circuit.

Still, a truly robust ‘‘quantum memory’’ should be able to receive an unknown quantum
and store it indefinitely. But given any nonzero rate of decoherence, to store an unknown st
an indefinitely long time we need to encode it using a code of indefinitely long block size.
then, can we expect to encode the state before it decoheres?

The key is to encode the state quickly, providing some measure of protection, while co
ing to build up toward larger code blocks. Concatenated codes provide one means of ach
this. We can encode, perform error correction, then encode again at the next level of conc
tion. If the error rates are small enough, encoding can outpace the errors so that we can s
unknown state in a large code block with reasonable fidelity.

The surface codes, too, allow us to build larger codes from smaller codes and so to p
unknown states effectively. The key to enlarging the code block is that a code correspond
one triangulation of a surface can be transformed into a code corresponding to another tria
tion.

For example, we can transform one surface code to another using local moves shown
16.

Links can be added to~or removed from! the triangulation in either of two ways—one wa
adds a new plaquette, the other adds a new site. Either way, the new triangulation corresp
a new code with an additional qubit in the code block and an additional stabilizer generato

When a new plaquette is added, the new code stabilizer is obtained from the old one by
the new plaquette operator

Z1Z2Z0 ~92!

and by modifying the site operators with the replacements

X1→X1X0 , X2→X2X0 . ~93!

When a new site is added, the stabilizer is modified similarly, but withX’s andZ’s interchanged:

X1X2X0 ~94!

is a new stabilizer generator, and the existing plaquette operators are modified as

Z1→Z1Z0 , Z2→Z2Z0 . ~95!

FIG. 16. Two basic moves that modify the triangulation of a surface by adding a link: splitting a plaquette, and sp
a vertex.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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To add a plaquette or a site to a stabilizer code, we prepare the additional qubit in aZ051 or
X051 eigenstate, and then execute the circuit shown in Fig. 17. We recall that, acting by c
gation, a CNOT gate changes a tensor product of Pauli operators acting on its control and
according to

IZ↔ZZ, XI↔XX; ~96!

that is, the CNOT transforms anIZ eigenstate to aZZ eigenstate and anXI eigenstate to anXX
eigenstate, while leavingZI and IX eigenstates invariant. The circuit in Fig. 17 with qubit 0
target, then, transforms the site operators as in Eq.~93! while also implementing

Z0→Z1Z2Z0 . ~97!

The initial Z051 eigenstate is transformed into a state that satisfies the plaquette parity che
the new triangulation. Similarly, the circuit in Fig. 17 with qubit 0 as control implements Eq.~95!
as well as

X0→X1X2X0 ; ~98!

the circuit transforms theX051 eigenstate into a state that satisfies the new site parity chec
Of course, these circuits are reversible; they can be used to extricate qubits from a sta

code instead of adding them.
If planar codes are used, we can lay out the qubits in a planar array. Starting with a

encoded planar block in the center, we can gradually add new qubits to the boundary us
moves shown in Fig. 18.

These moves add a new three-qubit plaquette or site operator, and can also be impleme
the circuits of Fig.~17!.

A procedure that transforms a distance-L planar code to a distance-(L11) code is shown in
Fig. 19. By adding a new row of plaquette operators, we transform what was formerly a sm
edge into a rough edge, and by adding a new row of site operators we transform a rough e
a smooth edge. We start the row of plaquettes by adding a two-qubit plaquette operator
corner via the transformations

FIG. 18. The same circuits as in Fig. 17 can also be used to build up a planar code by adding a link at the bounda
or plaquettes marked by open circles do not correspond to stabilizer operators.

FIG. 17. Circuits that implement the two basic moves of Fig. 16. The circuit with qubit 0 as the target of the CNOT
a plaquette; the circuit with qubit 0 as the control of the CNOTs adds a site.
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Z0→Z1Z0 , X1→X1X0 , ~99!

which can be implemented by a single CNOT; similarly, we start a row of sites by addi
two-qubit site operator with

X0→X1X0 , Z1→Z1Z0 . ~100!

