JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 9 SEPTEMBER 2002
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We analyzesurface codegsthe topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-
tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical valuéhe accuracy threshold encoded information can

be protected arbitrarily well in the limit of a large code block. This phase transition
can be accurately modeled by a three-dimensiahalattice gauge theory with
guenched disorder. We estimate the accuracy threshold, assuming that all quantum
gates ardocal, that qubits can be measured rapidly, and that polynomial-size clas-
sical computations can be executed instantaneously. We also devise a robust recov-
ery procedure that does not require measurement or fast classical processing; how-
ever, for this procedure the quantum gates are local only if the qubits are arranged
in four or more spatial dimensions. We discuss procedures for encoding, measure-
ment, and performing fault-tolerant universal quantum computation with surface
codes, and argue that these codes provide a promising framework for quantum
computing architectures. @002 American Institute of Physics.
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I. INTRODUCTION

The microscopic world is quantum mechanical, but the macroscopic world is classical. This
fundamental dichotomy arises because a coherent quantum superposition of two readily distin-
guishable macroscopic states is highly unstable. The quantum state of a macroscopic system
rapidly decoheresiue to unavoidable interactions between the system and its surroundings.

Decoherence is so pervasive that it might seem to preclude subtle quantum interference
phenomena in systems with many degrees of freedom. However, recent advances in the theory of
quantum error correction suggest otherwiéaVe have learned that quantum states can be clev-
erly encoded so that the debilitating effects of decoherence, if not too severe, can be resisted.
Furthermore, fault-tolerant protocols have been devised that allow an encoded quantum state to be
reliably processed by a quantum computer with imperfect componentgrinciple, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coherent quantum
states, informatiorprocessingcan prevent informatiooss In this article, we will study a par-
ticular approach to quantum fault tolerance that has notable advantages: in this approach, based on
thesurface codemtroduced in Refs. 4 and 5, the quantum processing needed to control errors has
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especially nice locality properties. For this reason, we think that surface codes suggest a particu-
larly promising approach to quantum computing architecture.

One glittering achievement of the theory of quantum fault tolerance ithtieshold theorem
which asserts that an arbitrarily long quantum computation can be executed with arbitrarily high
reliability, provided that the error rates of the computer’s fundamental quantum gates are below a
certain critical value, thaccuracy threshol~2°The numerical value of this accuracy threshold is
of great interest for future quantum technologies, as it defines a standard that should be met by
designers of quantum hardware. The critical error probability per pateas been estimated as

=104 very roughly speaking, this means that robust quantum computation is possible if the
decoherence time of stored qubits is at leadttifes longer than the time needed to execute one
fundamental quantum gatéassuming that decoherence is the only source of error.

This estimate of the accuracy threshold is obtained by analyzing the efficacyamicat-
enated codea hierarchy of codes within codes, and it is based on many assumptions, which we
will elaborate in Sec. Il. For now, we just emphasize one of these assumptions: that a quantum
gate can act on any pair of qubits, with a fidelity that is independent of the spatial separation of the
qubits. This assumption is clearly unrealistic; it is made because it greatly simplifies the analysis.
Thus this estimate will be reasonable for a practical device only to the extent that the hardware
designer is successful in arranging that qubits that must interact are kept close to one another. It is
known that the threshold theorem still applies if quantum gates are required to b&lat, for
this realistic case careful estimates of the threshold have not been carried out.

We will perform a quite different estimate of the accuracy threshold, based on surface codes
rather than concatenated codes. This estimate applies to a device with strictly local quantum gates,
if the device is controlled by a classical computer that is perfectly reliable, and whose clock speed
is much faster than the clock speed of the quantum computer. In this approach, some spatial
nonlocality in effect is still allowed, but we demand that all the nonlocal processing be classical.
Specifically, an error syndrome is extracted by performing local quantum gates and measurements;
then a classical computation is executed to infer what quantum gates are needed to recover from
error. We will assume that this classical computation, which actually requires a time bounded
above by a polynomial in the number of qubits in the quantum computer, can be executed in a
constant number of time steps. Under this assumption, the existence of an accuracy threshold can
be established and its value can be estimated. If we assume that the classical computation can be
completed in a single time step, we estimate that the critical error probghiliper qubit and per
time step satisfiep,=1.7x10 4. This estimate applies to the accuracy threshold for reliable
storageof quantum information, rather than for reliable processing. The threshold for quantum
computation is not as easy to analyze definitively, but we will argue that its numerical value is not
likely to be substantially different.

We believe that principles of fault tolerance will dictate the shape of future quantum comput-
ing architectures. In Sec. Il we compile a list of hardware features that are conducive to fault-
tolerant processing, and outline the design of a fault-tolerant quantum computer that incorporates
surface coding. We review the properties of surface codes in Sec. lll, emphasizing in particular
that the qubits in the code block can be arranged lamar sheet** and that errors in the
syndrome measurement complicate the recovery procedure. The core of the article is Sec. 1V,
where we relate recovery from errors using surface codes to a statistical-mechanical model with
local interactions. In théunrealisti¢ case where syndrome measurements are perfect, this model
becomes the two-dimensional Ising model with quenched disorder, whose phase diagram has been
studied by Monte Carlo simulations. These simulations indicate that if the syndrome information
is put to optimal use, error recovery succeeds with a probability that approaches one in the limit
of a large code block, if and only if both phase errors and bit-flip errors occur with a probability
per qubit less than about 11%. In the more realistic case where syndrome measurements are
imperfect, error recovery is modeled by a three-dimensiaiyalgauge theory with quenched
disorder, whose phase diagrdto the best of our knowledgdas not been studied previously. The
third dimension that arises can be interpreted as time—since the syndrome information cannot be
trusted, we must repeat the measurement many times before we can be confident about the correct
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way to recover from the errors. We argue that an order-disorder phase transition of this model
corresponds to the accuracy threshold for quantum storage, and, furthermore, that the optimal
recovery procedure can be computed efficiently on a classical computer. We proceed in Sec. V to
prove a rather crude lower bound on the accuracy threshold, concluding that the error recovery
procedure is sure to succeed in the limit of a large code block under suitable conditions: for
example, if in each round of syndrome measurement, qubit phase errors, qubit bit-flip errors, and
syndrome bit errors all occur with probability below 1.14%. Tighter estimates of the accuracy
threshold could be obtained through numerical studies of the quenched gauge theory.

In deriving this accuracy threshold for quantum storage, we assumed that an unlimited amount
of syndrome data could be deposited in a classical memory, if necessary. But in Sec. VI we show
that this threshold, and a corresponding accuracy threshold for quantum computation, remain
intact even if the classical memory is limited to polynomial size. Then in Sec. VIl we analyze
quantum circuits for syndrome measurement, so that our estimate of the accuracy threshold can be
reexpressed as a fidelity requirement for elementary quantum gates. We conclude that our quantum
memory can resist decoherence if gates can be executed in parallel, and if the qubit decoherence
time is at least 6000 times longer than the time needed to execute a gate. In Sec. VIII we show that
encoded qubits can be accurately prepared and reliably measured. We also describe how a surface
code with a small block size can be built up gradually to a large block size; this procedure allows
us to enter a qubit in an unknown quantum state into our quantum memory with reasonable
fidelity, and then to maintain that fidelity for an indefinitely long time. We explain in Sec. IX how
a universal set of quantum gates acting on protected quantum information can be executed fault-
tolerantly.

Most of the analysis of the accuracy threshold in this article is premised on the assumption
that qubits can be measured quickly and that classical computations can be done instantaneously
and perfectly. In Sec. X we drop these assumptions. We devise a recovery procedure that does not
require measurement or classical computation, and infer a lower bound on the accuracy threshold.
Unfortunately, though, the quantum processing in our procedure is not spatially local unless the
dimensionality of space is at least four. Section XI contains some concluding remarks.

This article analyzes applications of surface coding to quantum memory and quantum com-
putation that could in principle be realized in any quantum computer that meets the criteria of our
computational model, whatever the details of how the local quantum gates are physically imple-
mented. It has also been emphasfzethat surface codes may point the way toward realizations
of intrinsically stable quantum memorigshysicalfault tolerancée In that case, protection against
decoherence would be achieved without the need for active information processing, and how
accurately the protected quantum states can be processed might depend heavily on the details of
the implementation.

II. FAULT TOLERANCE AND QUANTUM ARCHITECTURE

To prove that a quantum computer with noisy gates can perform a robust quantum computa-
tion, we must make some assumptions about the nature of the noise and about how the computer
operates. In fact, similar assumptions are needed to prove that a classical computer with noisy
gates is robust Still, it is useful to list these requirements—they should always be kept in mind
when we contemplate proposed schemes for building quantum computing hardware:

(i) Constant error rateWe assume that the strength of the noise is independent of the number
of qubits in the computer. If the noise increases as we add qubits, then we cannot reduce the
error rate to an arbitrarily low value by increasing the size of the code block.

(i)  Weakly correlated errorsErrors must not be too strongly correlated, either in space or in
time. In particular, fault-tolerant procedures fail if errors act simultaneously on many qubits
in the same code block. If possible, the hardware designer should strive to keep qubits in
the same block isolated from one another.

(i)  Parallel operation We need to be able to perform many quantum gates in a single time
step. Errors occur at a constant rate per unit time, and we are to control these errors through
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information processing. We could never keep up with the accumulating errors except by
doing processing in different parts of the computer at the same time.

(iv) Reusable memongrrors introduce entropy into the computer, which must be flushed out
by the error recovery procedure. Quantum processing transfers the entropy from the qubits
that encode the protected data to “ancilla” qubits that can be discarded. Thus fresh ancilla
gubits must be continually available. The ability to erésereplacé the ancilla quickly is
an essential hardware requireméht.

In some estimates of the threshold, additional assumptions are made. While not strictly nec-
essary to ensure the existence of a threshold, these assumptions may be useful, either because they
simplify the analysis of the threshold or because they allow us to increase its numerical value.
Hence these assumptions, too, should command the attention of the prospective hardware de-
signer:

(i) Fast measurement#t is helpful to assume that a qubit can be measured as quickly as a
quantum gate can be executed. For some implementations, this may not be a realistic
assumption—measurement requires the amplification of a microscopic quantum effect to a
macroscopic signal, which may take a while. But by measuring a classical error syndrome
for each code block, we can improve the efficiency of error recovery. Furthermore, if we
can measure qubits and perform quantum gates conditioned on classical measurement
outcomes, then we can erase ancilla qubits by projecting ontd|€e/1)} basis and
flipping the qubit if the outcome iklL).

(i)  Fast and accurate classical processirfjclassical processing is faster and more accurate
than quantum processing, then it is beneficial to substitute classical processing for quantum
processing when possible. In particular, if the syndrome is measured, then a classical
computation can be executed to determine how recovery should proceed. Ideally, the clas-
sical processors that coordinate the control of the quantum computer should be integrated
into the quantum hardware.

(i) No leakagelt is typically assumed that, though errors may damage the state of the com-
puter, the qubits themselves remain accessible—they do not “leak” out of the device. In
fact, at least some types of leakage can be readily detected. If leaked qubits, once detected,
can be replaced easily by fresh qubits, then leakage need not badly compromise perfor-
mance. Hence, a desirable feature of hardware is that leaks are easy to detect and correct.

(iv)  Nonlocal quantum gatesligher error rates can be tolerated, and the estimate of the thresh-
old is simplified, if we assume that two-qubit quantum gates can act on any pair of qubits
with a fidelity independent of the distance between the qubits. However useful, this as-
sumption is not physically realistic. What the hardware designer can and should do, though,
is try to arrange that qubits that will need to interact with one another are kept close to one
another. In particular, the ancilla qubits that absorb entropy should be carefully integrated
into the desigrt?

If we do insist that all quantum gates are local, then another desirable feature is the
following.

(v)  High coordination numberA threshold theorem applies even if qubits form a one-
dimensional array!? But local gates are more effective if the qubits are arranged in three
dimensions, so that each qubit has more neighbors.

Suppose, then, that we are blessed with an implementation of quantum computation that meets
all of our desiderata. Qubits are arranged in a three-dimensional lattice, and can be projectively
measured quickly. Reasonably accurate quantum gates can be applied in parallel to single qubits or
to neighboring pairs of qubits. Fast classical processing is integrated into the qubit array. Under
these conditions planar surface codes provide an especially attractive way to operate the quantum
computer fault-tolerantly.
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We may envision our quantum computer as a stack of planar sheets, with a protected logical
qubit encoded in each sheet. Adjacent to each logical sheet is an associated sheet of ancilla qubits
that are used to measure the error syndrome of that code block; after each measurement, these
ancilla qubits are erased and then immediately reused. Encoded two-qubit gates can be performed
between neighboring logical sheets, and any two logical sheets in the stack can be brought into
contact by performing swap gates that move the sheets through the intervening layers of logical
and ancilla qubits. As a quantum circuit is executed in the stack, error correction is continually
applied to each logical sheet to protect against decoherence and other errors. Portions of the stack
are designated as “software factories,” where special ancilla states are prepared and purified—this
software is then consumed during the execution of certain quantum gates that cannot be imple-
mented directly.

A notable feature of this desigor other fault-tolerant desighss that most of the information
processing in the device is devoted to controlling errors, rather than moving the computation
forward. How accurately must the fundamental quantum gates be executed for this error control to
be effective, so that our machine is computationally powerful? Our goal in this article is to address
this question.

Ill. SURFACE CODES

We will study the family of quantum error-correcting codes introduced in Refs. 4 and 5. These
codes are especially well suited for fault-tolerant implementation, because the procedure for mea-
suring the error syndrome is highly local.

A. Toric codes

For the code originally described in Refs. 4 and 5, it is convenient to imagine that the qubits
are in one-to-one correspondence with the links of a square lattice drawn on a torus, or, equiva-
lently, drawn on a square with opposite edges identified. Hence we will refer to them as “toric
codes.” Toric codes can be generalized to a broader class of quantum codes, with each code in the
class associated with a tessellation of a two-dimensional surface. Codes in this broader class will
be called “surface codes.”

A surface code is a special type of “stabilizer cod¥*® A (binary) stabilizer code can be
characterized as the simultaneous eigenspace with eigenvalue one of a set of mutually commuting
check operatorgor “stabilizer generators), where each generator is a “Pauli operator.” We use

the notation
1 0 0 1
I=lo 1], X=|1 ol )

S P

for the 2x 2 identity and Pauli matrices; a Pauli operator actingnoqubits is one of the 2'
tensor product operators

{1,X,Y,Z}&", (3

For the toric code defined by thex L square lattice on the torus, there ale?dinks of the
lattice, and hencel? qubits in the code block. Check operators are associated with each site and
with each elementary celbr “plaquette”) of the lattice, as shown in Fig. 1. The check operator
at sites acts nontrivially on the four links that meet at the site; it is the tensor product

Xs=® 55X, (4)
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FIG. 1. Check operators of the toric code. Each plaquette operator is a tensor prodistawfting on the four links
contained in the plaquette. Each site operator is a tensor prodX¢saicting on the four links that meet at the site.

acting on those four qubits, times the identity acting on the remaining qubits. The check operator
at plaquetteP acts nontrivially on the four links contained in the plaquette, as the tensor product

Zp=Q cpl,, )

times the identity on the remaining links.

Although X andZ anticommute, the check operators are mutually commuting. Obviously, site
operators commute with site operators, and plaquette operators with plaquette operators. Site
operators commute with plaquette operators because a site operator and a plaquette operator act
either on disjoint sets of links, or on sets whose intersection contains two links. In the former case,
the operators obviously commute, and in the latter case, two canceling minus signs arise when the
site operator commutes through the plaquette operator. The check operators generate an Abelian
group, the code’s stabilizer.

The check operators can be simultaneously diagonalized, and the toric code is the space in
which each check operator acts trivially. Because of the periodic boundary conditions, each site or
plaquette operator can be expressed as the product of theldthdr such operators; the product
of all L? site operators or all? plaquette operators is the identity, since each link operator occurs
twice in the product, an¥?=2Z2=1. There are no further relations among these operators; there-
fore, there are 2(L?—1) independent check operators, and hence two encoded gitgitsode
subspace is four-dimensional

A Pauli operator that commutes with all the check operators will preserve the code subspace.
What operators have this property? To formulate the answer, it is convenient to recall some
standard mathematical terminology. A mapping that assigns an elemgpt=dD,1} to each link
of the lattice is called &Z,-valued one-chain In a harmless abuse of language, we will also use
the term one-chaifor simply chain to refer to the set of all links that are assigned the value 1 by
such a mapping. The one-chains form a vector space Dyefintuitively, the sumu+uv of two
chainsu andv is a disjoint union of the links contained in the two one-chains. Similarly, zero-
chains assign elements &, to lattice sites and two-chains assign elementZgfto lattice
plaguettes; these also form vector spaces. A linear boundary opéreador be defined that takes
two-chains to one-chains and one-chains to zero-chains: the boundary of a plaquette is the sum of
the four links comprising the plaguette, and the boundary of a link is the sum of the two sites at
the ends of the link. A chain whose boundary is trivial is callecyele

Now, any Pauli operator can be expressed as a tensor prod¥ts ¢dndl’s) times a tensor
product ofZ’s (andl’s). The tensor product d’s and!’s defines aZ,-valued one-chain, where
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(@) ®

FIG. 2. Cycles on the lattica) A homologically trivial cycle bounds a region that can be tiled by plaquettes. The
corresponding tensor product @fs lies in the stabilizer of the toric codéb) A homologically nontrivial cycle is not a
boundary. The corresponding tensor producZtdf commutes with the stabilizer but is not contained in it. It is a logical
operation that acts nontrivially in the code subspace.

links acted on byZ are mapped to 1 and links acted on byre mapped to 0. This operator
trivially commutes with all of the plaquette check operators, but commutes with a site operator if
and only if an even number &'s act on the links adjacent to the site. Thus, the corresponding
one-chain must be a cycle. Similarly, the tensor producX'sf trivially commutes with the site
operators, but commutes with a plaguette operator only if an even numbés afct on the links
contained in the plaquette. This condition can be more conveniently expressed if we consider the
dual lattice, in which sites and plaguettes are interchanged; the links dual to those orXvtath
form a cycle of the dual lattice. In general, then, a Pauli operator that commutes with the stabilizer
of the code can be represented as a tensor produgtsadicting on a cycle of the lattice, times a
tensor product oK’'s acting on a cycle of the dual lattice.

