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Controlling Quantum Information

by

Andrew J. Landahl

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Quantum information science explores ways in which quantum physical laws can

be harnessed to control the acquisition, transmission, protection, and processing

of information. This field has seen explosive growth in the past several years from

progress on both theoretical and experimental fronts. Essential to this endeavor

are methods for controlling quantum information.

In this thesis, I present three new approaches for controlling quantum informa-

tion. First, I present a new protocol for continuously protecting unknown quantum

states from noise. This protocol combines and expands ideas from the theories of

quantum error correction and quantum feedback control. The result can outper-

form either approach by itself. I generalize this protocol to all known quantum

stabilizer codes, and study its application to the three-qubit repetition code in

detail via Monte Carlo simulations.

Next, I present several new protocols for controlling quantum information that

are fault-tolerant. These protocols require only local quantum processing due to

the topological properties of the quantum error correcting codes upon which they

are built. I show that each protocol’s fault-dependence behavior exhibits an order-

disorder phase transition when mapped onto an associated statistical-mechanical

model. I review the critical error rates of these protocols found by numerical study

of the associated models, and I present new analytic bounds for them using a self-

avoiding random walk argument. Moreover, I discuss fault-tolerant procedures for
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encoding, error-correction, computing, and decoding quantum information using

these protocols, and calculate the accuracy threshold of fault-tolerant quantum

memory for protocols using them.

I end by presenting a new class of quantum algorithms that solve combinatorial

optimization problems solely by measurement. I compute the running times of

these algorithms by establishing an explicit dynamical model for the measurement

process. This model, the digitized version of von Neumann’s measurement model,

is recognized as Kitaev’s phase estimation algorithm. I show that the running

times of these algorithms are closely related to the running times of adiabatic

quantum algorithms. Finally, I present a two-measurement algorithm that achieves

a quadratic speedup for Grover’s unstructured search problem.
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Preface

In the spring of 1996, I visited Caltech as a prospective graduate student eager to

pursue research in the nascent field of quantum computing. I was drawn to Caltech

by the recent experimental demonstration of quantum logic by Jeff Kimble’s group.

Here was a place where ground-breaking research was being done! Although I

leaned more towards theory, I was willing to convert to an experimentalist if it

meant being involved in this exciting new field. What a surprise it was to meet

John Preskill that fateful week—a theoretical physicist at Caltech interested in

quantum computation. John taught me about quantum error correction through

Shor’s code and I shared with him what limited knowledge I had about compression

and Huffman coding. I realized that I had found the best of both worlds—a place

where I could pursue theoretical quantum computing research and be close to

quantum computing experiments at the same time.

Although I was familiar with scattered quantum computing results from the

background research I undertook for my undergraduate Honors thesis, I learned

a thousand-fold more from serving as the teaching assistant for John Preskill’s

new class on quantum computation and quantum information in 1997–98 and its

team-taught version with Alexei Kitaev in 1998–99. It was a bit daunting to serve

as TA for a class that had never been taught before, but I’m glad that I accepted

the challenge—this Ph.D. thesis is built upon the material I learned there.

In September of 1997, in search of a research project with some real meat

to it, John suggested studying ways to develop Kitaev’s toric codes into a full-

fledged architecture for fault-tolerant quantum computing. That sounded like

a straightforward problem, or so I thought. Little did I know that pursuing it

would result in a four-year collaborative effort incorporating concepts from so

many different fields! The results of this investigation and its associated grand

tour through various problems in mathematics, physics, and computer science, are

reported in Chapter 4 and in [29].

Having learned so much the last time I was TA for a class I had never taken
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before, I accepted in 1999 when Jeff Kimble asked me to TA his class on quantum

optics. Once again, I learned much more than I think I would have if I was just

taking the class. Perhaps the most important lesson I learned was the importance

of doing theoretical science that is useful to experimentalists. That principle is

reflected in the first chapter of this thesis, where I address the disconnect between

the discrete-time language frequently used in quantum information theory and the

continuous-time language frequently used in quantum optics.

After finishing the four-year project on fault-tolerance, I was eager to initiate a

research project of my own, and hopefully one of shorter duration. I settled on the

problem finding common ground between quantum control theory and quantum er-

ror correction. From what I had heard from Hideo Mabuchi and Andrew Doherty,

both of these fields seemed to have similar goals, but radically different approaches.

Reading background articles in both fields only reinforced that notion—the scien-

tists working in the two fields formed essentially mutually exclusive sets. The

specific problem I decided to address was one that had been gnawing at me for

some time: How well does quantum error correction work when it is restricted to

use (experimentally realistic) continuous and weak controls? Charlene Ahn and

I taught ourselves about continuous measurement theory and quantum feedback

theory from the background literature. We learned even more through many sub-

sequent discussions with Andrew Doherty. I proposed a model for continuous-time

quantum error correction that incorporated these new ideas, and Andrew, Char-

lene, and I explored the model in detail with Monte Carlo simulations as described

in Chapter 3 and in [5]. Ultimately this project took a year to complete, but it

was very rewarding. More significantly, it started me down the path of exploring

problems lying in the intersection of quantum information theory and quantum

control theory.