Then a new row of boundary stabilizer operators can be ‘‘zipped’’ into place.
As is typical of encoding circuits, this procedure can propagate errors badly; a single

CNOT can produce a long row of qubit errors~a widely separated pair of defects! along the edge
of the block. To ensure fault tolerance, we must measure the boundary stabilizer operato
quently during the procedure. Examining the syndrome record, we can periodically identif
persistent errors and remove them before proceeding to add further qubits.

IX. FAULT-TOLERANT QUANTUM COMPUTATION

We will now consider how information protected by planar surface codes can be proc
fault-tolerantly. Our objective is to show that a universal set of fault-tolerant encoded qua
gates can be realized using only local quantum gates among the fundamental qubits and w
polynomial overhead. We will describe one gate set with this property.4,8 This construction suffices
to show that there is an accuracy threshold for quantum computation using surface code
gate in our set can be implemented acting on encoded states with arbitrarily good fidelity,
limit of a large code block. We have not analyzed the numerical value of this comput
threshold in detail. Better implementations of fault-tolerant quantum computation can proba
found, requiring less overhead and yielding a better threshold.

We choose the basis introduced by Shor,3 consisting of four gates. Three of these generate
‘‘symplectic’’ or ‘‘normalizer’’ group, the finite subgroup of the unitary group that, acting
conjugation, takes tensor products of Pauli operators to tensor products of Pauli operato
these three, two are single-qubit gates: the Hadamard gate

H5
1

&
S 1 1

1 21D , ~101!

which acts by conjugation on Pauli operators according to

FIG. 19. Building a distance-(L11) planar code by adding qubits to a distance-L planar code.~Here,L55.! In the first
step, new two-qubit stabilizer operators are added in the corners with single CNOTs; in subsequent steps, thr
stabilizer operators are added with double CNOTs. The last step promotes the corner operators to three-qubit op
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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H:X↔Z, ~102!

and the phase gate

P[L~ i !5S 1 0

0 i D , ~103!

which acts by conjugation on Pauli operators according to

P:X→Y, Z→Z. ~104!

The third generator of the normalizer group is the two-qubit CNOT5L(X) gates, which acts by
conjugation on Pauli operators according to

CNOT: XI→XX, IX→IX,
~105!

ZI→ZI, IZ→ZZ.

Quantum computation in the normalizer group is no more powerful than clas
computation.37 To realize the full power of quantum computing we need to complete the basis
a gate outside the normalizer group. This gate can be chosen to be the three-qubit Toffo
T[L2(X), which acts on the standard three-qubit orthonormal basis$ua,b,c&% as

T:ua,b,c&→ua,b,c% ab&. ~106!

A. Normalizer gates for surface codes

1. CNOT gate

Implementing normalizer computation on planar codes is relatively simple. First of a
planar surface code is a Calderbank–Shor–Steane26,27 ~CSS! code, and as for any CSS code wi
a single encoded qubit, an encoded CNOT can be performedtransversally—in other words, if
simultaneous CNOTs are executed from each qubit in one block to the corresponding qubit
other block, the effect is to execute the encoded CNOT.38 To see this, we first need to verify tha
the transversal CNOT preserves the code space, i.e., that its action by conjugation prese
code’s stabilizer. This follows immediately from Eq.~105!, since each stabilizer generator is eith
a tensor product ofX’s or a tensor product ofZ’s. Next we need to check that CNOT^ n acts on
the encoded operationsX̄ and Z̄ as in Eq.~105!, which also follows immediately sinceZ̄ is a
tensor product ofZ’s and X̄ is a tensor product ofX’s.

2. Hadamard gate

What about the Hadamard gate? In fact, applying the bitwise operationH ^ n does not preserve
the code space; rather it maps the code space of one planar code to that of another, differen
code. If the stabilizer generators of the initial code are site operatorsXs and plaquette operator
ZP , then the action of the bitwise Hadamard is

H ^ n:Xs→Zs , ZP→XP . ~107!