Cycles are of two distinct types. A one-cyclehismologically trivialif it can be expressed as
the boundary of a two-chaiffFig. 2(a)]. Thus, a homologically trivial cycle on our square lattice
has an interior that can be “tiled” by plaquettes, and a produc’sfacting on the links of the
cycle can be expressed as a product of the enclosed plaquette operators. This operator is therefore
a product of the check operators—it is contained in the code stabilizer and acts trivially on the
code subspace. Similarly, a productXfs acting on links that comprise a homologically trivial
cycle of the dual lattice is also a product of check operators. Furtherranyeglement of the
stabilizer group of the toric cod@ny product of the generatgrsan be expressed as a product of
Z’'s acting on a homologically trivial cycle of the lattice tim&Ss acting on a homologically
trivial cycle of the dual lattice.

But a cycle could be homologically nontrivial, that is, not the boundary of anytfig;
2(b)]. A product ofZ’'s corresponding to a nontrivial cycle commutes with the code stabilizer
(because it is a cyclebut is not contained in the stabilizébecause the cycle is nontrivial
Therefore, while this operator preserves the code subspace, it acts nontrivially on encoded quan-
tum information. Associated with the two fundamental nontrivial cycles of the torus, then, are the
encoded operationg; and Z, acting on the two encoded qubits. Associated with the two dual
cycles of the dual lattice are the corresponding encoded operatioasd X,, as shown in Fig. 3.

A Pauli operator acting on qubits is said to haveveight wif the identity | acts onn—w
qubits and nontrivial Pauli matrices act @nqubits. Thedistance dof a stabilizer code is the
weight of the minimal-weight Pauli operator that preserves the code subspace and acts nontrivially
within the code subspace. If an encoded state is damaged by the action of a Pauli operator whose
weight is less than half the code distance, then we can recover from the error successfully by
applying the minimal weight Pauli operator that returns the damaged state to the code subspace
(which can be determined by measuring the check opejaféos a toric code, the distance is the
number of lattice links contained in the shortest homologically nontrivial cycle on the lattice or
dual lattice. Thus in the case of an<L square lattice drawn on the torus, the code distance is
d=L.

The great virtue of the toric code is that the check operators are so simple. Measuring a check
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FIG. 3. Basis for the operators that act on the two encoded qubits of the toric code. The logical oﬁqramn@z are
tensor products af’'s associated with the fundamental nontrivial cycles of the torus constructed from links of the lattice.

The complementary operato¥s, and X, are tensor products of’s associated with nontrivial cycles constructed from
links of the dual lattice.

operator requires a quantum computation, but because each check operator involves just four
qubits in the code block, and these qubits are situated near one another, the measurement can be
executed by performing just a few quantum gates. Furthermore, the ancilla qubits used in the
measurement can be situated where they are needed, so that the gates act on pairs of qubits that are
in close proximity.

The observed values of the check operators provide a “syndrome” that we may use to diag-
nose errors. If there are no errors in the code block, then every check operator takes the value 1.
Since each check operator is associated with a definite position on the surface, a site of the lattice
or the dual lattice, we may describe the syndrome by listing all positions where the check opera-
tors take the value-1. It is convenient to regard each such position as the location of a particle,

a “defect” in the code block.

If errors occur on a particular chaia set of links of the lattice or dual lattigehen defects
occur at the sites on tHmundaryof the chain. Evidently, then, the syndrome is highly ambiguous,
as many error chains can share the same boundary, and all generate the same syndrome. For
example, the two chains shown in Fig. 4 end on the same two sites. If errors occur on one of these

FIG. 4. The highly ambiguous syndrome of the toric code. The two site defects shown could arise from errors on either one
of the two chains shown. In general, error chains with the same boundary generate the same syndrome, and error chains
that are homologically equivalent act on the code space in the same way.
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FIG. 5. A planar quantum codéa) At the top and bottom are the “plaquette edgési “rough edges’) where there are
three-qubit plaquette operators, and at the left and right are the “site edgessmooth edges) where there are

three-qubit site operators. The logical operatfmfor the one encoded qubit is a tensor producZtf acting on a chain

running from one rough edge to the other, and the logical oper&titsna tensor product oX’s acting on a chain of the

dual lattice running from one smooth edge to the other. For the lattice shown, the code’s distarc®. i®) Site and

plaquette defects can appear singly, rather than in pairs. An isolated site defect arises from an error chain that ends at a
rough edge, and an isolated plaquette defect arises from a dual error chain that ends at a smooth edge.

chains, we might incorrectly infer that the errors actually occured on the other chain. Fortunately,
though, this ambiguity need not cause harmZlfrrors occur on a particular chain, then by
applying Z to each link ofany chain with the same boundary as the actual error chain, we will
successfully remove all defects. Furthermore, as long as the chosen chamatogicallycorrect
(differs from the actual error chain by the one-dimensional boundary of a two-dimensional re-
gion), then the encoded state will be undamaged by the errors. In that event, the product of the
actualZ errors and theZ’s that we apply is contained in the code stabilizer and therefore acts
trivially on the code block.

Heuristically, an error chain can be interpreted as a physical process in which a defect pair
nucleates, and the two members of the pair drift apart. To recover from the errors, we lay down a
“recovery chain” bounded by the two defect positions, which we can think of as a physical
process in which the defects are brought together to reannihilate. If the defect world line consisting
of both the error chain and the recovery chain is homologically trivial, then the encoded quantum
state is undamaged. But if the world line is homologically nontriiathe two members of the
pair wind around a cycle of the torus before reannihilgtirtgen an error afflicts the encoded
guantum state.

B. Planar codes

If all check operators are to be readily measured with local gates, then the qubits of the toric
code need to be arranged on a topologically nontrivial surface, the torus, with the ancilla qubits
needed for syndrome measurement arranged on an adjacent layer. In practice, the toroidal topol-
ogy is likely to be inconvenient, especially if we want qubits residing in different tori to interact
with one another in the course of a quantum computation. Fortunately, surface codes can be
constructed in which all check operators are local and the qubits are arranged on plandrsheets.
The planar topology will be more conducive to realistic quantum computing architectures.

In the planar version of the surface code, there is a distinction between the check operators at
the boundary of the surface and the check operators in the interior. Check operators in the interior
are four-qubit site or plaquette operators, and those at the boundary are three-qubit operators.
Furthermore, the boundary has two different types of edges as shown in Fig. 5. Along a “plaquette
edge” or “rough edge,” each check operator is a three-qubit plaquette op&&torlong a “site
edge” or “smooth edge,” each check operator is a three-qubit site opexatdr

As before, in order to commute with the code stabilizer, a produZf ®imust act on an even
number of links adjacent to each site of the lattice. Now, though, the links acted upts byay
comprise aropenpath that begins and ends on a rough edge. We may then say that the one-chain
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comprised of all links acted upon %is a cyclerelative to the rough edgeSimilarly, a product
of X’s that commutes with the stabilizer acts on a set of links of the dual lattice that comprise a
cycle relative to the smooth edges.

Cycles relative to the rough edges come in two varieties. If the chain contains an even number
of the free links strung along the rough edge, then it can be tiled by plagyettdsding the
boundary plaquett¢sand so the corresponding product&t is contained in the stabilizer. We
say that the relative one-cycle is a relative boundary of a two-chain. However, a chain that
stretches from one rough edge to another is not a relative boundary—it is a representative of a
nontrivial relative homology class. The corresponding produ@’ sfcommutes with the stabilizer

but does not lie in it, and we may take it to be the logical operﬁmting on an encoded logical
qubit. Similarly, cycles relative to the smooth edges also come in two varieties, and a product of
X's associated with the nontrivial relative homology cycle of the dual lattice may be taken to be
the logical operatiorX [see Fig. 5a)].

A code with distancé is obtained from a square lattice, if the shortest paths from rough edge
to rough edge, and from smooth edge to smooth edge, both cdntiks. The lattice hag 2
+(L—1)?links, L(L—1) plaquettes, and(L—1) sites. Now all plaquette and site operators are
independent, which is another way to see that the number of encoded qubits- (g —1)>?
—2L(L-1)=1.

The distinction between a rough edge and a smooth edge can also be characterized by the
behavior of the defects at the boundary, as shown in Kig. & the toric codes, defects always
appear in pairs, because every one-chain has an even number of boundary points. But for planar
codes, individual defects can appear, since a one-chain can terminate on a rough edge. Thus a
propagating site defect can reach the rough edge and disappear. But if the site defect reaches the
smooth edge, it persists at the boundary. Similarly, a plaquette defect can disappear at the smooth
edge, but not at the rough edge.

Let us briefly note some generalizations of the toric codes and planar codes that we have
described. First, there is no need to restrict attention to lattices that have coordination number 4 at
each site and plaquette. Any tessellation of a surfaoel its dual tessellatiorcan be associated
with a quantum code. Second, we may consider surfaces of higher genus. For a closed orientable
Riemann surface of genug 2g qubits can be encoded—each time a handle is added to the

surface, there are two new homology cycles and hence two new I@'&:arrhe distance of the

code is the length of the shortest nontrivial cycle on lattice or dual lattice. For planar codes, we
may consider a surface with distinct rough edges separated éyistinct smooth edges. Then

e—1 qubits can be encoded, associated with the relative one-cycles that connect one rough edge
with any of the others. The distance is the length of the shortest path reaching from one rough
edge to another, or from one smooth edge to another on the dual lattice. Alternatively, we can
increase the number of encoded qubits stored in a planar sheet by punching holes in the lattice. For
example, if the outer boundary of the surface is a smooth edge, and thefe tevles, each
bounded by a smooth edge, thiergubits are encoded. For each hole, a cycle on the lattice that

encloses the hole is associated with the corresponding Ioﬁicahd a path on the dual lattice

from the boundary of the hole to the outer boundary is associated with the Io_gical

If (say phase errors are more common than bit-flip errors, quantum information can be stored
more efficiently with arasymmetriglanar code, such that the distance from rough edge to rough
edge is longer than the distance from smooth edge to smooth edge. However, these asymmetric
codes are less convenient for processing of the encoded information.

The surface codes can also be generalized to higher dimensional manifolds, with logical
operations again associated with homologically nontrivial cycles. In Sec. X, we will discuss a
four-dimensional example.
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o—0

FIG. 6. Pairs of defects. If the error rate is small and errors on distinct links are uncorrelated, then connected error chains
are typically short and the positions of defects are highly correlated. It is relatively easy to guess how the defects should
be paired up so that each pair is the boundary of a connected chain.

C. Fault-tolerant recovery

A toric code defined on a lattice of linear sizehas block size R? and distancé.. Therefore,
if the probability of error per qubit ip, the number of errors expected in a large code block is of
orderpL?, and therefore much larger than the code distance.

However, the performance of a toric code is much better than would be guessed naively based
on its distance. In principld,/2 errors could suffice to cause damage to the encoded information.
But in fact this small number of errors can cause irrevocable damage only if the distribution of the
errors is highly atypical.

If the error probabilityp is small, then links where errors occ(ferror links” ) are dilute on
the lattice. Long connected chains of error links are quite rare, as indicated in Fig. 6. It is relatively
easy to guess a way to pair up the observed defects that is homologically equivalent to the actual
error chain. Hence we expect that a number of errors that skiaéesly with the block size can
be tolerated. That is, if the error probabilipyper link is small enough, we expect to be able to
recover correctly with a probability that approaches one as the block size increases. We therefore
anticipate that there is an accuracy threshold for storage of quantum information using a toric
code.

Unfortunately, life is not quite so simple, because the measurement of the syndrome will not
be perfect. Occasionally, a faulty measurement will indicate that a defect is present at a site even
though no defect is actually there, and sometimes an actual defect will go unobserved. Hence the
population of real defectavhich have strongly correlated positionaill be obscured by a popu-
lation of phony “ghost defects” and “missing defectgivhich have randomly distributed posi-
tions), as in Fig. 7.

Therefore, we should execute recovery cautiously. It would be dangerous to blithely proceed
by flipping qubits on a chain of links bounded by the observed defect positions. Since a ghost
defect is typically far from the nearest genuine defect, this procedure would introduce many
additional errors—what was formerly a ghost defect would become a real defect connected to
another defect by a long error chain. Instead we must repeat the syndrome measurement an
adequate number of times to verify its authenticity. It is subtle to formulate a robust recovery
procedure that incorporates repeated measurements, since further errors accumulate as the mea-
surements are repeated and the gas of defects continues to evolve.

We know of three general strategies that can be invoked to achieve robust macroscopic control
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T

Genuine defect: @

L .—I: Ghost defect: @
@ Q

FIG. 7. Ghost defects. Since faults can occur in the measurement of the error syndrome, the measured syndrome includes
both genuine defectdightly shaded associated with actual errors and phony “ghost defe@dsitkly shadegthat arise at

randomly distributed locations. To perform recovery successfully, we need to be able to distinguish reliably between the
genuine defects and the ghost defects. The position that is shaded both lightly and darkly represents a genuine defect that
goes unseen due to a measurement error.

of a system that is subjected to microscopic disorder. One method is to introduce a hierarchical
organization in such a way that effects of noise get weaker and weaker at higher and higher levels
of the hierarchy. This approach is used byc&ain his analysis of robust one-dimensional
classical cellular automata, and also in concatenated quantum &odffgsecond method is to
introduce more spatial dimensions. A fundamental principle of statistical physics is that local
systems with higher spatial dimensionality and hence higher coordination number are more resis-
tant to the disordering effects of fluctuations. In Sec. X we will follow this strategy in devising and
analyzing a topological code that has nice locality properties in four dimensions. From the per-
spective of block coding, the advantage of extra dimensions is that local check operators can be
constructed with a higher degree of redundancy, which makes it easier to reject faulty syndrome
information.

In the bulk of this article we will address the issue of achieving robustness through a third
strategy, namely by introducing a modest amount of nonlocality into our recovery procedure. But
we will insist that all quantum processing is strictly local; the nonlocality will be isolated in
classicalprocessing. Specifically, to decide on the appropriate recovery step, a classical compu-
tation will be performed whose input is an error syndrome measured at all the sites of the lattice.
We will require that this classical computation can be executed in a time bounded by a polynomial
in the number of lattice sites. For the purpose of estimating the accuracy threshold, we will
imagine that the classical calculation is instantaneous and perfectly accurate.

Our approach is guided by the expectation that quantum computers will be slow and unreli-
able while classical computers are fast and accurate. It is advantageous to replace quantum pro-
cessing by classical processing if the classical processing can accomplish the same task.

D. Surface codes and physical fault tolerance

In this article, we regard the surface codes as block quantum error-correcting codes with
properties that make them especially amenable to fault-tolerant quantum storage and computation.
But we also remark here that because of the locality of the check operators, these codes admit
another tempting interpretation that was emphasized in Refs. 4 and 5.

Consider a model physical system, with qubits arranged in a square lattice, and(leithla
Hamiltonian that can be expressed as minus the sum of the check operators of a surface code.
Since the check operators are mutually commuting, we can diagonalize the Hamiltonian by di-
agonalizing each check operator separately, and its degenerate ground state is the code subspace.
Thus, a real system that is described well enough by this model could serve as a robust quantum
memory.

The model system has several crucial properties. First of all, it has a mass gap, so that its
qualitative properties are stable with respect to generic weak local perturbations. Second, it has
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two types of localized quasiparticle excitations, the site defects and plaquette defects. And third,
there is an exotic long-range interaction between a site defect and a plaquette defect.

The interaction between the two defects is exactly analogous to the Aharonov—Bohm inter-
action between a localized magnetic fldx and a localized electric charg@ in two-spatial
dimensions. When a charge is adiabatically carried around a flux, the wave function of the system
is modified by a phase ex@(®/#c) that is independent of the separation between charge and flux.
Similarly, if a site defect is transported around a plaquette defect, the wave function of the system
is modified by the phase-1 independent of the separation between the defects. Formally, this
phase arises because of the anticommutation relation satisfiedamd Z. Physically, it arises
because the ground state of the system is very highly entangled and thus is able to support
very-long-range quantum correlations. The protected qubits are encoded in the Aharonov—Bohm
phases acquired by quasiparticles that travel around the fundamental nontrivial cycles of the
surface; these could be measured in principle in a suitable quantum interference experiment.

It is useful to observe that the degeneracy of the ground state of the system is a necessary
consequence of the unusual interactions among the quasipatfiéfésunitary operatoi s1can
be constructed that describes a process in which a pair of site defects is created, one member of the
pair propagates around a nontrivial cydly of the surface, and then the pair reannihilates.
Similarly a unitary operatod p , can be constructed associated with a plaquette defect that propa-
gates around a complementary nontrivial cyClgthat intersect€,; once. These operators com-
mute with the Hamiltoniamd of the system and can be simultaneously diagonalized Mijtiout
Us, andUp , do not commute with one another. Rather, they safisfian infinite system

Upy * Ugy t Up, Ugy=—1. (6)

The nontrivial commutator arises because the process in whjchsite defect winds arour@d, ,
(2) a plaquette defect winds arour@,, (3) the site defect winds aroun@; in the reverse
direction, and(4) the plaquette defect winds arou@} in the reverse direction is topologically
equivalent to a process in which the site defect winds once around the plaquette defect.

BecausdéJs; andUp , do not commute, they cannot be simultaneously diagonalized—indeed
applyingUp , to an eigenstate dfis, flips the sign of theUs; eigenvalue. Physically, there are
two distinct ground states that can be distinguished by the Aharonov—Bohm phase that is acquired
when a site defect is carried arou@d; we can change this phase by carrying a plaquette defect
aroundC,. Similarly, the operatotds, commutes withUs, and Up , but anticommutes with
Up ;. Therefore there are four distinct ground states, labeled by thejrandUs, eigenvalues.

This reasoning shows that the topological interaction between site defects and plaquette de-
fects implies that the system on @énfinite) torus has a generic four-fold ground-state degeneracy.
The argument is easily extended to show that the generic degeneracy on aggRiemann
surface is 29. By a further extension, we see that the generic degeneragy isthe Aharonov—

Bohm phase associated with winding one defect around another is

exp2mip/q), (7)

wherep andq are integers with no common factor.

The same sort of argument can be applied to planar systems with a mass gap in which single
defects can disappear at an edge. For example, consider an annulus in which site defects can
disappear at the inner and outer edges. Then states can be classified by the Aharonov—Bohm phase
acquired by a plaquette defect that propagates around the annulus, a phase that flips in sign if a site
defect propagates from inner edge to outer edge. Hence there is a two-fold degeneracy on the
annulus. For a disc withh holes, the degeneracy is" 2f site defects can disappear at any
boundary, orqh if the Aharonov—Bohm phase of site defect winding about plaquette defect is
exp(2mip/q).