During a visit to MIT in 2002, I had the opportunity to present Eddie Farhi

and Andrew Childs with an idea I had relating adiabatic algorithms and mea-

surement. Because I had been thinking about continuous measurements from my

previous research, I wondered if continuous measurements could be used elsewhere
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in quantum information science, and in particular whether they could be used to

mock up adiabatic evolution through the Zeno effect. I was glad to discover that

Eddie and Andrew were excited by the idea, and they invited Sam Gutmann and

Jeffrey Goldstone to a subsequent meeting where we hashed out in more detail how

quantum measurement algorithms should work. The five of us and Enrico Deotto

subsequently bounced many e-mails back and forth, which led to the material

presented in Chapter 5 and in [22]. I am certain that this project wouldn’t have

developed as quickly as it did if it weren’t for the wealth of expertise in quantum

adiabatic algorithms that my MIT collaborators brought to this project.

As you can see, my graduate research experience has approximated a miniature

random walk through quantum information science, but if a common thread is to be

found, it would be that everything I have worked on is concerned with controlling

quantum information, either to make it robust, to make it realistic, or to make it

compute. I think that this pragmatic approach is the right one to take to make

meaningful progress. For far too long, theoretical quantum mechanics research

has been confined to philosophical questions and progress has been difficult to

measure. If we challenge ourselves to explore the limits of quantum mechanics and

information science through quantum information engineering problems, then we

can learn meaningful things about quantum information science itself.

May, 2002 Andrew J. Landahl
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Chapter 1

Introduction

1.1 Quantum information science

Just exactly what is quantum information, and why would someone want to control

it? As a first step in answering this question, it is worthwhile to contemplate what

is meant by information. Loosely speaking, one has more information when one

is more certain about which one of a number of mutually exclusive alternatives is

true. Since probabilities also measure degrees of certainty, it’s natural to expect

that probability and information are related. It turns out that they are famously

related through the notion of entropy, a quantity that Boltzmann was so proud to

have invented that he had it engraved on his tombstone.

Okay, so information measures certainty. But what does information have to

do with quantum mechanics? Quite a bit, actually. The central idea of quantum

mechanics is that maximal information and complete information about a physical

system are not the same. This idea shows up in fascinating quantum effects that

defy common sense intuition. For example, when one tries to increase one’s maxi-

mal information about a physical system, a disturbance is created so that some of

the previous information one had disappears [43]. Even more strangely, one can

perform operations on one system that change the information one has about a

causally separated system [36, 13, 7]. These effects, and others like them, lie at

the heart of the growing field of quantum information science.
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Computation Cryptography

CorrectionCompression

Quantum

Control Theory

Communication

Figure 1.1: The five C’s of quantum information science: communication, com-

pression, computation, correction, and cryptography.

Quantum information science currently consists of five major subdisciplines:

quantum communication theory, quantum compression theory, quantum computer

science, quantum error correction, and quantum cryptography. Each subdiscipline

is defined by a particular quantum information task. Often one is concerned with

several of these tasks in conjunction. For example, one may wish to process some

quantum data, protect it from noise, compress it, and then transmit it securely

to trusted parties. In order to understand the extent to which these tasks may

be accomplished, it is important to have a theory detailing the limitations and

capabilities for establishing control of quantum systems. In other words, “quan-

tum control theory” anchors these subdisciplines, as depicted in Fig. 1.1. I use

quotes because I mean the term to represent the full array of quantum control

possibilities discovered by quantum information science, not just the narrow set of

mathematical techniques generalized from classical control theory.

Coming back to the original question, then, I would respond by defining quan-
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tum information as a quantitative measure of the certainty one has about a quan-

tum system, and I would suggest that it might be desirable to control this informa-

tion for various technological applications including communication, compression,

computation, correction, and cryptography. The goal of this thesis is to explore

some new ways that quantum mechanics can be harnessed to control quantum

information.

1.2 Summary by chapter

The organization of this thesis is as follows. In Chapter 2, I review an eclectic set

of background material in quantum information science that will be useful later

in the thesis. The material there can be found elsewhere; I include it as a conve-

nience for the reader. In particular, I review the rules of quantum mechanics when

both maximal and non-maximal information is available, and list some important

properties and equivalent representations of density matrices and quantum opera-

tions. I also review perturbation theory, the adiabatic theorem, and the adiabatic

approximation—well-worn tools of quantum mechanics that I will make use of in

subsequent chapters.

Chapter 3 is the beginning of new research results. I begin by reviewing contin-

uous measurement theory, quantum feedback control, and quantum error correc-

tion. I then propose a new method for continuously correcting errors in unknown

quantum states that uses ideas from these approaches. I present Monte Carlo

simulation results of an analysis of this method applied to a three-qubit system,

and show how this method can outperform rate-limited quantum error correction

in that system. The results of this research are also reported in [5].