Compared to the initial code, the stabilizer of the new code has sites and plaquettes interch
We may reinterpret the new code as a code withXs and ZP check operators, but defined on
lattice dual to the lattice of the original code. If the original lattice has its ‘‘rough’’ edges at
north and south, then the new lattice has its rough edges at the east and west. We will refe
two codes as the ‘‘north–south’’~NS! code and the ‘‘east–west’’~EW! code. As indicated in Fig.
20, the action ofH ^ n on the encoded operationsX̄ and Z̄ of the NS code is
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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H ^ n:X̄NS→Z̄EW, Z̄NS→X̄EW. ~108!

If we rigidly rotate the lattice by 90°, the EW code is transformed back to the NS code. Henc
overall effect of a bitwise Hadamard and a 90° rotation is an encoded HadamardH̄.

Of course, a physical rotation of the lattice might be inconvenient in practice! Instead, we
suppose that ‘‘peripheral’’ qubits are available at the edge of the code block, and that we ha
option of incorporating these qubits into the block or ejecting them from the block using
method described in Sec. VIII C. After applying the bitwise Hadamard, transforming theL3L NS
code to the EW code, we addL21 plaquettes to the northern edge andL21 sites to the western
edge, while removingL21 plaquettes on the east andL21 sites on the south. This procedu
transforms the block back to the NS code, but with the qubits shifted by half a lattice spac
the north and west—we will call this shifted code the NS8 code. Furthermore, this modification o
the boundary transforms the logical operationsZ̄EW and X̄EW of the EW code to the operation
Z̄NS8 andX̄NS8 of the NS8 code. The overall effect, then, of the bitwise Hadamard followed by
boundary modification is the operation

X̄NS→Z̄NS8 , Z̄NS→X̄NS8 . ~109!

In principle, we could complete the encoded Hadamard gate by physically shifting the qubit
a lattice spacing to the south and east, transforming the NS8 code back to the NS code. One wa
to execute this shift might be to swap the qubits of the NS8 with qubits located at the correspond
ing sites of the NS lattice. If we prefer to avoid the additional quantum processing required b
swaps, then what we can do instead is associate a classical flag bit with each code block, re
whether the number of Hadamard gates that have been applied in our circuit to that logica
is even or odd, and hence whether the logical qubit is encoded in the NS code or the NS8 code.
This classical bit is consulted whenever the circuit calls for a Hadamard or CNOT acting o
block. If we perform a Hadamard on a qubit that is initially encoded with the NS8 code, we add
qubits on the south and east while removing them from the north and west, returning to th
code. The CNOT gates are performed transversally between blocks that are both in the NS
both in the NS8 code; that is, each qubit in one layer interacts with the corresponding q
directly below it in the next layer. But if one block is in the NS code and the other is in the8
code, then each qubit in one layer interacts with the qubit in the next layer that is half a l
spacing to north and west. Note that the modification of the boundary requires a numb
computation steps that is linear inL.

3. Phase gate

For implementation of the phase gateP, note that if we can execute CNOT andH then we can
also construct the ‘‘controlled-(iY)’’ gate

FIG. 20. Action of the bitwise Hadamard gate on the planar code. If Hadamard gates are applied simultaneously t
qubits in the block, an ‘‘NS code’’ with rough edges at the north and south is transformed to an ‘‘EW code’’ with r

edges at the east and west; the encoded operationZ̄NS of the NS code is transformed toX̄EW of the EW code, andX̄NS is

transformed toZ̄EW .
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L~ iY!5L~ZX!5~ IH !•L~X!•~ IH !•L~X!. ~110!

Hence it suffices to be able to prepare an eigenstateu1& or u2& of Y,

Yu6&56u6&; ~111!

if we prepare an ancilla in the stateu1&, and apply a CNOT with the data as its control and
ancilla as its target, the effect on the data is the same asL( i )5P. If the ancilla is the state
u2&, then we applyL(2 i )5P21 to the data instead.

Now, it is not obvious how to prepare a large toric block in an eigenstate of the encodY
with good fidelity. Fortunately, we can nevertheless use a CNOT and an ancilla to implemeP,
thanks to a trick that works becauseP is the only gate in our set that is not real. Consider a circ
that applies the unitary transformationU to the data if the ancilla has actually been prepared in
stateu1&. Then if u1& were replaced byu2&, this same circuit would apply the complex conj
gate unitaryU* , since eachP in the circuit would be replaced byP* .