These degeneracies are exact for the unperturbed model system, but will be lifted slightly in
a weakly perturbed system of finite size. Loosely speaking, the effect of perturbations will be to

Downloaded 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 43, No. 9, September 2002 Topological quantum memory 4465

give the defects a finite effective mass, and the lifting of the degeneracy is associated with
quantum tunneling processes in which a virtual defect winds around a cycle of the surface. The
amplitudeA for this process has the form

A~Cexp —vV2(m*A)Y2LIR), (8)

wherelL is the physical size of the shortest nontriviglative) cycle of the surfacem* is the
defect effective mass, anlis the minimal energy cost of creating a defect. The energy splitting
is proportional toA, and like A becomes negligible when the system is large compared to the
characteristic length=7(m* A) 12,

In this limit, and at sufficiently low temperature, the degenerate ground state provides a
reliable quantum memory. If a pair of defects is produced by a thermal fluctuation, and one of the
defects wanders around a nontrivial cycle before the pair reannihilates, then the encoded quantum
information will be damaged. These fluctuations are suppressed by the Boltzman factor
exp(—A/KT) at low temperature. Even if defect nucleation occurs at a non-negligible rate, we
could enhance the performance of the quantum memory by continually monitoring the state of the
defect gas. If the winding of defects around nontrivial cycles is detected and carefully recorded,
damage to the encoded quantum information can be controlled.

IV. THE STATISTICAL PHYSICS OF ERROR RECOVERY

One of our main objectives in this article is to invoke surface coding to establish an accuracy
threshold for quantum computation—how well must quantum hardware perform for quantum
storage, or universal quantum computation, to be achievable with arbitrarily small probability of
error? In this section, rather than study the efficacy of a particular fault-tolerant protocol for error
recovery, we will address whether the syndrome of a surface code is adequate in principle for
protecting quantum information from error. Specifically, we will formulate an order parameter that
distinguishes two phases of a quantum memory: an “ordered” phase in which reliable storage is
possible, and a “disordered phase” in which errors unavoidably afflict the encoded quantum
information. Of course, this phase boundary also provides an upper bound on the accuracy thresh-
old that can be reached by any particular protocol. The toric code and the planar surface code have
the same accuracy threshold, so we may study either to learn about the other.

A. The error model

Let us imagine that in a single time step, we will execute a measurement of each stabilizer
operator at each site and each plaquette of the lattice. During each time step, new qubit errors
might occur. To be concrete and to simplify the discussion, we assume that all qubit errors are
stochastic, and so can be assigned probabilitfes. example, errors that arise from decoherence
have this propertyWe will also assume that the errors acting on different qubits are independent,
that bit-flip (X) errors and phaseZ( errors are uncorrelated with one another, and ¥andZ
errors are equally likely. Thus the error in each time step acting on a qubit withstate be
represented by the quantum channel

p—(1=p)?Ipl +p(1-p)XpX+p(1—p)ZpZ+p*YpY, (9)

wherep denotes the probability of either afierror or aZ error. It is easy to modify our analysis
if some of these assumptions are relaxed; in particular, correlations be¥vaetZ errors would
not cause much trouble, since we have separate procedures for recovery fidrartoes and the
Z errors.

Faults can also occur in the syndrome measurement. We assume that these measurement errors
are uncorrelated. We will denote loythe probability that the measured syndrome bit is faulty at
a given site or plaquette.

Aside from being uncorrelated in space, the qubit and measurement errors are also assumed to
be uncorrelated in time. Furthermore, the qubit and measurement errors are not correlated with one
another. We assume thatandq are known quantities—our choice of recovery algorithm depends
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on their values. In Sec. VII, we will discuss hgwandq can be related to more fundamental
quantities, namely the fidelities of elementary quantum gates. There we will see that the execution
of the syndrome measurement circuit can introduce correlations between errors. Fortunately, these
correlations(which we ignore for noywdo not have a big impact on the accuracy threshold.

B. Defects in space—time

Because syndrome measurement may be faulty, it is necessary to repeat the measurement to
improve our confidence in the outcome. But since new errors may arise during the repeated
measurements, it is a subtle matter to formulate an effective procedure for rejecting measurement
errors.

Let us suppose, for a toric block of arbitrarily large size, that we measure the error syndrome
once per time step, that we monitor the block for an arbitrarily long time, and that we store all of
the syndrome information that is collected. We want to address whether this syndrome information
enables us to recover from errors with a probability of failure that becomes exponentially small as
the size of the toric block increases. The plaquette check operators identify bit flips and the site
check operators identify phase errors; therefore we consider bit-flip and phase error recovery
separately.

For analyzing how the syndrome information can be used most effectively, it is quite conve-
nient to envision @hree-dimensionasimple cubic lattice, with the third dimension representing an
integer-valuedime We imagine that the error operation acts at each integer-valued tiwi¢h a
syndrome measurement taking place in between taoldt + 1. Qubits in the code block can now
be associated with timelike plaquettes, those lying int¥handty planes. A qubit error that occurs
at timet is associated with a horizont@pacelike link that lies in the time slice labeled liy The
outcome of the measurement of the stabilizer opetéterX®4= +1 at sites, performed between
timet and timet+ 1, is marked on the verticdétimelike) link connecting sites at timet and site
s at timet+1. A similar picture applies to the history of th&> stabilizer operators at each
plaguette, but with the lattice replaced by its dual.

On some of these vertical links, the measured syndrome is erroneous. We will repeat the
syndrome measurementtimes in succession, and the “error history” can be described as a set of
marked links on a lattice with altogeth&rtime slices. The error history encompasses both error
events that damage the qubits in the code block, and faults in the syndrome measurements. On the
initial (t=0) slice are marked all uncorrected qubit errors that are left over from previous rounds
of error correction; new qubit errors that arise at a later tinfje=1,2,...,T—1) are marked on
horizontal links on slice. Errors in the syndrome measurement that takes place between time
andt+1 are marked on the corresponding vertical links. Errors on horizontal links occur with
probability p, and errors on vertical links occur with probabilidy

For purposes of visualization, it is helpful to consider the simpler case of a quantum repetition
code, which can be used to protect coherent quantum information from bit-flip errors if there are
no phase erroréor phase errors if there are no bit-flip errpor this case we may imagine that
qubits reside on sites of a periodically identified one-dimensional lditee a circlg; at each link
the stabilizer generat@Z acts on the two neighboring sites. Then there is one encoded qubit—the
two-dimensional code space is spanned by the §8@...0Q with all spins “up,” and the state
|111...) with all spins “down.” In the case where the syndrome measurement is repeated to
improve reliability, we may represent the syndrome’s history by associating qubits with plaquettes
of a two-dimensional lattice, and syndrome bits with the timelike links, as shown in Figs. 8 and 9.
Again, bit-flip errors occur on horizontal links with probability and syndrome measurement
errors occur on vertical links with probability.

Of course, as already noted in Sec. Ill C, we may also use a two-dimensional lattice to
represent the error configuration of the toric code, in the case where the syndrome measurements
are perfect. In that case, we can collect reliable information by measuring the syndrome in one
shot, and errors occur on links of the two-dimensional lattice with probalgmlity
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time

space D

FIG. 8. The two-dimensional lattice depicting a history of the error syndrome for the quantum repetition code, with time
running upward. Each row represents the syndrome at a particular time. Qubits reside on plaquettes, and two-qubit check
operators are measured at each vertical link. Links where the syndrome is nontrivial are shaded.

C. Error chains, world lines, and magnetic flux tubes

In practice, we will always want to protect quantum information for some finite time. But for
the purpose of investigating whether error correction will work effectively in principle, it is
convenient to imagine that our repeated rounds of syndrome measurement extend indefinitely into
the past and into the future. Qubit errors are continually occurring; as defects are created in pairs,
propagate about on the lattice, and annihilate in pairs, the world lines of the defects form closed
loops in space—time. Some loops are homologically trivial and some are homologically nontrivial.
Error recovery succeeds if we are able to correctly identify the homology class of each closed
loop. But if a homologically nontrivial loop arises that we fail to detect, or if we mistakenly
believe that a homologically nontrivial loop has been generated when none has been, then error

time

—

FIG. 9. An error history shown together with the syndrome history that it generates, for the quantum repetition code. Links

where errors occurred are darkly shaded, and links where the syndrome is nontrivial are lightly shaded. Errors on hori-
zontal links indicate where a qubit flipped between successive syndrome measurements, and errors on vertical links
indicate where the syndrome measurement was wrong. Vertical links that are shaded both lightly and darkly are locations
where a nontrivial syndrome was found erroneously. The chain of lightly shaded(tmksyndromgand the chain of

darkly shaded linksthe error$ both have the same boundary.
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recovery will fail. For now, let us consider this scenario in which we continue to measure the
syndrome forever—in Sec. VI, we will consider some issues that arise when we perform error
correction for a finite time.

So let us imagine a particular history extending over an indefinite number of time slices, with
the observed syndrome marked on each vertical link, measurement errors marking selected verti-
cal links, and qubit errors marking selected horizontal links. For this history we may identify
several distinct one-chainsets of linkg. We denote byS the syndrome chaircontaining all
(vertica) links at which the measured syndrome is nontrivi&l€ —1). We denote by theerror
chain containing all links where errors have occurred, including both qubit errors on horizonal
links and measurement errors on vertical links. ConslelE, the disjoint union ofS and E
(S+E contains the links that are in eith&ror E, but not both. The chainS+ E represents the
“actual” world lines of the defects generated by qubit errors, as illustrated in Fig. 9. Its vertical
links are those on which the syndrome would be nontrivial were it measured without error. Its
horizontal links are events where a defect pair is created, a pair annihilates, or an existing defect
propagates from one site to a neighboring site. Since the world lines never end, th8-¢liahas
no boundaryg(S+ E)=0. EquivalentlyS andE have the same boundag§$=JE.

Hence, the measured syndroi8eaeveals the boundary of the error ch&n we may write
E=S+C, whereC is acycle (a chain with no boundajy But any other error chait’=S
+C’', whereC' is a cycle, has the same boundarygaand therefore could have caused the same
syndrome. To recover from error, we will use the syndrome information to make a hypothesis,
guessing that the actual error chain vils= S+ C’. Now, E’ may not be the same chain &s
but, as long as the cycle+E’'=C+C’ is homologically trivial(the boundary of a surfagethen
recovery will be successful. £+ C’ is homologically nontrivial, then recovery will fail. We say
that C and C’ are in the saméiomology classf C+C’ is homologically trivial. Therefore,
whether we can protect against error hinges on our ability to identify not the €ycheit rather
the homology class of.

Considering the set of all possible histories, let pioh(denote the probability of the error
chainE’ (strictly speaking, we should consider the total elapsed time to be finite for this prob-
ability to be defined Then the probability that the syndrongewas caused by any error chain
E’'=S+C’, such thatC’ belongs to the homology class is

Screnhprobl(S+C’)
Zcpro(S+C’)

prob(h|S) = (10

Clearly, then, given a measured syndrofethe optimal way to recover is to guess that the
homology clas$ of C is the class with the highest probability according to Ed). Recovery
succeeds ifC belongs to this class, and fails otherwise.

We say that the probability of error per qubit lies below the accuracy threshold if and only if
the recovery procedure fails with a probability that vanishes as the linealsofethe lattice
increases to infinity. Therefore, below threshold, the cytlactually belongs to the clagsthat
maximizes Eq(10) with a probability that approaches onelas: <. It is convenient to restate this
criterion in a different way that makes no explicit reference to the syndrome &aie may
write the relation between the actual error ch&irand the hypothetical error chal®’ asE’
=E+D, whereD is the cycle that we calle€+C’ above. Let prop(E+D)|E] denote the
normalized conditional probability for error chaiBS=E+ D that have the same boundaryE&s
Then, the probability of error per qubit lies below threshold if and only if, in the limit o,

;prob(E). > prod(E+D)|E]=0. (11)

D nontrivial
Equation(11) says that error chains that differ from the actual error chain by a homologically

nontrivial cycle have probability zero. Therefore, the observed synd®imesure to point to the
correct homology class, in the limit of an arbitrarily large code block.
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This accuracy threshold achievable with toric codes can be identified with a phase transition
in a particular statistical physics model defined on a lattice. In a sense that we will make precise,
the error chains are analogous to magnetic flux tubes in a superconductor, and the boundary points
of the error chains are magnetic monopoles where these flux tubes terminate. Fixing the syndrome
pins down the monopoles, and the ensemble of chains with a specified boundary can be regarded
as a thermal ensemble. As the error probability increases, the thermal fluctuations of the flux tubes
increase, and at the critical temperature corresponding to the accuracy threshold, the flux tubes
condense and the superconductivity is destroyed.

A similar analogy applies to the case where the syndrome is measured perfectly, and a two-
dimensional system describes the syndrome on a single time slice. Then the error chains are
analogous to domain walls in an Ising ferromagnet, and the boundary points of the error chains are
“Ising vortices” where domain walls terminate. Fixing the syndrome pins down the vortices, and
the ensemble of chains with a specified boundary can be interpreted as a thermal ensemble. As the
error probability increases, the domain walls heat up and fluctuate more vigorously. At a critical
temperature corresponding to the accuracy threshold, the domain walls condense and the system
becomes magnetically disordered. This two-dimensional model also characterizes the accuracy
threshold achievable with a quantum repetition code, if the syndrome is imperfect and the qubits
are subjected only to bit-flip errof®r only to phase erroys

D. Derivation of the model

Let us establish the precise connection between our error model and the corresponding statis-
tical physics model. In the two-dimensional case, we consider a square lattice with links repre-
senting qubits, and assume that errors arise independently on each link with prolpabititthe
three-dimensional case, we consider a simple cubic lattice. Qubits reside on the timelike
plaguettes, and qubit errors arise independently with probalglion spacelike links. Measure-
ment errors occur independently with probabilityon timelike links. For now, we will make the
simplifying assumption thatj=p so that the model is isotropic; the generalizationqtép is
straightforward.

An error chaing, in either two or three dimensions, can be characterized by a functigi
that takes a link to ng(€) €{0,1}, whereng(€) =1 for each link¢ that is occupied by the chain.
Hence the probability that error chalhoccurs is

prob(E) =[] (1—p)t "eOpnett) =
14

ng(€)
l;[ (1—p)}-H (1%) : (12)

¢ p

where the product is over all links of the lattice.

Now suppose that the error chdinis fixed, and we are interested in the probability distri-
bution for all chainsE’ that have the same boundary Bs Note that we may expreds’' =E
+C, whereC is a cycle(a chain with no boundajyand consider the probability distribution for
C. Then ifngc(¢)=1 andng(€) =0, the link¢ is occupied byE’ but not byE, an event whose
probability (aside from an overall normalizatiprs

0 ) ne(f)

ip (13

But if nc(€)=1 andng(€)=1, then the linkf is not occupied bye’, an event whose probability
(aside from an overall normalizatipis

nc(€)

1-p
£

Thus a chairE’ = E+ C with the same boundary &S occurs with probability
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proliE’|E)oc1;[ exp(J up); (15)

here we have defined
ue=1-2nc(€)e{1,-1}, (16)
and the couplingl, assigned to link has the form

p/(1—p), for €&E,
(1-p)/p, for €eE.

—23=

7

Recall that the one-chaifY|u;= — 1} is required to be &ycle—it has no boundary.

It is obvious from this construction that prdb{|E) does not depend on how the chdinis
chosen—it depends only on the boundaryEofWe will verify this explicitly below.

The cycle condition satisfied by thg's can be expressed as

IT u=1; (18)

{>s

at each sites, an even number of links incident on that site haye- — 1. It is convenient tsolve
this condition, expressing the,’s in terms of unconstrained variables. To achieve this in two
dimensions, we associate with each lihk link £* of the dual lattice Under this duality, sites are
mapped to plaquettes, and the cycle condition becomes

H Uex=1. (19

* e p*

To solve the constraint, we introduce variable {1,— 1} associated with each siteof the dual
lattice, and write

Uj; =00 (20)

wherei andj are nearest-neighbor sites.

Our solution to the constraint is not quite the most general possible. In the language of
differential forms, we have solved the conditi@lu=0 (whereu is a discrete version of a
one-form, andd denotes the exterior derivativby writing u=do, whereo is a zero-form. Thus
our solution misses the cohomologically nontrivial closed forms, those that are not exact. In the
language of homology, our solution includes all and only those cycles that are homologically
trivial—that is, cycles that bound a surface.

In three dimensions, links are dual to plaquettes, and sites to cubes. The cycle condition
becomes, on the dual lattice,

IT up=1; (21)

P* e C*

each dual cub€* contains an even number of dual plaguettes that are occupied by the cycle. We
solve this constraint by introducing variabless € {1,— 1} on the dual links, and defining

Upx = H Tox . (22)
¢

*EP*
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FIG. 10. The “quenched” error chaiik and the “fluctuating” error chairg’, as represented in the two-dimensional
random-bond Ising model. Ising spins taking valueginl} reside on plaquettes, Ising vortices are located on the sites
marked by filled circles, and the coupling between neighboring spins is antiferromagnetic along tEetpatitonnects

the Ising vortices. The links d&' comprise a domain wall connecting the vortices. The closed @atk+E’ encloses a
domain of spins with the value 1.

In this case, we have solved a discrete versionlof 0, whereu is a two-form, by writingu
=do, whereo is a one-form. Once again, our solution generates only the cycles that are homo-
logically trivial.

We have now found that, in two dimensions, the “fluctuations” of the error chiinshat
share a boundary with the chaihare described by a statistical-mechanical model with partition
function

Z[J,n]={§} ex J(iEj) )nijaiaj, (23)

wheree”?'=p/(1—p). The sum in the exponential is over pairs of nearest neighbors on a square
lattice, andn, € {1,— 1} is defined by

1, if €«E*,

T -1, i €eE*. 24

Furthermore, if the error chairls andE’ are generated by sampling the same probability distri-
bution, then thep,’s are chosen at random subject to

1, with probability 1-p,
ne= (25

—1, with probability p.

This model is the well-known “random-bond Ising model.” Furthermore, the relatoR’
=p/(1-p) between the coupling and the bond probability defines the “Nishimori Iféfi the

phase diagram of the model, which has attracted substantial attention because the model is known
to have enhanced symmetry properties on this ljrer a recent discussion, see Ref.)22.

Perhaps the interpretation of this random-bond Ising model can be grasped better if we picture
the original lattice rather than the dual lattice, so that the Ising spins reside on plaquettes as in Fig.
10. The coupling between spins on neighboring plaquettes is antiferromagnetic on the links be-
longing to the chairk (wheren,=—1), meaning that it is energetically preferred for the spins to
antialign at these links. At links not iB (where = 1), it is energetically preferred for the spins
to align. Thus a linkij is excited if »;;oi0j=—1. We say that the excited links constitute
“domain walls.” In the case where),=1 on every link, a wall marks the boundary between two
regions in which the spins point in opposite directions. Walls can never end, because the boundary
of a boundary is zero.
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But if the # configuration is nontrivial, then the “walls” can end. Indeed each boundary point
of the chaink of links with ;= —1 is an endpoint of a wall, what we will call an “Ising vortex.”
For example, for the configuration shown in Fig. 10, a domain wall occupies the Ehaimat
terminates on Ising vortices at the marked sites. The figure also illustrates that the model depends
only on the boundary of the chalfy and not on other properties of the chain. To see this, imagine
performing the change of variables

= — 0 (26)

on the shaded plaquettes of Fig. 10. A mere change of variable cannot alter the locations of the
excited links—rather, the effect is to shift the antiferromagnetic couplings from the Ehtira
different chainE’ with the same boundary.