Instead of aY eigenstate, suppose we prepare the ancilla in any encoded state we plea
example,u0&̄. And then we use this same ancilla block, and a CNOT, every time aP is to be
executed. The state of the ancilla can be expressed as a linear combinationau1&1bu2& of theY
eigenstates, and our circuit, acting on the initial stateuc& of the data, yields

au1& ^ Uuc&1bu2& ^ U* uc&. ~112!

Now, at the very end of a quantum computation, we will need to make a measurement to re
the final result. LetA denote the observable that we measure. The expectation value ofA will be

^A&5uau2^cuU†AUuc&1ubu2^cuU†ATUuc&, ~113!

whereAT denotes the transpose ofA. Without losing any computational power, we may assu
that the observableA is real (A5AT)—for example, it could be 1/2 (I 2Z) acting on one of our
encoded blocks. Then we get the same answer for the expectation value ofA as if the ancilla had
been prepared asu1& ~or u2&); hence our fault-tolerant procedure successfully simulates
desired quantum circuit.

Since there is just one ancilla block that must be used each time theP gate is executed, this
block has to be swapped into the position where it is needed, a slowdown that is linear in the
of the quantum circuit that is being simulated.

Thus we have described a way to perform fault-tolerant normalizer computation for p
surface codes. We envision, then, a quantum computer consisting of a stack of planar shee
a logical qubit residing in each sheet. Each logical sheet has associated with it an adjacent s
ancilla qubits that are used to measure the check operators of the surface code; after ea
surement, these ancilla qubits are refreshed in place and then reused. The quantum inform
one sheet can be swapped with that in the neighboring sheet through the action of local ga
perform a logical CNOT between two different logical qubits in the stack, we first use swap
to pass the qubits through the intervening sheets of logical and ancilla qubits and bring the
contact, then execute the transversal CNOT between the two layers, and then use swap
return the logical qubits to their original positions. By inserting a round of error correction
each swap or logical operation, we can execute a normalizer circuit reliably.

B. State purification and universal quantum computation

Now we need to consider how to complete our universal gate set by adding the Toffoli
As Shor observed,3 implementation of the gate can be reduced to the problem of prepari
particular three-qubit state, which may be chosen to be

uc&anc5223/2 (
a,b,cP$0,1%

~21!abcua&1ub&2uc&3 ; ~114!
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this state is the simultaneous eigenstate of three commuting symplectic operators:L(Z)1,2X3 and
its two cyclic permutations, whereL(Z) is the two-qubit conditional phase gate

L~Z!:ua,b&→~21!abua,b&. ~115!

Shor’s method for constructing this state involved the preparation and measurement of an
tectedn-qubit cat state, wheren is the block size of the code. But this method cannot be used
a toric code on a large lattice, because the cat state is too highly vulnerable to error.

Fortunately, there is an alternative procedure for constructing the needed encoded sta
high fidelity—state purification. Suppose that we have a supply of noisy copies of the stateuc&anc.
We can carry out a purification protocol to distill from our initial supply of noisy states a sm
number of states with much better fidelity.39,40 In this protocol, normalizer gates are applied to
pair of noisy copies, and then one member of the pair is measured. Based on the outcome
measurement, the other state is either kept or discarded. If the initial ensemble of states a
mates theuc&anc with adequate fidelity, then, as purification proceeds, the fidelity of the remai
ensemble converges rapidly toward one.

For this procedure to work, it is important that our initial states are nottoo noisy—there is a
purification threshold. Therefore, to apply the purification method to toric codes, we will ne
build up the size of the toric block gradually, as in the procedure for encoding unknown
described in Sec. VIII C. We start out by encodinguc&anc on a small planar sheet of qubits, wit
a fidelity below the purification threshold. Then we purify for a while to improve the fidelity,
build on the lattice to increase the size of the code block. By building and purifying as many
as necessary, we can construct a copy of the ancilla state that can be used to execute th
gate with high fidelity.

The time needed to build up the encoded blocks is quadratic inL, and the number of round
of purification needed is linear inL, if we wish to reach a fidelity that is exponentially small inL.
Thus the overhead incurred in our implementation of the Toffoli gate is polynomial in the b
size.

We have now assembled all the elements of a fault-tolerant universal quantum compute
on planar surface codes. The computer is a stack of logical qubits, and it contains ‘‘sof
factories’’ where the ancilla states needed for execution of the Toffoli gate are prepared.
prepared, these states can be transported through swapping to the position in the stack w
Toffoli gate is to be performed.

X. A LOCAL ALGORITHM IN FOUR DIMENSIONS

In our recovery procedure, we have distinguished between quantum and classical co
tion. Measurements are performed to collect syndrome information about errors that have
mulated in the code block, and then a fast and reliable classical computer processes the m
data to infer what recovery step is likely to remove most of the errors. Our procedures are
tolerant because the quantum computation needed to measure the syndrome is highly loc
the classical computation is not so local—our algorithm for constructing the chain of min
weight requires as input the syndrome history of the entire code block.

It would be preferable to replace this procedure by one in which measurements and cl
processing are eliminated, and all of the processing is local quantum processing. Can we d
stable quantum memory based on topological coding such that rapid measurements of th
drome are not necessary?

Heuristically, errors create pairs of defects in the code block, and trouble may arise if
defects diffuse apart and annihilate other defects, eventually generating homologically non
defect world lines. In principle, we could protect the encoded quantum information effective
there is a strong attractive interaction between defects that prevents them from wandering a
recovery procedure that simulates such interactions was discussed in Ref. 40. For that pro
an accuracy threshold can be established, but only if the interactions have arbitrarily long ra
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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which case the order-disorder transition in the code block is analogous to the Kosterlitz–Th
transition in a two-dimensional Coulomb gas. But to simulate these infinite-range interac
nonlocal processing is still required.

A similar problem confronts the proposal5,41,42 to encode quantum information in a config
ration of widely separated nonabelian anyons. Errors create anyons in pairs, and the e
information is endangered if these ‘‘thermal anyons’’ diffuse among the anyons that encod
protected quantum state. In principle, a long-range attractive interaction among anyons
control the diffusion, but this interaction might also interfere with the exchanges of anyons n
to process the encoded state. In any case, a simulation of the long-range dynamics in
nonlocal processing.

We will now describe a procedure for recovery that, at least mathematically, requires no
nonlocal processing of quantum or classical information. With this procedure, based on ‘‘lo
available’’ quantum information, we can infer a recovery step that is more likely to remove e
than add new ones. Because the procedure is local we can dispense with measurement
degrading its performance very much—measurements followed by quantum gates conditio
measurement outcomes can be replaced by unitary transformations acting on the data qu
on nearby ancilla qubits. But since we will still need a reservoir where we can dispose the e
introduced by random errors, we will continue to assume as usual that the ancilla qubits c
regularly refreshed as needed.

Unfortunately, while our procedure is local in the mathematical sense that recovery oper
are conditioned on the state of a small number of ‘‘nearby’’ qubits, we do not know how to m
it physicallylocal in a space of fewer than four dimensions.

A. Repetition code in two dimensions

The principle underlying our local recovery procedure can be understood if we first con
the simpler case of a repetition code. We can imagine that the code block is a period
identified one-dimensional lattice of binary spins, with two codewords corresponding to the
figurations with all spins up or all spins down. To diagnose errors, we can perform a
syndrome measurement by detecting whether each pair of neighboring spins is aligned o
aligned, thus finding the locations of defects where the spin orientation flips.

To recover we need to bring these defects together in pairs to annihilate. One way to d
is to track the history of the defects for a while, assembling a recordS of the measured syndrome
and then find a minimum-weight chainE8 with the same boundary, in order to reconstruct hyp
thetical world lines of the defects. But in that case the processing required to constructE8 is
nonlocal.