In three dimensions, the fluctuations of the error chains that share a boundary with the speci-
fied chainE are described by a model with partition function

Z[J,n]={;} ex JEP: npup), (27

whereup=II,_po, and
1, if P&¢E*, )
TP -1, if PeE*, 9

This model is a “random-plaquetteZ, gauge theory in three dimensions, which, as far as we
know, has not been much studied previously. Again, we are interested in the “Nishimori line” of
this model wheree™?’=p/(1—p), andp is the probability that a plaquette hag=—1.

In this three-dimensional model, we say that a plaquBttes excited if npup=—1. The
excited plaquettes constitute “magnetic flux tubes”—these form closed loops on the original
lattice if »p=1 on every plaquette. But at each boundary point of the ckaon the original
lattice (each cube on the dual lattice that contains an odd number of plaquettegpaith 1), the
flux tubes can end. The sites of the original lattice cubes of the dual lattigethat contain
endpoints of magnetic flux tubes are said to be “magnetic monopoles.”

E. Order parameters

As noted, our statistical-mechanical model includes a sum over those and only thosé¢hains
that arehomologically equivalento the chainE. To determine whether errors can be corrected
reliably, we want to know whether chaifs in a differenthomology class tha& have negligible
probability in the limit of a large latticor code block The relative likelihood of different
homology classes is determined by the free energy difference of the classes; in the ordered phase,
we anticipate that the free energy of nontrivial classes exceeds that of the trivial classes by an
amount that increases linearly with the linear size of the lattice.

But for the purpose of finding the value of the error probability at the accuracy threshold, it
suffices to consider the model in an infinite volutadere there is no nontrivial homologyin the
ordered phase where errors are correctable, large fluctuations of domain walls or flux tubes are
suppressed, while in the disordered phase the walls or tubes “dissolve” and cease to be well
defined.

Thus, the phase transition corresponding to the accuracy threshold is a singularity, in the
infinite-volume limit, in the “quenched” free energy, defined as

[BF(M)]DE—% Proki 7)-InZ[ 3, 7], (29)

where
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Proti ) =1 (1-p)*~7p™ (30)

in two dimensions, or

Prok( )= 1;[ (1—p)t-7ep7e (3D

in three dimensions. The term “quenched” signifies that, althoughsttobains are generated at
random, we consider thermal fluctuations with the positions of the vortices or monopoles pinned
down. The inverse temperatug is identical to the couplingl. We use the notatiofi- ], to
indicate an average with respect to the quenched randomness, and we will der(ote lay
average over thermal fluctuations.

There are various ways to describe the phase transition in this system, and to specify an order
parameter. For example, in the two-dimensional Ising system, we may consider a “disorder pa-
rameter”®(x) that inserts a single Ising vortex at a specified posikoio define this operator,
we must consider either an infinite system or a finite system with a boundary; on the torus, Ising
vortices can only be inserted in pairs. But for a system with a boundary, we can consider a domain
wall with one end at the boundary and one end in the bulk. Ifeglremagnetiqpphase, the cost in
free energy of introducing an additional vortexxat proportional td_, the distance fromx to the
boundary. Correspondingly we find

[(P(X))p]p=0 (32

in the limit L—o. The disorder parameter vanishes because we cannot introduce an isolated
vortex without creating an infinitely long domain wall. In the disordered phase, an additional
vortex can be introduced at finite free energy cost, and hence

[(®(x))glp#0. (33

On the torus, we may consider an operator that inserts not a semi-infinite domain wall termi-
nating on a vortex, but instead a domain wall that winds about a cycle of the torus. Again, in the
ferromagnetically ordered phase, the cost in free energy of inserting the domain wall will be
proportional toL, the minimal length of a cycle. Specifically, in our two-dimensional Ising spin
model, consider choosing agchain and evaluating the corresponding partition function

Z[J,n]=exd —BF(J,7)]. (39

Now choose a set of link€ of the original lattice that constitute a nontrivial cycle wound around
the torus, and replace,— — 7, for the corresponding links of the dual lattides C*. Evaluate,
again, the partition function, obtaining

Zc[Jd,m]=exd — BFc(J,m)]. (39

Then the free energy cost of the domain wall is given by

Zc[J, 77])

203, 7] 36

ﬁFc(Jﬂ7)—[3F(Jﬂ7)=—|n(

After averaging overn}, this free energy cost diverges a&s—« in the ordered phase, and
converges to a constant in the disordered phase.

There is also a dual order parameter that vanishes in the disordered phase—the spontaneous
magnetization of the Ising spin system. Strictly speaking, the defining property of the nonferro-
magnetic disordered phase is that spin correlations decay with distance, so that
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lim [(O'Oo'r>,8]pzo (37

—

in the disordered phase. Correspondingly, the mean squared magnetization per site,

mZEN—ZiEj [(aio))glp. (39)

wherei,j are summed over all spins amlis the total number of spins, approaches a nonzero
constant as?\—oo in the ordered phase, and approaches zero as a positive poweX af flie
disordered phase.

Similarly in our three-dimensional gauge theory, there is a disorder parameter that inserts a
single magnetic monopole, which we may think of as the end of a semi-infinite flux tube. Alter-
natively, we may consider the free energy cost of inserting a flux tube that wraps around the torus,
which is proportional td_ in the magnetically ordered phase. In the three-dimensional model, the
partition functionZc[ J, 7] in the presence of a flux tube wrapped around the nontrivial cyaé
the original lattice is obtained by replacings— — %p on the plaquettes dual to the links 6f
The magnetically ordered phase is called a “Higgs phase” or a “superconducting phase.” The
magnetically disordered phase is called a “confinement phase” because in this phase introducing
an isolated electric charge has a infinite cost in free energy, and electric charges are confined in
pairs by electric flux tubes.

An order parameter for the Higgs-confinement transition is the Wilson loop operator

W(C)=€l;IC oy (39)

associated with a closed lodp of links on the lattice. This operator can be interpreted as the
insertion of a charged particle source whose world line follows the @atin the confinement
phase, this world line becomes the boundary of the world sheet of an electric flux tube, so that the
free energy cost of inserting the source is proportional to the minimal area of a surface bounded by
C; that is,

~In[(W(C))4], (40

increases like the area enclosed by the IGojm the confinement phase, while in the Higgs phase

it increases like the perimeter 6f [A subtle point is that the relevant Wilson loop operator differs
from that considered in Sec. 10 of Ref. 23. In that reference, the Wilson loop was modified so that
the “Dirac strings” connecting the monopoles would be invisible. But in our case, the Dirac
strings have a physical meaniliifpey comprise the chai) and we are genuinely interested in
how far the physical flux tube&omprising the chaie’) fluctuate away from the Dirac strings!

In the caseq# p, our gauge theory becomes anisotropjg-eontrols the coupling and the
quenched disorder on the timelike plaguettes, whileontrols the coupling and the quenched
disorder on the spacelike plaquettes. The tubes of fluk+nE’ will be stretched in the time
direction forg>p and compressed in the time direction &px p. Correspondingly, spacelike and
timelike Wilson loops will decay at different rates. Still, one expects tfmt0<q<3) a single
phase boundary in the—q plane separates the region in which both timelike and spacelike Wilson
loops decay exponentially with aréaonfinement phagdrom the region in which both timelike
and spacelike Wilson loops decay exponentially with perimeter. In the Gmi0, flux on the
spacelike plaquettes becomes completely suppressed, and the timelike plaquettes on distinct time
slices decouple, each described by the two-dimensional spin model described earlier. Similarly, in
the limit p— 0, the gauge theory reduces to decoupled one-dimensional spin models extending in
the vertical direction, with a critical point &= 3.
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F. Accuracy threshold

What accuracy threshold can be achieved by surface codes? We have found that in the case
where the syndrome is measured perfecty=0), the answer is determined by the value of
critical point of the two-dimensional random-bond Ising model on the Nishimori line. This value
has been determined by numerically evaluating the domain wall free energy; recent studies by
Honeckeret al?* and Merz and Chalkét find

pe=0.1094=0.0002. (41)

A surface code is a Calderbank—Shor—Ste@®9 code, meaning that each stabilizer gen-
erator is either a tensor productXfs or a tensor product dt’s.?®?If X errors andZ errors each
occur with probabilityp, then it is known that CSS codes exist with asymptotic Rtek/n
(wheren is the block size and is the number of encoded qubitsuch that error recovery will
succeed with probability arbitrarily close to one, where

R=1-2H,(p); (42

hereH,(p)=—plog, p—(1—p)log,(1—p) is the binary Shannon entropy. This rate hits zero when
p has the value

p.=0.1100, (43

which marginally agrees with E¢41) within statistical errors. Thus the critical error probability

is (at least approximatelythe same regardless of whether we allow arbitrary CSS codes or restrict
to those with a locally measurable syndrome. This result is analogous to the property that the
classical repetition code achieves reliable recovery from bit-flip errors for any error probability
p<3, the value for which the Shannon capacity hits zero. Note that(4£.can also be inter-
preted as a threshold for the quantum repetition code, in the case where the bit-flip error rate and
the measurement error rate are eque-().

If measurement errors are incorporated, then the accuracy threshold achievable with surface
codes is determined by the critical point along the Nishimori line of the three-dimensignal
gauge theory with quenched randomness. In that model the measurement error pralpathikty
error weight for vertical linksand the bit-flip probabilityp (the error weight for horizontal links
are independent parameters. It seems that numerical studies of this quenched gauge theory have
not been done previously, even in the isotropic case; work on this problem is in progress.

Since recovery is more difficult with imperfect syndrome information than with perfect syn-
drome information, the numerical data on the random-bond Ising model indicate.th8t11 for
any q>0. For the cas@=q, we will derive the lower boung.=>0.0114 in Sec. V.

G. Free energy versus energy

In either the two-dimensional modé&f q=0) or the three-dimensional modéf q>0), the
critical error probability along the Nishimori line provides a criterion for whether it is possible in
principle to perform flawless recovery from errors. In practice, we would have to execute a
classical computation, with the measured syndrome as input, to determine how error recovery
should proceed. The defects revealed by the syndrome measurement can be brought together to
annihilate in several homologically distinct ways; the classical computation determines which of
these “recovery chains” should be chosen.

We can determine the right homology class by computing the free energy for each homology
class, and choosing the one with minimal free energy. In the ordered paase probability
below thresholdl the correct sector will be separated in free energy from other sectors by an
amount linear irL, the linear size of the lattice.

The computation of the free energy could be performed by, for example, the Monte Carlo
method. It should be possible to identify the homology class that minimizes the free energy in a
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_..---~"" Nishimori line
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FIG. 11. The phase diagram of the random-bond Ising model, with the tempepgitdren the vertical axis and the
probability p of an antiferromagnetic bond on the horizontal axis. The solid line is the boundary between the ferromagnetic
(ordered phase and the paramagnetitisorderedl phase. The dotted line is the Nishimori liee?#=p/(1—p), which
crosses the phase boundary at the Nishimori pMintt has been suggested that the phase boundargrtical from the

point N to the horizontal axis.

time polynomial inL, unless the equilibration time of the system is exponentially long. Such a
long equilibration time would be associated with spin-glass behavior—the existence of a large
number of metastable configurations. In the random-bond Ising model, spin glass behavior is not
expected in the ferromagnetically ordered phase corresponding to error probability below thresh-
old. Thus, we expect that in the two-dimensional model the correct recovery procedure can be
computed efficiently for anyp<<p.. Similarly, it is also reasonable to expect that, for error
probability below threshold, the correct recovery chain can be found efficiently in the three-
dimensional model that incorporates measurement errors.

In fact, some folklore concerning the random-bond Ising model suggests that we can recover
successfully by finding a recovery chain that minimizesergy rather than free energy.
Nishimor?® notes that along the Nishimori line, the free enefggF (J)], coincides with the
entropy of frustration that is, theShannon entropyf the distribution of Ising vortices(He
considered the isotropic two-dimensional model, but his argument applies just as well to our
three-dimensional gauge theory, or to the anisotropic model gutip.) Thus, the singularity of
the free energy on the Nishimori line can be regarded as a singularity of this Shannon entropy,
which is a purely geometrical effect having nothing to do with thermal fluctuations.

On this basis, Nishimori proposed that there is a vertical phase boundary in our model,
occurring at a fixed value gd for all temperatures below the critical temperature at the Nishimori
point, as indicated in Fig. 11; further support for this conclusion was later offered by Kitaténi.
this proposal is correct, then the critical error probability can be computed by analyzing the phase
transition at zero temperature, where the thermal entropy of the fluctuating chains can be ne-
glected. In other words, in the ordered phase, the chain of minimal energy with the same boundary
as the actual error chain will with probability one be in the same homology class as the error
chain, in the infinite-volume limit. Ordinarily, minimizing free energy and energy are quite dif-
ferent procedures that give qualitatively distinct results. What might make this case different is
that the quenched disordéhe error chairE) and the thermal fluctuatiorighe error chairg’) are
drawn from the same probability distribution.

Minimizing the energy has advantages. For one, the minimum energy configuration is the
minimum weight chain with a specified boundary, which we know can be computed in a time
polynomial inL using the perfect matching algorithm of Edmorittd! Kawashima and Rieg&
computed the energetic cost of introducing a domain wall at zero temperature, andpfpound
=0.104£0.001. It is debatable whether this result is compatible with the vale0.1094
+0.0002 found by Honeckest al?* and Merz and Chalkét at the Nishimori point, but in any
casep. at zero temperature is reasonably clos@tamn the Nishimori line.

Minimizing the energy is easier to analyze than minimizing the free energy, and at the very
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least the critical value ob at zero temperature providedaver boundon p. along the Nishimori

line. In Sec. V we will derive a rigorous bound on the accuracy threshold in our error model, by
considering the efficacy of the energy minimization procedure in the three-dimensional model.

V. CHAINS OF MINIMAL WEIGHT
A. The most probable world line

As argued in Sec. IV G, an effective way use the error syndrome in our three-dimensional
model is to construct an error chain that has the minimal “energy’—that is, we select from among
all error chains that have the same boundary as the syndrome $htia single chairk,,;, that
has the highest probability. In this section, we will study the efficacy of this procedure, and so
obtain a lower bound on the accuracy threshold for quantum storage.

An error chainE with H horizontal links andv vertical links occurs with probabilityaside
from an overall normalization

L) H(L
1-p 1—-q

wherep is the qubit error probability and is the measurement error probability. Thus we choose
Emin to be the chain with

v
; (44)

ﬁEmin: 0"8 (45)
that has theninimal value of

H~Iog(Tp)+V-log

a). (46)

we minimize the effective lengtthumber of linkg of the chain, but with horizontal and vertical
links given different linear weights fop#q. If the minimal chain is not unique, one of the
minimal chains is selected randomly.

Given the measured syndrome, and hence its bounédrthe minimal chaing,,, can be
determined on a classical computer, using standard algorithms, in a time bounded by a polynomial
of the number of lattice site€:*!If p andq are small, so that the lattice is sparsely populated by
the sites contained idS, this algorithm typically runs quite quickly. We assume this classical
computation can be performed instantaneously and flawlessly.

B. A bound on chain probabilities

Recovery succeeds if our hypotheBig;, is homologically equivalent to the actual error chain
E that generated the syndrome ch&nand fails otherwise. Hence, we wish to bound the likeli-
hood of homologically nontrivial paths appearingBnt E i,

Consider a particular cycle on our space—time lattarein fact any connected path, whether
or not the path is closedSuppose that this path contaidshorizontal links andv vertical links.
How likely is it that E+ E,;, contains this particular set of links?

For our particular path withl horizontal links and/ vertical links, letH ,,, V,, be the number
of those links contained i&,, and letH., V. be the number of those links contained&n(cf.
Fig. 12. These quantities obey the relations

Hp+He=H, V,+V.=V, (47

and so it follows that

I
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FIG. 12. The error chaie (darkly shadefand one possible choice for the chdip,, (lightly shadedl, illustrated for a
6X 6 torus in two dimensions. In this caget E ., contains a homologically nontrivial cycle of length 8, which contains
He=4 links of E andH ,=4 links of E .

Furthermore, our procedure for constructifg;, ensures that

o

1-q 1-p 1-q
This must be so because thdinks and them links share the same boundary; were Ef) not
satisfied, we could replace the links in E,,;, by the e links and thereby increase the value of
[p/(1—p)]"m[q/(1—q)]Ym. Combining the inequalitie&48) and (49) we obtain

(1:))%(114)%S (1Ep)H(1?q>v

What can we say about the probability Prblhy/) that a particular connected path witH (V)
horizontal and vertical links is contained B+ E,;,? There are altogethef'2V ways to distribute
errors(links contained inE) at locations on the specified chain—each link either has an error or
not. And once the error locations are specified, the probability for errors to occur at those particu-

lar locations is
p \fe[ g \Ve
1—p) (1—q) ' D

Vim

(49

1/2

(50

pHe(1—p)H~HeqVe(1—q)V Ve=(1-p)"(1—q)"

But with those chosen error locations, the cycle can bE4nE,;, only if Eq. (50) is satisfied.
Combining these observations, we conclude that

PrOkIH,V)ng +V(~pH'qV)l/2’ (52)
where
p=p(l-p), G=q(1-0q). (53

We can now bound the probability th&at+ E,;, contains any connected path witH (V) links
(whether an open path or a cygley counting such paths. We may think of the path as a walk on
the lattice(in the case of a cycle we randomly choose a point on the cycle where the walk begins
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and ends Actually, our primary interest is not in how long the walk (lsow many links it
containg, but rather in how far it wanders—in particular we are interested in whether a closed
walk is homologically nontrivial. The walks associated with connected chains of errors visit any
givenlink at most once, but it will suffice to restrict the walks further, todedf-avoiding walks
(SAWs)—those that visit any givesite at most oncgor in the case of a cycle, revisit only the
point where the walk starts and end$his restriction proves adequate for our purposes, because
given any open error walk that connects two sites, we can always obtain a SAW by eliminating
some closed loops of links from that walk. Similarly, given any homologically nontrivial closed
walk, we can obtain a closed SAV self-avoiding polygonor SAP by eliminating some links.