The way to attain a local recovery procedure is to increase the dimensionality of the latti
two dimensions, errors will generate droplets of flipped spins~as in Fig. 21!, and the local
syndrome measurement will detect the boundary of the droplet. Thus the defects now form
dimensional closed loops, and our recovery step should be designed to reduce the total le
such defects. Local dynamical rules can easily be devised that are more likely to shrink a loo
stretch it, just as it is possible to endow strings with local dynamics~tension and dissipation! that
allow the strings to relax. Thus, in equilibrium, very long loops will be quite rare. If the error
is small enough, then the droplets of flipped spins will typically remain small, and the enc
information will be well protected.

That the two-dimensional version of the repetition code is more robust than the
dimensional version illustrates a central principle of statistical mechanics—that order is
resistant to fluctuations in higher dimensions. The code block is described by an Ising spin m
and while the one-dimensional Ising model is disordered at any nonzero temperature, th
dimensional Ising model remains ordered up to a nonvanishing critical temperature. Fro
perspective of coding theory, the advantage of the two-dimensional version is that the syndr
highly redundant. If we check each pair of nearest-neighbor spins to see if they are align
anti-aligned, we are collecting more information than is really needed to diagnose all the er
the block. Hence there is a constraint that must be satisfied by a valid syndrome, namely t
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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boundary of a droplet can never end; therefore errors in the syndrome can be detected. Of
physically, the stability of the ordered state of the Ising model in more than one dimension
reason that magnetic memories are robust in Nature.

B. Toric code in four dimensions

The defects detected by the measurement of the stabilizer operators of a two-dimension
code are also pointlike objects, and error recovery is achieved by bringing the defects toge
annihilate. We can promote the annihilation by introducing an effective long-range intera
between defects, but a more local alternative procedure is to increase the dimensionality
lattice.

So consider afour-dimensionaltoric code. Qubits are associated with each plaquette. W
each link is associated the six-qubit stabilizer operatorXl5X^ 6 acting on the six plaquettes tha
contain the link, and with each cube is associated the six-qubit stabilizer operatorZC5Z^ 6 acting
on the six plaquettes contained in the cube. Thus the four-dimensional code maintains the
between phase and flip errors that we saw in two dimensions. The encodedZ̄ or X̄ operation is
constructed fromZ’s or X’s acting on a homologically nontrivial surface of the lattice or du
lattice, respectively.Z errors on a connected open surface generate a closed loop of defects
boundary of the surface, andX errors on a connected open surface of the dual lattice gene
defects on a set of cubes that form a closed loop on the dual lattice. As in the two-dimen
case, there is a ‘‘hyperplanar’’ version of the code that can be defined on a four-dimensional
with a boundary.

Now we want to devise a recovery procedure that will encourage the defect loops to s
and disappear. Assuming that syndrome measurements are employed, a possible proce
controlling phase errors can be described as follows: First, the stabilizer operatorXl is measured
at each link, and a record is stored of the outcome. We say that each link withXl521 is occupied
by a string, and each link withXl51 is unoccupied. We choose a set of nonoverlapping plaque
~with no link shared by two plaquettes in the set!, and based on the syndrome for the links of th
plaquette, decide whether or not to flip the plaquette~by applying aZ!. If three or four of the
plaquette’s links are occupied by string, we always flip the plaquette. If zero or one lin
occupied, we never flip it. And if two links are occupied, we flip the plaquette with probab

FIG. 21. Droplets of flipped qubits in the two-dimensional quantum repetition code. Qubits reside on plaquettes,
qubits that have been flipped are shaded. Thick links are locations of ‘‘defects’’ where the error syndrome is no
because neighboring qubits are anti-aligned. The defects form closed loops that enclose the droplets.
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1
2 . Then in the next time step, we again measure the syndrome, and decide whether to flip a
nonoverlapping set of plaquettes. And so on.

Naturally, we also measure the bit-flip syndrome—ZC on every cube—in each time step. Th
procedure for correcting the bit-flip errors is identical, with the lattice replaced by the dual la
andX replaced byZ.

Of course the measurement is not essential. A simple reversible computation can impr
number of string bits bounding a plaquette on ancilla qubits, and subsequent unitary gate
trolled by the ancilla can ‘‘decide’’ whether to flip the plaquette. Note that a CNOT that is ap
with probability 1

2, needed in the event that the plaquette has two string bits on its boundary
be realized by a Toffoli gate, where one of the control qubits is a member of a Bell pair so th
control takes the value 1 with probability12.