If we wish to consider the probability of an error per unit time in the encoded state, we may
confine our attention to SAWSs that lie between two time slices separated by the finit&.tiime
fact, we will explain in Sec. VI why we can safely assume fhatO(L).] Such a SAW can begin
at any one of.2- T lattice sites of our three-dimensional latti@nd in the case of a SAP, we may
arbitrarily select one site that it visits as its “starting pointlf ngap(H,V) denotes the number of
SAPs with H,V) links and a specified starting site, then the probability BxglH,V) that E
+ Enin contains any SAP withH,V) links satisfies

Probsap(H,V)<L2T-ngas(H,V) - 21 V(pHgY) Y2 (54)

The upper bound Ed54) will be the foundation of the results that follow.

The encoded quantum information is damageé # E,,,;, contains homologically nontrivial
paths. At a minimum, the homologically nontriviedelf-avoiding path must contain at leatt
horizontal links. Hence we can bound the failure probability as

Probai,<§v‘, HE;,L PrObSAP(H,V)sLZTEV: H};,L nsap(H, V) - (4P)™3(47)) V72, (55)

C. Counting anisotropic self-avoiding walks

We will obtain bounds on the accuracy threshold for reliable quantum storage with toric codes
by establishing conditions under which the upper bound &%).rapidly approaches zero asgets
large. For this analysis, we will need bounds on the number of self-avoiding polygons with a
specified number of horizontal and vertical links.

One such bound is obtained if we ignore the distinction between horizontal and vertical links.
The first step of a SAP on a simpleypefcubic lattice ind dimensions can be chosen in any of
2d directions, and each subsequent step in at mdst 2 directions, so for walks containing a
total of € links we obtain

nQH¢)<2d(2d—1)‘"*, d dimensions. (56)
Some tighter bounds are knoWri*in the casesi=2,3:
NGO =Po() (ko)) 1o~2.638, (57)
and
NHO=Ps(0)(pa)',  ng~4.684, (58)
whereP, 5(€) are polynomials.

Since a SAP wittH horizontal andv vertical links hast =H +V total links, we may invoke
Eq. (58) together with Eq(55) to obtain

Probai.stTg HZL Py(H+V)-(4u3 B)"(4us 9)v~2 (59)
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Provided that

P<(4u3) " G<(4ud) Y (60)

we have

(4us P2 (4u3 9)VP<(4ui P2 (62)

for every term appearing in the sum. Since there are altogeth&F Rorizontal links and_2T
vertical links on the lattice, the sum ovkr,V surely can have at most.2T? terms, so that

Proh,<Qs(L,T)-(4u3 B)-2, (62)

whereQ3(L,T) is a polynomial. To ensure that quantum information can be stored with arbitrarily
good reliability, it will suffice that Prol, becomes arbitrarily small as gets large(with T
increasing no faster than a polynomial lof. Thus Eq.(60) is sufficient for reliable quantum
storage. Numerically, the accuracy threshold is surely attained provided that

P,5<(87.9 1=0.0113, (63
or
p,q<0.0114. (64)

Not only does Eq(62) establish a lower bound on the accuracy threshold, it also shows that,
below threshold, the failure probability decreases exponentially Wwijttthe square root of the
block size of the surface code.

Equation(64) bounds the accuracy threshold in the cpseq, where the sum in Eq55) is
dominated by isotropic walks withf~H/2. But for q<<0.0114, higher values g can be toler-
ated, and forg>0.0114, there is still a threshold, but the conditioniis more stringent. To
obtain stronger results than E@4) from Eq. (55), we need better ways to count anisotropic
walks, with a specified ratio of to H.

One other easy case is the- 0 limit (perfect syndrome measuremgnthere the only walks
that contribute are two-dimensional SAPs confined to a single time slice. Then we have

Prola<Qy(L,T)- (4u3 B (65
[whereQ,(L,T) is a polynomia) provided that
P=p(1-p)<(4u3) '~(27.871=0.0359, (66)
or
p<0.0373; (67)

the threshold value ogb can be relaxed to at least 0.0373 in the case where syndrome measure-
ments are always accurate.

This estimate op, is considerably smaller than the valpg=0.1094+ 0.0002 quoted in Sec.
IV F, obtained from the critical behavior of the random-bond Ising model. That discrepancy is not
a surprise, considering the crudeness of our arguments in this section. If one accepts the results of
the numerical studies of the random-bond Ising model, and Nishimori's argument that the phase
boundary of the model is vertical, then apparently constructing the minimum weight chain is a
more effective procedure than our bound indicates.

One possible way to treat the cagetp would be to exploit an observation due to de
Gennes? which relates the counting of SAPs to the partition function of a clas§i¢l) spin
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model in the limitN— 0. This spin model is anisotropic, with nearest-neighbor couplihgsen
horizontal links andl,, on vertical links, and itgsuitably rescaledfree energy density has the
high-temperature expansion

f(In ,JV>=HEV NsarH,V) (3 (30)V. (68)

This expansion converges in the disordered phase of the spin system, but diverges in the magneti-
cally ordered phase. Thus, the phase boundary of the spin system i #¥k plane can be
translated into an upper bound on the storage accuracy threshold p-the@lane, through the
relations

P=J32/4, §=J2/4, (69)

obtained by comparing Eq#68) and (55).

To bound the failure probability for a planar code rather than the toric code, we should count
the “relative polygons” that stretch from one edge of the lattice to the opposite edge. This change
has no effect on the estimate of the threshold.

VI. ERROR CORRECTION FOR A FINITE TIME INTERVAL

In estimating the threshold for reliabkorageof encoded quantum information, we have
found it convenient to imagine that we perform error syndrome measurement forever, without any
beginning or end. ThuS+E is a cycle(whereS is the syndrome chain artél is the error chain
containing the closed world lines of the defects. Though some of these world lines may be
homologically nontrivial, resulting in damage to the encoded qubits, we can recover from the
damage successfully if the cha* E’ (whereE’ is our estimated error chaiims homologically
equivalent toS+E. The analysis is simplified because we need to consider only the errors that
have arisen during preceding rounds of syndrome measurement, and need not consider any pre-
existing errors that were present when the round of error correction began.

However, if we wish to perform aomputatioracting on encoded toric blocks, life will not be
so simple. In our analysis of the storage threshold, we have assumed that the complete syndrome
history of an encoded block is known. But when two blocks interact with one another in the
execution of a quantum gate, the defects in each block may propagate to the other block. Then to
assemble a complete history of the defects in any given block, we would need to take into account
the measured syndrome of all the blocks in the “causal past” of the block in question. In principle
this is possible. But in practice, the required classical computation would be far too complex to
perform efficiently—inT parallelized time steps, with two-qubit gates acting in each step, it is
conceivable that defects from as many dsd®ferent blocks could propagate to a given block.
Hence, if we wish to compute fault-tolerantly using toric codes, we will need to intervene and
perform recovery repeatedly. Since the syndrome measurement is imperfect and the defect posi-
tions cannot be precisely determined, errors left over from one round of error correction may cause
problems in subsequent rounds.

Intuitively, it should not be necessary to store syndrome information for a very long period to
recover successfully, because correlations decay exponentially with time in our statistical-
mechanical model. To take advantage of this property, we must modify our recovery procedure.

A. Minimal-weight chains

Consider performing syndrome measurem€&rtimes in successiofstarting at timet=0),
generating syndrome chashand error chaii. Let the error chaire contain any qubit errors that
were already present when the syndrome measurements began. Then tHetcBaionsisting of
all defect world lines contains both closed loops and open paths that end on the final time
slice—we say thaS+E is closed relative to the final time slice, éf,(S+E)=0. The open
connected paths contained 8 E are of two types: pairs of defects created prioit+00 that
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have persisted until=T (if the world line contains links on the initial time sligeand pairs of
defects created aftér=0 that have persisted unti=T (if the world line contains no links on the
initial slice).

The syndromeS could have been caused by any error chin with the samerelative
boundary a€. To reconstruct the world lines, we should chooseEarthat is likely given the
observedS. A reasonable procedure is to choose the cliiwith d,oE’ = d,¢S that minimizes
the weight Eq.(46).

The chainS+E’ can be projected onto the final time slice—the projected chHiB+E")
contains those and only those horizonal links that are contain&d-i&’ on an odd number of
time slices. Of course;’ has the same projection 8s-E'; the syndrome chai contains only
vertical links so that its projection is trivial. The projectibh(E’) is our hypothesis about which
links have errors on the final time slice. AftAr(E’) is constructed, we may perforiis or Z's
on these links to compensate for the presumed damage. Note that, to coBstrwet do not need
to store all ofS in our (classical memory—only the relative boundary &is needed.

Actually, any homologically trivial closed loops iH(E’) are harmless and can be safely
ignored. Each homologically nontrivial world line modifies the encoded information by the logical
operationX or Z. Thus, after the hypothetical closed world lines are reconstructed, we may

compensate for the homologically nontrivial closed loops by applpingnd/orZ as needed.
Projecting the open world lines &’ onto the final time slice produces a pairing of the presumed
positions of surviving defects on the final slice. These defects are removed by perf@ining
X’s along a path connecting the pair that is homologically equivalent to the projected chain that
connects them. Thus, this recovery step in effect brings the paired defects together to annihilate
harmlessly.

Of course, our hypothesE’ will not necessarily agree exactly with the actual error ctgin
ThusE+E’ contains open chains bounded by the final time slice. Where these open chains meet
the final time slice, defects remain that our recovery procedure has failed to remove.

B. Overlapping recovery method

The procedure of constructing the minimal-weight chainwith the sameelative boundary
asSis not as effective as the procedure in which we continue to measure the syndrome forever. In
the latter case, we are in effect blessed with additional information about where monopoles will
appear in the future, at times later th@n and that additional information allows us to make a
more accurate hypothesis about the defect world lines. However, we can do nearly as well if we
use a procedure that stores the syndrome history for only a finite time, if we recognize that the
older syndrome is more trustworthy than the more recent syndrome. In our statistical physics
model, the fluctuating closed loops E+ E’ do not grow indefinitely large in either space or in
time. Therefore, we can reconstruct Bh that is homologically equivalent t& quasilocally in
time—to pair up the monopoles in the vicinity of a given time slice, we do not need to know the
error syndrome at times that are much earlier or much later.

So, for example, imagine measuring the syndrorietilnes in successiofstarting at time
t=0), and then constructing’ with the same relative boundary &8s The chainE’ can be split
into two disjoint subchains, as indicated in Fig. 13. The first part consists of all connected chains
that terminate on two monopoles, where both monopoles lie in the time intesta@’; call this
partEgq. The rest ofE’ we call E;.,,. To recover, we flip the links in the projectidi(Eq),
after which we may erase from memory our record of the monopoles connectgghyonly
E,Qeep(indeed only the relative boundary Ef(ee,) will be needed to perform the next recovery step.

In the next step we measure the syndrome anothBmes in succession, from=2T to t
=3T—1. Then we choose our nel#/ to be the minimal-weight chain whose boundary relative to
the new final time slice is the union of the relative boundangaf the interval Z'<t<3T and
the relative boundary oEy., left over from previous rounds of error correction. We call this
procedure the “overlapping recovery method” because the minimal-weight chains that are con-
structed in successive steps occupy overlapping regions of space—time.
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FIG. 13. The “overlapping recovery” method, shown schematically. All monop@esindary points of the error syn-
drome chaipare indicated as filled circles, including both monopoles left over from earlier rounds of error re ¢inegy

in the shaded region below the dotted )im&id monopoles generated after the previous rdth@be in the unshaded region
above the dotted line Also shown is the minimum weight chaid’ that connects each monopole to either another
monopole or to the current time slice. The ch&ihcontainsg/,, whose boundary lies entirely in the shaded region, and
the remaindeEy,,. In the current recovery step, errors are corrected on the horizontal lirk§,ofand its boundary is
then erased from the recorded syndrome history. The boundﬁ&gg,ﬁs retained in the record, to be dealt with in a future
recovery step.

If we chooseT to be large compared to the characteristic correlation time of our statistical
physics model, then only rarely will a monopole survive for more than one round, and the amount
of syndrome information we need to store will surely be bounded. Furthermore, forTsubis
overlapping recovery method will perform very nearly as well as if an indefinite amount of
information were stored.

The timeT should be chosen large enough so that connected chalihs EY are not likely to
extend more than a distan@ein the time direction. Arguing as in Sec. V[@nd recalling that the
numberngan(€) of self-avoiding walks of lengtif differs from the numbeng,ps(€¢) of self-
avoiding polygons of lengtif by a factor polynomial inf], we see that a connected chain
containingH horizontal links andv vertical links occurs with a probability

Prob(H,V)<Qj4(H,V)(4u3p) (4 u35) V", (70)

where Q3(H,V) is a polynomial. Furthermore, a connected chain with temporal eXtemtst
have at leasV=2T vertical links if both ends of the chain lie on the final time slice. Therefore the
probability Probd,V) is small compared to the failure probability E§2), so that our procedure
with finite memory differs in efficacy from the optimal procedure with infinite memory by a
negligible amount, provided that

L log(4u3p) !

~2 ToglanZa) * ()
In particular, if the measurement error and qubit error probabilities are compaigsip)( it
suffices to choos&>L, whereL is the linear size of the lattice.

Thus we see that the syndrome history need not be stored indefinitely for our recovery
procedure to be robust. The key to fault tolerance is that we should not overreact to syndrome
information that is potentially faulty. In particular, if we reconstruct the world lines of the defects
and find open world lines that do not extend very far into the past, it might be dangerous to accept
the accuracy of these world lines and respond by bringing the defects together to annihilate. But
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world lines that persist for a time comparablelLt@re likely to be trustworthy. In our overlapping
recovery scheme, we take action to remove only these long-lived defects, leaving those of more
recent vintage to be dealt with in the next recovery step.

C. Computation threshold

Our three-dimensional model describes the history of a single code block; hence its phase
transition identifies a threshold for reliable storage of quantum information. Analyzing the thresh-
old for reliable quantuntomputationis more complex, because we need to consider interactions
between code blocks.

When two encoded blocks interact through the execution of a gate, errors can propagate from
one block to another, or potentially from one qubit in a block to another qubit in the same block.
It is important to keep this error propagation under control. We will discuss in Sec. IX how a
universal set of fault-tolerant quantum gates can be executed on encoded states. For now let us
consider the problem of performing a circuit consisting of CNOT gates acting on pairs of encoded
qubits. The encoded CNOT gate with block 1 as its control and block 2 as its target can be
implementedransversally—that is, by performing CNOT gates in parallel, each acting on a qubit
in block 1 and the corresponding qubit in block 2. A CNOT gate propagates bit-flip errors from
control to target and phase errors from target to control. Let us first consider the case in which
storage errors occur at a constant rate, but errors in the gates themselves can be neglected.

Suppose that a transversal CNOT gate is executed atttinte propagating bit-flip errors
from block 1 to block 2, and imagine that we wish to correct the bit-flip errors in block 2. We
suppose that many rounds of syndrome measurement are performed in both blocks before and
aftert=0. Denote byS; andS, the syndrome chains in the two blocks, andEhyandE, the error
chains. Due to the error propagation, the chgin-E, in block 2 has a nontrivial boundary at the
t=0 time slice. Therefore, to diagnose the errors in block 2 we need to modify our procedure.

We may divide each syndrome chain and error chain into two parts, a portion lying in the past
of thet=0 time slice, and a portion lying in its future. Then the chain

Sl,before+ Sz,before+ Sz,after+ El,before+ E2,before+ Ez,after (72)

has a trivial boundary. Therefore, we can estinat@etore™ E2 peforst E2 after DY CONstructing the
minimal chain with the same boundary 88peforst Sz peforet S2.atter- FUIthermore, because of the
error propagation, it i1 petoret E2 pefore™ E2 after Whose horizontal projection identifies the dam-
aged links in block 2 aftet=0.

If in each block the probability of error per qubit and per time step, isvhile the probability
of a syndrome measurement errogisthen the error chaif; pesorst E2 peforst E2 afterNas in effect
been selected from a distribution in which the error probabilities ap¢ 12 p),2q(1—q)) before
the gate andf,q) after the gate. Obviously, these errors are no more damaging than if the error
probabilities had been (11— p),2q(1—q)) at all times, both before and after 0. Therefore, if
(p,q) lies below the accuracy threshold for accurate storage, then error rgiés<9),2q(1
—q)) will be below the accuracy threshold for a circuit of CNOT gates.

Of course, the transversal CNOT might itself be prone to error, damaging each qubit with
probability pcyoT, SO that the probability of error is larger on the O slice than on earlier or later
slices. However, increasing the error probability frpno p+ pcnot On @ single slice is surely no
worse than increasing the probability of errorge- pcyot On all slices. For a given, there is a
threshold valuep.(q), such that forp<p.(q) a circuit of CNOTs is robust if the gates are
flawless; then the circuit with imperfect gates is robust provided pRapcnor<pc(q).

By such reasoning, we can infer that the accuracy threshold for quantum computation is
comparable to the threshold for reliable storage, differing by factors of order one. Furthermore,
below threshold, the probability of error in an encoded gate decreases exponentially, it
linear size of the lattice. Therefore, to execute a quantum circuit that confaigates with
reasonable fidelity, we should chooke= O(logT), so that the block sizeZ of the code is

O(log?T).
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FIG. 14. Circuits for measurement of the plaque®&4) and site K®*) stabilizer operators.

VII. QUANTUM CIRCUITS FOR SYNDROME MEASUREMENT

In our model with uncorrelated errors, in which qubit errors occur with probalgliper time
step and measurement errors occur with probalijjtyve have seen in Sec. IV that it is possible
to identify a sharp phase boundary between values of the parameters such that error correction is
sure to succeed in the limit of a large code block, and values for which error correction need not
succeed. How can we translate this accuracy threshold, expressed as a phase boundprygn the
plane, into a statement about how well the hardware in our quantum memory must perform in
order to protect quantum states effectively? The answer really depends on many details about the
kinds of hardware that are potentially at our disposal. For purposes of illustration, we will pelate
andq to the error probabilities for the fundamental gates in a particular computational model.

A. Syndrome measurement

Whenever a check operat®g or Zp is measured, a quantum circuit is executed in which each
of the qubits occurring in the check operator interacts with an ancilla, and then the ancilla is
measured to determine the result. Our task is to study this quantum circuit to determine how the
faults in the circuit contribute tp and toq. To start we must decide what circuit to study.