This recovery procedure has the property that, if it is perfectly executed and no further
occur during its execution, it will never increase the total length of string on the lattice, but it
sometimes reduce the length. Indeed, if it is applied repeatedly while no further errors oc
will eventually eliminate every string. We have chosen to make the procedure nondetermini
the case where there are two string bits on a plaquette, because otherwise the procedur
have closed orbits—some string configurations would oscillate indefinitely rather than conti
to shrink and annihilate. With the nondeterministic procedure, a steady state can be attaine
when all the strings have disappeared.

Actually, following the ideas of Toom,43 it is possible to deviseanisotropic deterministic
procedures that also are guaranteed to remove all strings. These procedures, in fact, rem
strings more efficiently than our nondeterministic one, but are a little more difficult to analy

Of course, the recovery procedure will not really be executed flawlessly, and further e
will continue to accumulate. Still, as error recovery is performed many times, an equilibrium
eventually be attained in which string length is being removed by recovery as often as it is
created by new errors. If the error rates are small enough, the equilibrium population of long
loops will be highly suppressed, so that the encoded quantum information will be well prote

Eventually, say at the conclusion of a computation, we will want to measure encoded q
This measurement procedure does have a nonlocal component~as the encoded information i
topological!, and for this purpose only we will assume that a reliable classical computer is a
able to help with the interpretation of the measured data. To measure the logical operatorZ̄, say,
we first measure every qubit in the code block. Then we apply a classical parity check, eval
ZC for each cube of the lattice, thereby generating a configuration of closed defect loops
dual lattice. To complete the measurement, we first eliminate the defects by applying flips to
of plaquettes bounded by each loop. Then we can evaluate the product ofZ’s associated with a
homologically nontrivial surface to find the value ofZ̄.

Of course, when we eliminate the defects, we need to make sure that we choose co
among the homologically inequivalent surfaces bounded by the observed strings. One wa
so, which is unlikely to fail when qubit and measurement error probabilities are small, is to in
the relaxation algorithm formulated above to the classical measurement outcome. Since ou
sical computer is reliable, the algorithm eventually removes all strings, and then the value ofZ̄ can
be determined.

C. Accuracy threshold

To evaluate the efficacy of the local recovery method, we need to find the equilibrium d
bution of defects. This equilibrium configuration is not so easily characterized, but it will su
to analyze a less effective algorithm that does attain a simple steady state—the heat bat
rithm. To formulate the heat bath algorithm, suppose that strings carry an energy per lattic
length that we may normalize to one, and suppose that each plaquette is in contact with a t
reservoir at inverse temperatureb. In each time step, plaquettes are updated, with the chang
the string length bounding a plaquette governed by the Boltzmann probability distribution.
survival or creation of a length-4 loop is suppressed by the factor
d 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Prob~0→4!

Prob~0→0!
5

Prob~4→4!

Prob~4→0!
5e24b. ~116!

Similarly, the probability of a plaquette flip when the length of bounding string is 3 or 1 sati

Prob~1→3!

Prob~1→1!
5

Prob~3→3!

Prob~3→1!
5e22b. ~117!

In the case of a plaquette with two occupied links, we again perform the flip with probability1
2. As

before, this ensures ergodicity—any initial configuration has some nonvanishing probabil
reaching any final configuration.

Damage to encoded information arises from string ‘‘world sheets’’ that are homologi
nontrivial. At low temperature, string loops are dilute and failure is unlikely, but at a cri
temperature the strings ‘‘condense,’’ and the encoded data are no longer well protecte
critical temperature is determined by a balance between Boltzmann factore2b l suppressing a
string of lengthl and the string entropy. The abundance of self-avoiding closed loops of lenl
behaves like,34

nSAW
(4) ~ l !;P4~ l !~m4! l , m4'6.77, ~118!

in d54 dimensions, whereP4( l ) is a polynomial. Thus, large loops are rare when the sum

(
l

nSAW
(4) ~ l !e2b l;(

l
P4~ l !~m4e2b! l ~119!

converges, and the system is surely ordered fore2b,m4
21. Thus the critical inverse temperatur

bc satisfies

e2bc>~m4!21. ~120!