For many quantum codes, the design of the syndrome measurement circuit involves subtleties.
If the circuit is badly designed, a single error in the ancilla can propagate to many qubits in the
code block, compromising the effectiveness of the error correction procedure. To evade this
problem, Shotand Stean® proposed two different methods for limiting the propagation of error
from ancilla to data in the measurement of the check operators of a stabilizer code. In Shor’s
method, to extract each bit of the error syndrome, an ancilla “cat state” is prepared that contains
as many qubits as the weight of the check operator. The ancilla interacts with the data code block,
and then each qubit of the ancilla is measured; the value of the check operator is the parity of the
measurement outcomes. In Steane’s method, the ancilla is prepared as an encodambbtairk
ing as many qubits as the length of the codée ancilla interacts with the data, each qubit in the
ancilla is measured, and a classical parity check matrix is applied to the measurement outcomes to
extract the syndrome. In either scheme, each ancilla qubit interacts with only a single qubit in the
data, so that errors in the ancilla cannot seriously damage the data. The price we pay is the
overhead involved in preparing the ancilla states and verifying that the preparation is correct.

We could use the Shor method or the Steane method to measure the stabilizer of a surface
code, but it is best not to. We can protect against errors more effectively by using just a single
ancilla qubit for the measurement of each check operator, avoiding all the trouble of preparing and
verifying ancilla states. The price we pay is modest—a single error in the ancilla might propagate
to become two errors in the data, but we will see that these correlated errors in the data are not so
damaging.

So, we imagine placing a sheet of ancilla qubits above the qubits of a planar code block.
Directly above the sits is the ancilla qubit that will be used to measutg, and directly above
the center of the plaquett is the ancilla qubit that will be used to measie. We suppose that
CNOT gates can be executed acting on a data qubit and its neighboring ancilla qubits. The circuits
for measuring the plaquette operai®t* and the site operatot®* are shown in Fig. 14.

We have included the Hadamard gates in the circuit for measuring the site operator to signify
that the ancilla qubit is initially prepared in thé=1 state, and the final measurement is a
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FIG. 15. Gates acting on a given qubit in a complete round of syndrome measurement. Data qubits on links with a
north—south orientation participate successively in measurements of check operators at the site to the south, the plaquette
to the east, the site to the north, and the plaquette to the west. Qubits on links with an east—west orientation participate
successively in measurements of check operators at the plaquette to the south, the site to the east, the plaquette to the north,
and the site to the west.

measurement oX, while in the case of the plaquette operator measurement the ancilla is prepared
in the Z=1 state andZ is measured at the end. But we will suppose that our computer can
measureX as easily as it can measure hence in both cases the circuit is executed in six time
steps(including preparation and measuremeand there is really no Hadamard gate.

B. Syndrome errors and data errors

We will assume that all errors in the circuit are stochadtic example, they could be errors
caused by decoherenc&Ve will consider both “storage errors” and “gate errors.” In each time
step, the probability that a “resting” qubit is damaged will be dengtgd For simplicity, we will
assume that an error, when it occurs, is one of the Pauli opeb&tofsor Z. (The analysis of the
circuit is easily generalized to more general models of stochastic grhorsur analysis, we will
always make a maximally pessimistic assumption about which error occurred at a particular
position in the circuit. If a gate acts on a qubit in a particular time step, we will assume that there
is still a probabilitypg of a storage error in that step, plus an additional probability of error due to
the execution of the gate. We denote the probability of an error in the two-qubit CNOT gate by
Pcnot; the error is a tensor product of Pauli operators, and again we will always make maximally
pessimistic assumptions about which error occurs at a particular position in the circuit. If a storage
error and gate error occur in the same time step, we assume that the gate error acts first, followed
by the storage error. When a single qubit is measured if|®e|1)} basis,p,, is the probability
of obtaining the incorrect outcomélf a storage error occurs during a measurement step, we
assume that the error precedes the measuremerd.when a fresh qubit is acquired in the state
|0), p, denotes the probability that its preparation is fayltyis |1) instead.

In a single cycle of syndrome measurement, each data qubit participates in the measurement
of four stabilizer operators: two site operators and two plaquette operators. Each of these mea-
surements requires four time stgexcluding the preparation and measurement gteygsa single
ancilla qubit is acted upon by four sequential CNOTs. But to cut down the likelihood of storage
errors, we can execute the four measurement circuits in parallel, so that every data qubit partici-
pates in a CNOT gate in every step. For example, for each plaquette and each site, we may execute
CNOT gates that act on the four edges of the plaquette or the four links meeting at the site in the
counterclockwise order north—west—south—east. The CNOT gates that act on a given data qubit,
then, alternate between CNOTs with the data qubit as control and CNOTs with the data qubit as
target, as indicated in Fig. 15.

For either a site check operator or a plaquette check operator, the probability that the mea-
surement is faulty is

Osingle= Pp T 4pcnoTt Bpstpmth. 0., (73

where “+h. 0.” denotes terms of higher than linear order in the fundamental error probabilities.
The measurement can fail if any one of the CNOT gates has an error, if a storage error occurs
during any of the six time steps needed to execute the cifmdtuding the preparation and
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measurement stgpor because of a fault in the initial preparation or final measurement of the
ancilla qubit. By omitting the higher order terms we are actuallgrestimating q For example,

ps is the probability that a storage error occurs in the first time step, disregarding whether or not
additional errors occur in the circuit.

We have used the notatian,qe in EqQ. (73) to emphasize that this is an estimate of the
probability of an isolated error on a verticéimelike) link. More troublesome are syndrome
measurement errors that are correlated with qubit errors. These arise if, say, a qubit siffers a
error that is duly recorded in the syndrome measurement of one of the two adjoining sites but not
the other. In our space—time picture, then, there is a timelike plaquette with an error on one of its
horizontal links and one of its vertical links. We will refer to this type of correlated error as a
“vertical hook”—hook because the two links with errors meet at a 90° angle, and vertical because
one of the links is verticaland to contrast with the case of a horizontal hook which we will
discuss later

We can estimate the probability of a vertical hook on a specified timelike plaquette by con-
sidering the circuits in Fig. 15. The qubit in question participates in the measurement of two site
check operators, through the two CNOT gates in the circuit in which the data qubit is the target of
the CNOT. A vertical hook can arise due to a fault that occurs in either of these CNOT gates or at
a time in between the execution of these gates. Hence the probability of a vertical hook is

Jhook= 3PcnoTt 2Psth. 0. (74

faults in any of three different CNOT gates, or storage errors in either of two time steps, can
generate the hook. Note that the hook on the specified plaquette has a unique orientation; the first
of the two site operator measurements that the data qubit participated in is the one that fails to
detect the error. Of course, the same formuladigy., applies if we are considering the measure-
ment of the plaquette operators rather than the site operators.

A CNOT gate propagates errors from control qubit to target qubit, a@derrors from target
to control. Thus we do not have to worry about a vertical hook that arises from an error in an
ancilla bit that propagates to the data. For example, if we are measuring a plaquette operator, then
X errors in the ancilla damage the syndrome bit wHilerrors in the ancilla propagate to the data;
the result is a vertical error in thé-error syndrome that is correlated with a horizortadrror in
the data. This correlation is not problematic because we dealXpétitors andZ errors separately.
However, propagation of error from ancilla to data also generates correlated horizontal errors that
we need to worry about. In the measurement of, say, the plaquette opgsat@®*, Z errors(but
not X errorg can feed back from the ancilla to the data. Feeding backZésimeans no error at
all, becaus&Z®* is in the code stabilizer, and feeding back th&s generates the errdZZZ,
which is equivalent to the singlé errorZI11. Therefore, the only way to get a double qubit error
from a single fault in the circuit is through an error in the second or third CNOT, or through an
ancilla storage error in between the second and third CNTe second CNOT might appB to
the ancilla but not to the data, and tfzaerror in the ancilla can then feed back to two data qubits,
or the third CNOT could apply to both ancilla and data, and tieerror in the ancilla can then
feed back to one other data qupiBecause of the order we have chosen for the execution of the
CNOTs, this double error, when it occurs, afflicts the southeast corner of the plaguedtpiiva-
lently the northwest corner, which has the same boundsg will refer to this two-qubit error as
a “horizontal hook,” because the two horizontal errors meet at a 90° angle. Similarly, error
propagation during the measurement of the site opekatean produceX errors on the north and
west links meeting at that site. One should emphasize that the only corr&ldtedZ Z errors that
occur with a probability linear in the fundamental error probabilities are these hooks. This is a
blessing—correlated errors affecting two collinear links would be more damaging.

Feedback from the measurement of a plaquette operator can pradulseoks but notX X
hooks, and feedback from the measurement of a site operator can pidureoks but noZzZ
hooks. Thus, in each round of syndrome measurement, the probability ©haok at a plaquette
or anXX hook at a site is
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Phook= 2Pcnott PsTh. 0. (79

(Remember that a “hook” means tw&'s or two X's; in addition, an error in a single CNOT gate
could induce, say, aK error in the data and A error in the ancilla that subsequently feeds back,
but correlatedX andZ errors will not cause us any trouble.

Now we need to count the ways in which a single error can occur in the data during a round
of syndrome measurement. First suppose that we measure a single plaquette aqheratond
consider the scenarios that lead to a sirigkerror in the data. Th& error can arise either because
a gate or storage error damages the data qubit directly, or because an error in the ancilla feeds back
to the data. Actually, single errors occur with slightly different probabilities for different data
qubits acted on by the circuit. The worst case occurs for the first and last qubit acted on by the
circuit; the probability that the circuit produces a single error that acts on thédirktsd qubit is

Zp,1 Zp 4
psiﬁgb,z: psiﬁgb,z: Penott BPsT Penort Psth. 0. (76)

The first two terms arise from gate errors and storage errors that damage the data qubit directly.
For the first qubit, the last two terms arise from the case in whizhearor in the ancilla is fed

back to the data by each of the last three CNOTs—the resulidg error is equivalent to & 111

error becaus@ZZZis in the code stabilizer. For the fourth qubit, the last two terms arise from an
error fed back by the last CNOT gate in the circuit. On the other hand, for the second and third
qubit acted on by the circuit, it is not possible for just a single error to feed back; e.g., if the error
feeds back to the third qubit, it will feed back to the fourth as well, and the result will be a hook
instead of a single error. Hence, the probability of a single error acting on the second or third qubit
is

Zp,2 Zp,3 .
psiflgle,Z: psiﬁgle,z: Pcnott 6p3+ h. o,; (77)

there is no feedback term. If we are measuring a site opeXatothenX errors might feed back
from the ancilla to the data, bt errors will not. Therefore, for each of the four qubits acted on
by the circuit, the probability that a singEeerror results from the execution of the circuit, acting
on that particular qubit, is

pzi;glez: Penott 6psth. 0 (79)

again there is no feedback term.

In a single round of syndrome measurement, each qubit participates in the measurement of
four check operators, two site operators and two plaguette operators. For the plaquette operator
measurements, depending on the orientation of the link where the qubit resides, the qubit will be
either the first qubit in one measurement and the third in the other, or the second in one and the
fourth in the other. Either way, the total probability of a singlesrror arising that afflicts that
qubit is

Psingle= 4Pcnott 6Pst Penott Psth. 0.=5pcnort 7psth. 0., (79

with the 4pcnott 6P arising from direct damage to the qubit and fheor+ ps from feedback
due to one of the four check operator measurements. The same equation applies to the probability
of a singleX error arising at a given qubit in a single round of syndrome measurement.

C. Error-chain combinatorics

With both single errors and hooks to contend with, it is more complicated to estimate the
failure probability, but we can still obtain useful upper bounds. In fact, the hooks do not modify
the estimate of the accuracy threshold as much as might have been naively expected. Encoded
information is damaged &+ E,;, contains a homologically nontrividételative cycle, which can
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wrap around the code block with either a north—south or east—west orientation. Either way, the
cycle contains at least links all with thesameorientation, wheré. is the linear size of the lattice.
A horizontal hook introduces two errors wittifferent orientations, which is not as bad as two
errors with the same orientation. Similarly, a vertical hook contains only one horizontal error.
There are two other reasons why the hooks do not badly compromise the effectiveness of error
correction. While single errors can occur with any orientation, horizontal hooks can appear only
on the northwest corner of a plaquetteooks on southeast corners are equivalent to hooks on
northwest corners and should not be counted sepayaseigt vertical hooks on timelike plaquettes
have a unique orientation, too. Therefore, hooks have lower “orientational entropy” than the
single errors, which means that placing hooks on self-avoiding walks reduces the number of walks
of a specified length. And, finallypeo is smaller thamgjnge, anddnpqek is smaller thargjngie,
which further reduces the incentive to include hook&E E iy -
We will suppose thaE,,, is constructed by the same procedure as before, by minimizing the
weight

H 109 Pgingiet V 109 Ogingle (80)

To simplify later expressions, we have replagé¢ll — p) by p here, which will weaken our upper
bound on the failure probability by an insignificant amount. Note that our procedure finds the most
probable chain under the assumption that only single errors @gourooks. If pyoox@NdQgneokare
assumed to be known, then in principle we could retool our recovery procedure by taking these
correlated errors into account in the constructionEgf,,. To keep things simple we will not
attempt to do that. Then, as before, for any connected subché&in- &, with H horizontal links

andV vertical links, the numberbl, andV, of horizontal and vertical links of the subchain that

are contained ifE must satisfy

H Vv, HI2 \VI2
psir:gleqsifwgleg psingleqSingle- (81)

To bound the failure probability, we wish to count the number of ways in which a connected
chain with a specified number of horizontal links can occuE R E,;,, keeping in mind that the
error chainE could contain hooks as well as single errors. Notice that a hook might contribute
only a single link toE+ Ei,, if one of the links contained in the hook is alsokh,;,. But since
Phook< Psingle @Nd Jhook<Usingle: W€ Will obtain an upper bound on the failure probability if we
pessimistically assume that all of the errorsg5r E,,;, are either two-link hooks occurring with
probabilitiespreok, Ahook OF Single errors occuring with probabilitigsngie; dsingle- If the He hori-
zontal errors on a connected chain incluldig,., horizontal hooks any,, vertical hooks, then
there areH.— 2H o0k~ Vhook Single horizontal errors and, — Vo0 Single vertical errors; once the
locations of the hooks and the single errors are specified, the probability that errors occur at those
locations is no larger than

He—2H —V H Ve—V, \Y
(psingle) € hook hoo'( phook) hOOk'(qsingle) € hOOk(Qhook) hook

H \Y%
ph K hook qh K hook
<p§fg|a( °°j q;ﬁfgue( —= e) . (82)

2
psingl psingleﬂsingl

Because a horizontal hook contains two errors with different orientations, it will be convenient
to distinguish between links oriented east—west and links oriented north—south. We dehbte by
the number of horizontal links in the connected chain with east—west orientation ard the
number of horizontal links with north—south orientation; then clearly

H hooks H 1 H hookg H 2 (83)

To estimate the threshold, we will bound the probability that our connected chaid ,xak; of
course, the same expression bounds the probabilityHhatL .
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For a specified connected chain, suppose that altogethef the horizontal links an®/,, of
the vertical links have errors, and that there Hig,, horizontal hooks any, vertical hooks,
so that there arél.—2H o0k Vhook Single horizontal errors and.— Vo0« Single vertical errors.
In how many ways can we distribute the hooks and single errors along the path? Since each
horizontal hook contains a link with north-south orientation, there are no more E}ﬁ(%rk) (vays

to choose the locations of the horizontal hooks; similarly there are no more Xpogp ways to

choose the locations of the vertical hook&ctually, we have given short shrift here to a slight
subtlety. Once we have decided that a vertical hook will cover a particular vertical link, there may
be two ways to place the hook—it might cover either one of two adjacent horizontal links.
However, for the hook to be free to occupy either position, the orientation of the second horizontal
link must be chosen in one of only two possible ways. Thus the freedom to place the hook in two
ways is more than compensated by the reduction in the orientational freedom of the other hori-
zontal link by a factor of, and can be ignored. A similar remark applies to horizontal hgoks.
Then there are no more thaff2 "2~ 2Hnook Vhook ways to place the single horizontal errors among

the remaining horizontal links, and no more thafi hook ways to place the single vertical errors
among remaining/ — Voo Vertical links on the chain. Now consider counting the self-avoiding
paths starting at a specified site, where the path is constructed from hooks, single errors, and the
links of E,,,- Whenever we add a horizontal hook to the path there are at most two choices for the
orientation of the hook, and whenever we add a vertical hook there are at most four choices; hence
there are no more tharf'®oi4 Vhook ways to choose the orientations of the hooks. For the remaining
Hi+Ho—2Hpoot V—2Vhook links of the path, the orientation can be chosen in no more than five
ways. Hence, the total number of paths with a specified number of horizontal links, horizontal
hooks, vertical links, and vertical hooks is no more than

e
Hhoo
Combining this counting of paths with the bound E§2) on the probability of each path, we
conclude that the probability th&+ E,;, contains a connected path with specified starting site,

containingH, links with east—west orientatiof, links with north—south orientation/ vertical
links, Hy,00k horizontal hooks, an¥ .. vertical hooks, is bounded above by

sz) Pra | M Uhook Vhook
1000, (H1+H2)/2.( k)( E) 1000 V2
(Hhoo (50p§ingl&) ( msmgle) Vhoo 25psinglé:{sing| ( msmgle)
(89

\%
Vhoo

k) . 2H1+H2=2Hh60k= Yook Y~ Vhook. 2Hhookq Vhook. 5H1+H2~ 2Hhookt V= 2Vhook (84)

HereH o« Can take any value from zero kb, andV,,, can take any value from zero Yo We
can sum oveH oo and Voo, to obtain an upper bound on the probability of a chain with an
unspecified number of hooks:

Phook
2

Hy
j : ( 10Q]single) vi2

Ohook v
1+ 1+ $e> . (86)

25psing|(=,qsingl

( 1Oq33ingle) (HitHo)/2

singl

Finally, since a path can begin at anyldiT sites, and since there are two types of homologically
nontrivial cycles, the probability of failure Prglp satisfies the bound

21H-/2
Phook 2
Proh,<2L2T X, (1000gnge ™12 > {wmsmg.e(ﬂ 2"9)
Hy=L H,=0 50psingl
- > | 10004 E(1+—q“°°k e)zwz (87)
V=0 sing! 25psing|e‘15ingl

This sum will be exponentially small for larde provided that
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1 1
psingle<r.oa g< 1_00.

1
Phoo<5 P2 |e( —_— 10) , (89)
* o v psingle

5 1
c4hook<§ psinglélsingle( m_ 10) .

Of course, makin@ygj,qie and gsingle SMaller can only make things better. Our conditionspga
anddpqek in Eq. (88) are not smart enough to know this—fjpg,ge sufficiently small, we find that
making it still smaller gives us anore stringent condition orpngek, and similarly for gnok-
Clearly, this behavior is an artifact of our approximations. Thus, for a gpgge anddsingie: We
are free to choose any smaller valuegfye andqsi,ge in order to obtain more liberal conditions
0N Phook @Nd greok from Eq. (88). Our expression that boungs,,,. achieves its maximum for
psing|e=(%,)2, and for fixedpsjnge, OUr expression that boundg,..k achieves its maximum for

qsing|e=(§))2. We therefore conclude that for recovery to succeed with a probability that ap-
proaches one as the block size increases, it suffices that

9 1
Psingle< T660,  Usingle= 700

phook<s%' ﬁ)y qh00k<l_16' ﬁ)- (89)
Comparing to our expressions fQ¥iygie, Psingle: @NAPhook, WE see that, unlesg;ngeis dominated
by preparation or measurement errors, these conditions are all satisfied provided that

Ohook= 3PcnoTt 2Ps<3.5X 10" %, (90

If the probability of a CNOT error is negligible, then we obtain a lower bound on the critical error
probability for storage errors,

(Pg)c>1.7X10 4. (91

In view of the crudeness of our combinatorics, we believe that this estimate is rather conservative,
if one accepts the assumptions of our computational model.

VIIl. MEASUREMENT AND ENCODING

A. Measurement

At the conclusion of a quantum computation, we need to measure some qubits. If the com-
putation is being executed fault tolerantly, this means measuring an encoded block. How can we
perform this measurement fault tolerantly?

Suppose we want to measure the logical operétdhat is, measure the encoded block in the

basis{|0),|1)}. If we are willing to destroy the encoded block, we first meaglfer each qubit
in the block, projecting each onto the bagi8),|1)}. Were there no errors in the code block at the
time of the measurement, and were all measurements of the individual qubits performed flaw-
lessly, then we could choose any homologically nontrivial path on the lattice and evaluate the
parity of the outcomes for the links along that path. Even parity indicates that the encoded block
is in the statd0), odd parity the statgl).

But the code blockwill contain some errorgnot too many, we hope and some of the
measurements of the individual qubiutéll be faulty. Since a single bit flip along the path could

Downloaded 28 Jan 2003 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



4492 J. Math. Phys., Vol. 43, No. 9, September 2002 Dennis et al.

alter the parity of the measurement outcomes, we need to devise a fault-tolerant procedure for
translating the observed values of the individual qubits into a value of the encoded qubit.

One such procedure is to evaluate the pafiff# of the measurement outcomes at each
plaguette of the lattice, determining the locations of all plaquette defects. These defects can arise
either because defects were already present in the code block before the measurement, or they
could be introduced by the measurement itself. It is useful and important to recognize that the
defects introduced by the measurement do not pose any grave difficulties. An isolated measure-
ment error at a single link will produce two neighboring defects on the plaguettes that contain that
link. Widely separated defects can arise from the measurement only if there are many correlated
measurement errors.

Therefore we can apply a suitable classical algorithm to remove the defects—for example, by
choosing a chain of minimal total length that is bounded by the defect locations, which can be
found in a polynomial-time classical computation. Flipping the bits on this chain corrects the
errors in the measurement outcomes, so that we can then proceed to evaluate the parity along a
nontrivial cycle. Assuming sufficiently small rates for the qubit and measurement errors, the
encoded qubit will be evaluated correctly, with a probability of error that is exponentially small for
large block size.

We can measur¥ by the same procedure, by measurkdor each qubit, and evaluating all
site operatorX®* from the outcomes. After removal of the site defects by flipping bits appropri-

ately,fis the parity along a nontrivial cycle of the dual lattice.
To measure of a code block without destroying the encoded state, we can prepare an ancilla

block in the encoded stat@), and perform a bitwise CNOT from the block to be measured into
the ancilla. Then we can measure the ancilla by the destructive procedure just described. A

nondestructive measurementXfis executed similarly.

B. Encoding of known states

At the beginning of a quantum computation, we need to prepare encoded qubits in eigenstates
of the encoded operations, for example the si@eof the planar code, Z=1 eigenstate. If
syndrome measurement were perfectly reliable, the $@teould be prepared quickly by the
following method: Start with the stat®)®" wheren is the block size of the code. This is the
simultaneous eigenstate with eigenvalue 1 of all plaquette stabilizer opeZatez®* and of the
logical operatorZ, but not of the site stabilizer operatoXg=X®4. Then measure all the site
operators. Since the site operators commute with the plaquette operators and the logical operators,
this measurement does not disturb their values. About half of the site measurements have outcome
Xs=1 and about half have outcomg=—1; to obtain the statg), we must remove all of the
site defectgsites whereX,= —1). Thus we select an arbitrary one-chain whose boundary consists
of the positions of all site defects, and we ap@lyto each link of this chain, thereby imposing
Xs=1 at each site. In carrying out this procedure, we might agpiy the code block by applying
Z to a homologically nontrivial path, but this has no effect since the stateZis & eigenstate.

Unfortunately, syndrome measurement is not perfectly reliable; therefore this procedure could
generate longpenchains ofZ errors in the code block. To keep the open chains under control, we
need to repeat the measurement of bothXhendZ syndromes of ordelt times(wherelL is the
linear size of the lattice and use our global recovery method. Then the initial configuration of the
defects will be “forgotten” and the error chains in the code block will relax to the equilibrium
configuration in which long open chains are highly unlikely. The probability oKaarror that
causes a flip of the encoded state will be exponentially smadll.ikVe can prepare the encoded

state withX=1 by the dual procedure, starting with the stgt&n/2) (|0)+|1))]®".
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FIG. 16. Two basic moves that modify the triangulation of a surface by adding a link: splitting a plaquette, and splitting
a vertex.

C. Encoding of unknown states

Quantum error-correcting codes can prot@tknowncoherent quantum states. This feature is
crucial in applications to quantum computation—the operator of a quantum computer need not
“monitor” the encoded quantum state to keep the computation on track. But to operate a quantum
computer, we do not typically need eamcodeunknown quantum states. It is sufficient to initialize
the computer by encoding known states, and then execute a known quantum circuit.

Still, a truly robust “quantum memory” should be able to receive an unknown quantum state
and store it indefinitely. But given any nonzero rate of decoherence, to store an unknown state for
an indefinitely long time we need to encode it using a code of indefinitely long block size. How,
then, can we expect to encode the state before it decoheres?

The key is to encode the state quickly, providing some measure of protection, while continu-
ing to build up toward larger code blocks. Concatenated codes provide one means of achieving
this. We can encode, perform error correction, then encode again at the next level of concatena-
tion. If the error rates are small enough, encoding can outpace the errors so that we can store the
unknown state in a large code block with reasonable fidelity.

The surface codes, too, allow us to build larger codes from smaller codes and so to protect
unknown states effectively. The key to enlarging the code block is that a code corresponding to
one triangulation of a surface can be transformed into a code corresponding to another triangula-
tion.

For example, we can transform one surface code to another using local moves shown in Fig.
16.

Links can be added ttr removed from the triangulation in either of two ways—one way
adds a new plaquette, the other adds a new site. Either way, the new triangulation corresponds to
a new code with an additional qubit in the code block and an additional stabilizer generator.

When a new plaquette is added, the new code stabilizer is obtained from the old one by adding
the new plaquette operator

VAVEYAS (92
and by modifying the site operators with the replacements
X1—X1 X0,  Xo—XoXo. (93
When a new site is added, the stabilizer is modified similarly, but XithandZ'’s interchanged:
X1X2Xo (99
is a new stabilizer generator, and the existing plaquette operators are modified as

Zl—>leo, Zz—> Zzzo. (95)
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FIG. 17. Circuits that implement the two basic moves of Fig. 16. The circuit with qubit 0 as the target of the CNOTs adds
a plaquette; the circuit with qubit O as the control of the CNOTs adds a site.

To add a plaquette or a site to a stabilizer code, we prepare the additional quiiginlaor
Xo=1 eigenstate, and then execute the circuit shown in Fig. 17. We recall that, acting by conju-
gation, a CNOT gate changes a tensor product of Pauli operators acting on its control and target
according to

1222, XleXX: (96)

that is, the CNOT transforms d& eigenstate to @ Z eigenstate and aX| eigenstate to aXX
eigenstate, while leaving! and|X eigenstates invariant. The circuit in Fig. 17 with qubit O as
target, then, transforms the site operators as in(&8). while also implementing

Zo—2Z1ZyZ,. 97

The initial Zo=1 eigenstate is transformed into a state that satisfies the plaquette parity checks of
the new triangulation. Similarly, the circuit in Fig. 17 with qubit O as control implements%.
as well as

Xo— X1 X2Xop; (99)

the circuit transforms th&y=1 eigenstate into a state that satisfies the new site parity checks.

Of course, these circuits are reversible; they can be used to extricate qubits from a stabilizer
code instead of adding them.

If planar codes are used, we can lay out the qubits in a planar array. Starting with a small
encoded planar block in the center, we can gradually add new qubits to the boundary using the
moves shown in Fig. 18.

These moves add a new three-qubit plaquette or site operator, and can also be implemented by
the circuits of Fig.(17).

A procedure that transforms a distaricgslanar code to a distancé-¢1) code is shown in
Fig. 19. By adding a new row of plaquette operators, we transform what was formerly a smooth
edge into a rough edge, and by adding a new row of site operators we transform a rough edge to
a smooth edge. We start the row of plaquettes by adding a two-qubit plaquette operator to the
corner via the transformations

1y | 1 l
2| o — 2| 0] o
l ) l
1 [ [—> 1
3 7 0 °

FIG. 18. The same circuits as in Fig. 17 can also be used to build up a planar code by adding a link at the boundary. Sites
or plaquettes marked by open circles do not correspond to stabilizer operators.
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FIG. 19. Building a distancek(+ 1) planar code by adding qubits to a distahcetanar code(Here,L=5.) In the first
step, new two-qubit stabilizer operators are added in the corners with single CNOTS; in subsequent steps, three-qubit
stabilizer operators are added with double CNOTSs. The last step promotes the corner operators to three-qubit operators.

Zo—Z1Zy, X1—X1Xo, (99

which can be implemented by a single CNOT,; similarly, we start a row of sites by adding a
two-qubit site operator with

Xo—> X]_XO, Zl—>leo. (100)

Then a new row of boundary stabilizer operators can be “zipped” into place.

As is typical of encoding circuits, this procedure can propagate errors badly; a single faulty
CNOT can produce a long row of qubit errdeswidely separated pair of defectong the edge
of the block. To ensure fault tolerance, we must measure the boundary stabilizer operators fre-
quently during the procedure. Examining the syndrome record, we can periodically identify the
persistent errors and remove them before proceeding to add further qubits.

IX. FAULT-TOLERANT QUANTUM COMPUTATION

We will now consider how information protected by planar surface codes can be processed
fault-tolerantly. Our objective is to show that a universal set of fault-tolerant encoded quantum
gates can be realized using only local quantum gates among the fundamental qubits and with only
polynomial overhead. We will describe one gate set with this profé&fjis construction suffices
to show that there is an accuracy threshold for quantum computation using surface codes: each
gate in our set can be implemented acting on encoded states with arbitrarily good fidelity, in the
limit of a large code block. We have not analyzed the numerical value of this computation
threshold in detail. Better implementations of fault-tolerant quantum computation can probably be
found, requiring less overhead and yielding a better threshold.

We choose the basis introduced by Shoansisting of four gates. Three of these generate the
“symplectic” or “normalizer” group, the finite subgroup of the unitary group that, acting by
conjugation, takes tensor products of Pauli operators to tensor products of Pauli operators. Of
these three, two are single-qubit gates: the Hadamard gate

1 (1 1
H v2il1 -1

: (101)

which acts by conjugation on Pauli operators according to
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H:XZ, (102

and the phase gate

10
PEA(i)z(O i)’ (103

which acts by conjugation on Pauli operators according to
P:X=Y, Z-—-Z (104

The third generator of the normalizer group is the two-qubit CRCK(X) gates, which acts by
conjugation on Pauli operators according to

CNOT: XI—=XX, IX—=IX,

(109
ZI—2Zl, 12-2Z

Quantum computation in the normalizer group is no more powerful than classical
computatior?’ To realize the full power of quantum computing we need to complete the basis with
a gate outside the normalizer group. This gate can be chosen to be the three-qubit Toffoli gate
T=A?(X), which acts on the standard three-qubit orthonormal bgai®,c)} as

T:|la,b,c)—|a,b,coab). (106)
A. Normalizer gates for surface codes

1. CNOT gate

Implementing normalizer computation on planar codes is relatively simple. First of all, a
planar surface code is a Calderbank—Shor—St8&heCSS code, and as for any CSS code with
a single encoded qubit, an encoded CNOT can be perfotma@dversally—in other words, if
simultaneous CNOTs are executed from each qubit in one block to the corresponding qubit in the
other block, the effect is to execute the encoded CROTD see this, we first need to verify that
the transversal CNOT preserves the code space, i.e., that its action by conjugation preserves the
code’s stabilizer. This follows immediately from E§.05), since each stabilizer generator is either
a tensor product oX’s or a tensor product af’s. Next we need to check that CNOT acts on
the encoded operation$ and Z as in Eq.(105), which also follows immediately sincg is a

tensor product oZ’s andX is a tensor product oX’s.

2. Hadamard gate

What about the Hadamard gate? In fact, applying the bitwise opetdti@rdoes not preserve
the code space; rather it maps the code space of one planar code to that of another, different, planar
code. If the stabilizer generators of the initial code are site operatoend plaquette operators
Zp, then the action of the bitwise Hadamard is

HOMX —Z, Zp—Xp. (107)

Compared to the initial code, the stabilizer of the new code has sites and plaquettes interchanged.
We may reinterpret the new code as a code Wthand Zp check operators, but defined on a
lattice dual to the lattice of the original code. If the original lattice has its “rough” edges at the
north and south, then the new lattice has its rough edges at the east and west. We will refer to the
two codes as the “north—soutiNS) code and the “east—westEW) code. As indicated in Fig.

20, the action oH®" on the encoded operatioh_(sandfof the NS code is
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—

FIG. 20. Action of the bitwise Hadamard gate on the planar code. If Hadamard gates are applied simultaneously to all the
qubits in the block, an “NS code” with rough edges at the north and south is transformed to an “EW code” with rough

edges at the east and west; the encoded operafjgf the NS code is transformed ¥y, of the EW code, aniys is
transformed tdZg .

H®n:YNS—>ZEW1 ZNS_)YEW- (108)

If we rigidly rotate the lattice by 90°, the EW code is transformed back to the NS code. Hence, the

overall effect of a bitwise Hadamard and a 90° rotation is an encoded Had&inard

Of course, a physical rotation of the lattice might be inconvenient in practice! Instead, we will
suppose that “peripheral” qubits are available at the edge of the code block, and that we have the
option of incorporating these qubits into the block or ejecting them from the block using the
method described in Sec. VIII C. After applying the bitwise Hadamard, transforminigxtieNS
code to the EW code, we add-1 plaquettes to the northern edge dnd1 sites to the western
edge, while removind. — 1 plaquettes on the east ahd-1 sites on the south. This procedure
transforms the block back to the NS code, but with the qubits shifted by half a lattice spacing to
the north and west—we will call this shifted code the’N®de. Furthermore, this modification of
the boundary transforms the logical operatiaiis, and Xg, of the EW code to the operations
Zyg andXyg of the NS code. The overall effect, then, of the bitwise Hadamard followed by the
boundary modification is the operation

Xns—2Zns' s Zns— Xng - (109

In principle, we could complete the encoded Hadamard gate by physically shifting the qubits half
a lattice spacing to the south and east, transforming thedd8e back to the NS code. One way

to execute this shift might be to swap the qubits of thé M8h qubits located at the correspond-

ing sites of the NS lattice. If we prefer to avoid the additional quantum processing required by the
swaps, then what we can do instead is associate a classical flag bit with each code block, recording
whether the number of Hadamard gates that have been applied in our circuit to that logical qubit
is even or odd, and hence whether the logical qubit is encoded in the NS code or'tled¢S

This classical bit is consulted whenever the circuit calls for a Hadamard or CNOT acting on the
block. If we perform a Hadamard on a qubit that is initially encoded with thé disle, we add

qubits on the south and east while removing them from the north and west, returning to the NS
code. The CNOT gates are performed transversally between blocks that are both in the NS code or
both in the NS code; that is, each qubit in one layer interacts with the corresponding qubit
directly below it in the next layer. But if one block is in the NS code and the other is in the NS
code, then each qubit in one layer interacts with the qubit in the next layer that is half a lattice
spacing to north and west. Note that the modification of the boundary requires a number of
computation steps that is linear in

3. Phase gate

For implementation of the phase g&enote that if we can execute CNOT aHdthen we can
also construct the “controlledr{)” gate
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AGY)=A(ZX)=(IH)-A(X)-(IH)-A(X). (110
Hence it suffices to be able to prepare an eigenstajeor | —) of Y,
Y[E)==x|*); (111)

if we prepare an ancilla in the stafte ), and apply a CNOT with the data as its control and the
ancilla as its target, the effect on the data is the samd @¥=P. If the ancilla is the state
|—), then we applyA(—i)=P ! to the data instead.

Now, it is not obvious how to prepare a large toric block in an eigenstate of the en¥oded
with good fidelity. Fortunately, we can nevertheless use a CNOT and an ancilla to implEBment
thanks to a trick that works becauBes the only gate in our set that is not real. Consider a circuit
that applies the unitary transformati@hto the data if the ancilla has actually been prepared in the
state|+). Then if|+) were replaced by—), this same circuit would apply the complex conju-
gate unitaryU*, since eachP in the circuit would be replaced by*.

Instead of a¥ eigenstate, suppose we prepare the ancilla in any encoded state we please, for

example,|0). And then we use this same ancilla block, and a CNOT, every tirReigito be
executed. The state of the ancilla can be expressed as a linear combajatijohb| —) of the Y
eigenstates, and our circuit, acting on the initial state of the data, yields

al+)eU|¢g)+b|—)aU*|y). (112

Now, at the very end of a quantum computation, we will need to make a measurement to read out
the final result. LefA denote the observable that we measure. The expectation vahievidlf be

(A)=|al?(¢|UTAU| ) +|b|* (| UTATU| ), (113

whereAT denotes the transpose Af Without losing any computational power, we may assume
that the observabl@ is real (A=AT)—for example, it could be 1/4 Z) acting on one of our
encoded blocks. Then we get the same answer for the expectation valuasdf the ancilla had
been prepared ast) (or |—)); hence our fault-tolerant procedure successfully simulates the
desired quantum circuit.

Since there is just one ancilla block that must be used each time tiete is executed, this
block has to be swapped into the position where it is needed, a slowdown that is linear in the width
of the quantum circuit that is being simulated.