Now, our local recovery procedure will not be precisely a heat bath algorithm. But like
heat bath algorithm it is more likely to destroy string than create it, and we can boun
performance by assigning to it an effective temperature. For example, if no new errors aris
the algorithm is perfectly executed, it will with probability one remove a length-4 string l
bounding a plaquette. In practice, though, the plaquette may not flip when the recovery com
tion is performed, either because of a fault during its execution, or because other neigh
plaquettes have flipped in the meantime. Let us denote byq4 the probability that a plaquette
occupied by four string bits at the end of the last recovery step, does not in fact flip durin
current step. Similarly, letq3 denote the probability that a plaquette with three string bits fails
flip, and letq1 , q0 denote the probabilities that plaquettes containing one or zero string bido
flip. These quantities can all be calculated, given the quantum circuit for recovery and a stoc
error model.

Now we can find a positive quantityq such that

q0 ,q4<q/~11q!,

q1 ,q3<Aq/~11Aq!. ~121!

Comparing to Eqs.~116! and ~117!, we see that our recovery algorithm is at least as effective
a heat bath algorithm with the equivalent temperature

e24b5q; ~122!
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in equilibrium strings of lengthl are therefore suppressed by a factor no larger thane2b l5ql /4.
From our estimate of the critical temperature Eq.~120!, we then obtain a lower bound on th
critical value ofq:

qc>~m4!24'4.831024. ~123!

This quantum system with local interactions has an accuracy threshold.
A local procedure that controls the errors in a quantum memory is welcome, but it is dis

ening that four spatial dimensions are required. Of course, the four-dimensional code block
projected tod,4 dimensions, but then interactions among four-dimensional neighbors be
interactions between qubits that are distanceL (42d)/d apart, whereL is the linear size of the lattice
In a three-dimensional version of the toric code, we can place qubits on plaquettes, and as
check operators with links and cubes. Thus, phase error defects are strings and bit-flip
defects are point particles, or vice versa. Then we can recover locally~without measurement o
classical computation! from either the phase errors or the bit-flip errors, but not both.

In fewer than four spatial dimensions, how might we devise an intrinsically stable qua
memory, analogous to a magnetic domain with long-range order that encodes a robust c
bit? Perhaps we can build a two-dimensional material with a topologically degenerate g
state, such that errors create point defects that have infinite-range attractive interaction
system’s quasi-long-range order at nonzero temperature could stabilize an arbitrary coher
perposition of ground states.

XI. CONCLUSIONS

In foreseeable quantum computers, the quantum gates that can be executed with good
are likely to belocal gates—only interactions between qubits that are close to one another w
accurately controllable. Therefore, it is important to contemplate the capabilities of large
quantum computers in which all gates are local in three-dimensional space. It is also reason
imagine that future quantum computers will include some kind of integrated classical proce
and that the classical processors will be much more accurate and much faster than the q
processors.

Such considerations have led us to investigate the efficacy of quantum error correctio
computational model in which all quantum gates are local, and in which classical computati
polynomial size can be done instantaneously and with perfect accuracy. We have also assum
the measurement of a qubit can be done as quickly as the execution of a quantum gate.

These conditions are ideally suited for the use of topological quantum error-correcting c
such that all quantum computations needed to extract an error syndrome have excellent
properties. Indeed, we have shown that if the two-dimensional surface codes introduced in
and 5 are used, then an accuracy threshold for quantum storage can be established, and
estimated its numerical value. This accuracy threshold can be interpreted as a critical poi
three-dimensional lattice gauge theory with quenched randomness, where the third dim
represents time. There is also an accuracy threshold for universal quantum computation,
have not calculated it carefully.

Topological codes provide a compelling framework for controlling errors in a quantum sy
via local quantum processing; for this reason, we expect these codes to figure prominently
future evolution of quantum technologies. In any case, our analysis amply illustrates that
ciples from statistical physics and topology can be fruitfully applied to the daunting tas
accurately manipulating intricate quantum states.
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