Thus we have described a way to perform fault-tolerant normalizer computation for planar
surface codes. We envision, then, a quantum computer consisting of a stack of planar sheets, with
a logical qubit residing in each sheet. Each logical sheet has associated with it an adjacent sheet of
ancilla qubits that are used to measure the check operators of the surface code; after each mea-
surement, these ancilla qubits are refreshed in place and then reused. The quantum information in
one sheet can be swapped with that in the neighboring sheet through the action of local gates. To
perform a logical CNOT between two different logical qubits in the stack, we first use swap gates
to pass the qubits through the intervening sheets of logical and ancilla qubits and bring them into
contact, then execute the transversal CNOT between the two layers, and then use swap gates to
return the logical qubits to their original positions. By inserting a round of error correction after
each swap or logical operation, we can execute a normalizer circuit reliably.

B. State purification and universal quantum computation

Now we need to consider how to complete our universal gate set by adding the Toffoli gate.
As Shor observed ,implementation of the gate can be reduced to the problem of preparing a
particular three-qubit state, which may be chosen to be

| an=2"32 D (—=1)29a),|b),[c)s; (114
a,b,ce{0,1}
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this state is the simultaneous eigenstate of three commuting symplectic opetgio)ys-X; and
its two cyclic permutations, wher& (Z) is the two-qubit conditional phase gate

A(2):

a,by—(—1)3%a,b). (115

Shor’s method for constructing this state involved the preparation and measurement of an unpro-
tectedn-qubit cat state, where is the block size of the code. But this method cannot be used for
a toric code on a large lattice, because the cat state is too highly vulnerable to error.

Fortunately, there is an alternative procedure for constructing the needed encoded state with
high fidelity—state purification Suppose that we have a supply of noisy copies of the gtatg..

We can carry out a purification protocol to distill from our initial supply of noisy states a smaller
number of states with much better fideff/° In this protocol, normalizer gates are applied to a

pair of noisy copies, and then one member of the pair is measured. Based on the outcome of the
measurement, the other state is either kept or discarded. If the initial ensemble of states approxi-
mates the ) .. with adequate fidelity, then, as purification proceeds, the fidelity of the remaining
ensemble converges rapidly toward one.

For this procedure to work, it is important that our initial states aretomhoisy—there is a
purification threshold. Therefore, to apply the purification method to toric codes, we will need to
build up the size of the toric block gradually, as in the procedure for encoding unknown states
described in Sec. VIII C. We start out by encoding ... on a small planar sheet of qubits, with
a fidelity below the purification threshold. Then we purify for a while to improve the fidelity, and
build on the lattice to increase the size of the code block. By building and purifying as many times
as necessary, we can construct a copy of the ancilla state that can be used to execute the Toffoli
gate with high fidelity.

The time needed to build up the encoded blocks is quadratic end the number of rounds
of purification needed is linear i, if we wish to reach a fidelity that is exponentially smalllin
Thus the overhead incurred in our implementation of the Toffoli gate is polynomial in the block
size.

We have now assembled all the elements of a fault-tolerant universal quantum computer based
on planar surface codes. The computer is a stack of logical qubits, and it contains “software
factories” where the ancilla states needed for execution of the Toffoli gate are prepared. Once
prepared, these states can be transported through swapping to the position in the stack where the
Toffoli gate is to be performed.

X. ALOCAL ALGORITHM IN FOUR DIMENSIONS

In our recovery procedure, we have distinguished between quantum and classical computa-
tion. Measurements are performed to collect syndrome information about errors that have accu-
mulated in the code block, and then a fast and reliable classical computer processes the measured
data to infer what recovery step is likely to remove most of the errors. Our procedures are fault
tolerant because the quantum computation needed to measure the syndrome is highly local. But
the classical computation is not so local—our algorithm for constructing the chain of minimal
weight requires as input the syndrome history of the entire code block.

It would be preferable to replace this procedure by one in which measurements and classical
processing are eliminated, and all of the processing is local quantum processing. Can we devise a
stable quantum memory based on topological coding such that rapid measurements of the syn-
drome are not necessary?

Heuristically, errors create pairs of defects in the code block, and trouble may arise if these
defects diffuse apart and annihilate other defects, eventually generating homologically nontrivial
defect world lines. In principle, we could protect the encoded quantum information effectively if
there is a strong attractive interaction between defects that prevents them from wandering apart. A
recovery procedure that simulates such interactions was discussed in Ref. 40. For that procedure,
an accuracy threshold can be established, but only if the interactions have arbitrarily long range, in
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which case the order-disorder transition in the code block is analogous to the Kosterlitz—Thouless
transition in a two-dimensional Coulomb gas. But to simulate these infinite-range interactions,
nonlocal processing is still required.

A similar problem confronts the propos&t“?to encode quantum information in a configu-
ration of widely separated nonabelian anyons. Errors create anyons in pairs, and the encoded
information is endangered if these “thermal anyons” diffuse among the anyons that encode the
protected quantum state. In principle, a long-range attractive interaction among anyons might
control the diffusion, but this interaction might also interfere with the exchanges of anyons needed
to process the encoded state. In any case, a simulation of the long-range dynamics involves
nonlocal processing.

We will now describe a procedure for recovery that, at least mathematically, requires no such
nonlocal processing of quantum or classical information. With this procedure, based on “locally
available” quantum information, we can infer a recovery step that is more likely to remove errors
than add new ones. Because the procedure is local we can dispense with measurement without
degrading its performance very much—measurements followed by quantum gates conditioned on
measurement outcomes can be replaced by unitary transformations acting on the data qubits and
on nearby ancilla qubits. But since we will still need a reservoir where we can dispose the entropy
introduced by random errors, we will continue to assume as usual that the ancilla qubits can be
regularly refreshed as needed.

Unfortunately, while our procedure is local in the mathematical sense that recovery operations
are conditioned on the state of a small number of “nearby” qubits, we do not know how to make
it physicallylocal in a space of fewer than four dimensions.

A. Repetition code in two dimensions

The principle underlying our local recovery procedure can be understood if we first consider
the simpler case of a repetition code. We can imagine that the code block is a periodically
identified one-dimensional lattice of binary spins, with two codewords corresponding to the con-
figurations with all spins up or all spins down. To diagnose errors, we can perform a local
syndrome measurement by detecting whether each pair of neighboring spins is aligned or anti-
aligned, thus finding the locations of defects where the spin orientation flips.

To recover we need to bring these defects together in pairs to annihilate. One way to do this
is to track the history of the defects for a while, assembling a reSarfithe measured syndrome,
and then find a minimum-weight chal®Y with the same boundary, in order to reconstruct hypo-
thetical world lines of the defects. But in that case the processing required to coristrisst
nonlocal.

The way to attain a local recovery procedure is to increase the dimensionality of the lattice. In
two dimensions, errors will generate droplets of flipped spg@s in Fig. 2], and the local
syndrome measurement will detect the boundary of the droplet. Thus the defects now form one-
dimensional closed loops, and our recovery step should be designed to reduce the total length of
such defects. Local dynamical rules can easily be devised that are more likely to shrink a loop than
stretch it, just as it is possible to endow strings with local dynarti@ssion and dissipatigrihat
allow the strings to relax. Thus, in equilibrium, very long loops will be quite rare. If the error rate
is small enough, then the droplets of flipped spins will typically remain small, and the encoded
information will be well protected.

That the two-dimensional version of the repetition code is more robust than the one-
dimensional version illustrates a central principle of statistical mechanics—that order is more
resistant to fluctuations in higher dimensions. The code block is described by an Ising spin model,
and while the one-dimensional Ising model is disordered at any nonzero temperature, the two-
dimensional Ising model remains ordered up to a nonvanishing critical temperature. From the
perspective of coding theory, the advantage of the two-dimensional version is that the syndrome is
highly redundant. If we check each pair of nearest-neighbor spins to see if they are aligned or
anti-aligned, we are collecting more information than is really needed to diagnose all the errors in
the block. Hence there is a constraint that must be satisfied by a valid syndrome, namely that the
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FIG. 21. Droplets of flipped qubits in the two-dimensional quantum repetition code. Qubits reside on plaquettes, and the
qubits that have been flipped are shaded. Thick links are locations of “defects” where the error syndrome is nontrivial
because neighboring qubits are anti-aligned. The defects form closed loops that enclose the droplets.

boundary of a droplet can never end; therefore errors in the syndrome can be detected. Of course,
physically, the stability of the ordered state of the Ising model in more than one dimension is the
reason that magnetic memories are robust in Nature.

B. Toric code in four dimensions

The defects detected by the measurement of the stabilizer operators of a two-dimensional toric
code are also pointlike objects, and error recovery is achieved by bringing the defects together to
annihilate. We can promote the annihilation by introducing an effective long-range interaction
between defects, but a more local alternative procedure is to increase the dimensionality of the
lattice.

So consider dour-dimensionaltoric code. Qubits are associated with each plaquette. With
each link is associated the six-qubit stabilizer operaies X acting on the six plaquettes that
contain the link, and with each cube is associated the six-qubit stabilizer opBgatat®® acting
on the six plaquettes contained in the cube. Thus the four-dimensional code maintains the duality

between phase and flip errors that we saw in two dimensions. The enZodeX operation is
constructed fronZ’s or X's acting on a homologically nontrivial surface of the lattice or dual
lattice, respectivelyZ errors on a connected open surface generate a closed loop of defects on the
boundary of the surface, arXl errors on a connected open surface of the dual lattice generate
defects on a set of cubes that form a closed loop on the dual lattice. As in the two-dimensional
case, there is a “hyperplanar” version of the code that can be defined on a four-dimensional region
with a boundary.

Now we want to devise a recovery procedure that will encourage the defect loops to shrink
and disappear. Assuming that syndrome measurements are employed, a possible procedure for
controlling phase errors can be described as follows: First, the stabilizer opgrasomeasured
at each link, and a record is stored of the outcome. We say that each linkKjwitk 1 is occupied
by a string, and each link witl;= 1 is unoccupied. We choose a set of nonoverlapping plaquettes
(with no link shared by two plaquettes in the)seind based on the syndrome for the links of that
plaquette, decide whether or not to flip the plaquélte applying aZ). If three or four of the
plaguette’s links are occupied by string, we always flip the plaquette. If zero or one link is
occupied, we never flip it. And if two links are occupied, we flip the plaguette with probability
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3. Then in the next time step, we again measure the syndrome, and decide whether to flip another
nonoverlapping set of plaquettes. And so on.

Naturally, we also measure the bit-flip syndrom&--on every cube—in each time step. The
procedure for correcting the bit-flip errors is identical, with the lattice replaced by the dual lattice,
andX replaced byZ.

Of course the measurement is not essential. A simple reversible computation can imprint the
number of string bits bounding a plaquette on ancilla qubits, and subsequent unitary gates con-
trolled by the ancilla can “decide” whether to flip the plaquette. Note that a CNOT that is applied
with probability 3, needed in the event that the plaquette has two string bits on its boundary, can
be realized by a Toffoli gate, where one of the control qubits is a member of a Bell pair so that the
control takes the value 1 with probabilify

This recovery procedure has the property that, if it is perfectly executed and no further errors
occur during its execution, it will never increase the total length of string on the lattice, but it will
sometimes reduce the length. Indeed, if it is applied repeatedly while no further errors occur, it
will eventually eliminate every string. We have chosen to make the procedure nondeterministic in
the case where there are two string bits on a plaquette, because otherwise the procedure would
have closed orbits—some string configurations would oscillate indefinitely rather than continuing
to shrink and annihilate. With the nondeterministic procedure, a steady state can be attained only
when all the strings have disappeared.

Actually, following the ideas of Toorf it is possible to devisanisotropic deterministic
procedures that also are guaranteed to remove all strings. These procedures, in fact, remove the
strings more efficiently than our nondeterministic one, but are a little more difficult to analyze.

Of course, the recovery procedure will not really be executed flawlessly, and further errors
will continue to accumulate. Still, as error recovery is performed many times, an equilibrium will
eventually be attained in which string length is being removed by recovery as often as it is being
created by new errors. If the error rates are small enough, the equilibrium population of long string
loops will be highly suppressed, so that the encoded quantum information will be well protected.

Eventually, say at the conclusion of a computation, we will want to measure encoded qubits.
This measurement procedure does have a nonlocal compeihe encoded information is
topologica), and for this purpose only we will assume that a reliable classical computer is avail-

able to help with the interpretation of the measured data. To measure the logical ogersayy
we first measure every qubit in the code block. Then we apply a classical parity check, evaluating
Z. for each cube of the lattice, thereby generating a configuration of closed defect loops on the
dual lattice. To complete the measurement, we first eliminate the defects by applying flips to a set
of plaquettes bounded by each loop. Then we can evaluate the prodd agsociated with a
homologically nontrivial surface to find the value of

Of course, when we eliminate the defects, we need to make sure that we choose correctly
among the homologically inequivalent surfaces bounded by the observed strings. One way to do
so, which is unlikely to fail when qubit and measurement error probabilities are small, is to invoke
the relaxation algorithm formulated above to the classical measurement outcome. Since our clas-
sical computer is reliable, the algorithm eventually removes all strings, and then the vdleamf
be determined.

C. Accuracy threshold

To evaluate the efficacy of the local recovery method, we need to find the equilibrium distri-
bution of defects. This equilibrium configuration is not so easily characterized, but it will suffice
to analyze a less effective algorithm that does attain a simple steady state—the heat bath algo-
rithm. To formulate the heat bath algorithm, suppose that strings carry an energy per lattice unit
length that we may normalize to one, and suppose that each plaquette is in contact with a thermal
reservoir at inverse temperatuyge In each time step, plaquettes are updated, with the change in
the string length bounding a plagquette governed by the Boltzmann probability distribution. Thus
survival or creation of a length-4 loop is suppressed by the factor
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Pro0—4) Proh4—4)

_ Y
Prof0—0) Proh4—0) ¢ (116

Similarly, the probability of a plaquette flip when the length of bounding string is 3 or 1 satisfies

Pro1—3) B Pro(3—3)

Prof1 1)~ Prok3 1) ¢ - (117

In the case of a plaquette with two occupied links, we again perform the flip with probability
before, this ensures ergodicity—any initial configuration has some nonvanishing probability of
reaching any final configuration.

Damage to encoded information arises from string “world sheets” that are homologically
nontrivial. At low temperature, string loops are dilute and failure is unlikely, but at a critical
temperature the strings “condense,” and the encoded data are no longer well protected. The
critical temperature is determined by a balance between Boltzmann fecfbrsuppressing a
string of lengthl and the string entropy. The abundance of self-avoiding closed loops of length
behaves like?*

NS ~Pa()(pa)',  pa~6.77, (118

in d=4 dimensions, wher@,(l) is a polynomial. Thus, large loops are rare when the sum
2 e =3 Pyl) (mae™”) (119

converges, and the system is surely orderecefdt< ,u;l. Thus the critical inverse temperature
B satisfies

e Fe=(pug) . (120

Now, our local recovery procedure will not be precisely a heat bath algorithm. But like the
heat bath algorithm it is more likely to destroy string than create it, and we can bound its
performance by assigning to it an effective temperature. For example, if no new errors arise and
the algorithm is perfectly executed, it will with probability one remove a length-4 string loop
bounding a plaquette. In practice, though, the plaquette may not flip when the recovery computa-
tion is performed, either because of a fault during its execution, or because other neighboring
plaguettes have flipped in the meantime. Let us denotebthe probability that a plaquette,
occupied by four string bits at the end of the last recovery step, does not in fact flip during the
current step. Similarly, letj; denote the probability that a plaquette with three string bits fails to
flip, and letq,, qo denote the probabilities that plaguettes containing one or zero stringdits
flip. These quantities can all be calculated, given the quantum circuit for recovery and a stochastic
error model.

Now we can find a positive quantity such that

Jo,ds<0a/(1+0),

91,9s=<+a/(1+q). (120)

Comparing to Eqs(116) and(117), we see that our recovery algorithm is at least as effective as
a heat bath algorithm with the equivalent temperature

e *=q; (122
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in equilibrium strings of length are therefore suppressed by a factor no larger thdfi=q'’*.
From our estimate of the critical temperature EtR0), we then obtain a lower bound on the
critical value ofq:

Qc= ()~ 4~4.8x1074, (123

This quantum system with local interactions has an accuracy threshold.

A local procedure that controls the errors in a quantum memory is welcome, but it is disheart-
ening that four spatial dimensions are required. Of course, the four-dimensional code block can be
projected tod<4 dimensions, but then interactions among four-dimensional neighbors become
interactions between qubits that are distant®e 9’ apart, wheré. is the linear size of the lattice.

In a three-dimensional version of the toric code, we can place qubits on plaquettes, and associate
check operators with links and cubes. Thus, phase error defects are strings and bit-flip error
defects are point particles, or vice versa. Then we can recover Idgdtlyout measurement or
classical computatigrfrom either the phase errors or the bit-flip errors, but not both.

In fewer than four spatial dimensions, how might we devise an intrinsically stable quantum
memory, analogous to a magnetic domain with long-range order that encodes a robust classical
bit? Perhaps we can build a two-dimensional material with a topologically degenerate ground
state, such that errors create point defects that have infinite-range attractive interactions. That
system’s quasi-long-range order at nonzero temperature could stabilize an arbitrary coherent su-
perposition of ground states.

Xl. CONCLUSIONS

In foreseeable quantum computers, the quantum gates that can be executed with good fidelity
are likely to belocal gates—only interactions between qubits that are close to one another will be
accurately controllable. Therefore, it is important to contemplate the capabilities of large-scale
quantum computers in which all gates are local in three-dimensional space. It is also reasonable to
imagine that future quantum computers will include some kind of integrated classical processors,
and that the classical processors will be much more accurate and much faster than the quantum
processors.

Such considerations have led us to investigate the efficacy of quantum error correction in a
computational model in which all quantum gates are local, and in which classical computations of
polynomial size can be done instantaneously and with perfect accuracy. We have also assumed that
the measurement of a qubit can be done as quickly as the execution of a quantum gate.

These conditions are ideally suited for the use of topological quantum error-correcting codes,
such that all quantum computations needed to extract an error syndrome have excellent locality
properties. Indeed, we have shown that if the two-dimensional surface codes introduced in Refs. 4
and 5 are used, then an accuracy threshold for quantum storage can be established, and we have
estimated its numerical value. This accuracy threshold can be interpreted as a critical point of a
three-dimensional lattice gauge theory with quenched randomness, where the third dimension
represents time. There is also an accuracy threshold for universal quantum computation, but we
have not calculated it carefully.

Topological codes provide a compelling framework for controlling errors in a quantum system
via local quantum processing; for this reason, we expect these codes to figure prominently in the
future evolution of quantum technologies. In any case, our analysis amply illustrates that prin-
ciples from statistical physics and topology can be fruitfully applied to the daunting task of
accurately manipulating intricate quantum states.
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