In Chapter 4, I explore a new method for achieving fault-tolerance in quantum

systems that is built upon topological quantum error correcting codes. I review

these codes and present a list of architectural desiderata conducive to fault-tolerant

quantum design. I reflect on how such a design may be adapted to be physically

fault-tolerant, and propose a correction algorithm for these codes. I show that the
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fault-tolerance behavior of the errors and correction algorithm in this code can

be mapped onto an order-disorder transition in a statistical model known as the

random-bond Ising model. I discuss order parameters in this model and its gen-

eralization to three dimensions, and use the critical behavior of these statistical

mechanical models to numerically estimate the accuracy threshold for quantum

computation when fault-tolerant design principles haven’t been incorporated. I

then arrive at an analytical bound on this threshold from a combinatorial count-

ing argument based on self-avoiding polygons. I explore the effects of finite time

intervals on the correction algorithm, and adapt it accordingly. I argue that the

threshold for fault-tolerant quantum computation should be close to the threshold

for fault-tolerant quantum storage using these codes, and proceed to analyze the

threshold for fault-tolerant quantum storage by explicit analysis of fault-tolerant

circuits used in the recovery algorithm. I present techniques for robustly encoding

unknown quantum states via a local tesselation-increasing algorithm, and provide

explicit constructions for a universal set of gates for fault-tolerant quantum com-

putation, although I do not analyze the thresholds for these protocols. I conclude

with a discussion of a generalization of this method to topological codes in four

spatial dimensions, and calculate a threshold for storage using these codes which

uses entirely local processing, both quantum and classical. The results of this

research are also reported in [29].

Finally, in Chapter 5, I present a new class of quantum algorithms that can

solve combinatorial search problems using only a sequence of measurements. I

review adiabatic algorithms and the Zeno effect, and present a dynamical model for

measurement originally proposed by von Neumann [103] and digitized by Kitaev

[59]. I analyze the running time of a measurement algorithm which simulates

an adiabatic algorithm by appealing to this dynamical model, and show that it

is polynomially related to running time of the adiabatic algorithm it simulates.

I then study the specific problem of unstructured quantum search proposed by

Grover [53], and show that the quantum measurement algorithm may be adapted

to the special properties of this problem so that it saturates the bound for the
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fastest possible quantum algorithm solving the problem, namely one which has

a quadratic speedup in the number of oracle calls relative to the best possible

classical algorithm. The results of this research are also reported in [22].
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Chapter 2

Background

The most incomprehensible thing about the universe is that it is com-

prehensible.

—A. Einstein [35]

Experimental science places sharp constraints on the mathematical objects

one can use to consistently represent one’s knowledge of Nature. In this chapter,

I present these constraints as a set of representational rules that every physical

theory consistent with these experiments must obey.

I begin by first stating the rules for when maximal information is available

(quantum mechanics) and then generalize to the case when non-maximal infor-

mation is available (quantum information mechanics). I elaborate in detail some

of the properties of representations for states and dynamics. (Later in the thesis,

notably in Chapters 3 and 5, I elaborate the properties of the representation for

measurement.) Finally, I review some useful mathematical techniques for describ-

ing quantum mechanics in perturbative and adiabatic approximations.
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2.1 Quantum mechanics

Maxwell writes [75]

Physical science is that department of knowledge which relates to the

order of nature, or, in other words, to the regular succession of events.

Evidently, then, a physical theory needs to represent “events,” their “regular

succession,” and a means for obtaining “knowledge” about them. In more modern

language, we would say that a physical theory needs to represent states, dynam-

ics, and measurements. Moreover, the possibility of comparing events suggests a

physical theory should also represent subsystems of a larger system.

Quantum mechanics is not a physical theory in and of itself. Rather, it is

a set of rules for how the concepts of a physical theory should be represented.

The rules are designed to ensure that physical theories constructed within them

are consistent with the results of prior experiments. Sometimes called axioms or

postulates, I prefer to simply call them quantum rules because, unlike axioms or

postulates, they can be challenged by experiment.

2.1.1 The rules of quantum mechanics

Representation Rule 2.1.1 (States). The state of a physical system is repre-

sented by a ray ψ in a Hilbert space H.

Representation Rule 2.1.2 (Dynamics). The time-evolution of a physical sys-

tem is represented by a one-parameter unitary group {U(t)}t∈R in the space L(H)

of linear operators on H. The self-adjoint operator H(t) generating U(t) is called

the Hamiltonian of the system.

Representation Rule 2.1.3 (Measurement). A measurement of a state ψ is

represented by the projection-valued measure (PVM) P : Πi 7→ ψ†Πiψ on H, where
∑

iΠi = 11 and ΠiΠj = δij. The measure is perceived as probability.
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Representation Rule 2.1.4 (Subsystems). The representation of states, dy-

namics, and measurements on subsystems are combined via the tensor product (⊗)
to create a representation of the corresponding objects on the combined system.

Rather than working with the ray representation of states, I will often use

Dirac notation instead:

Definition 2.1.1 (Dirac notation). In Dirac notation, a ray ψ ∈ H is repre-

sented by a unit-norm vector in the equivalence class of ψ called the ket for ψ

in H, denoted by |ψ〉. The multiplicative phase freedom eiϕ (where ϕ is real) in

the ket representation of ψ is unphysical; only the ray is physical. (However, the

relative phase and amplitude of rays is physical.) The linear functional dual to

this ket is called a bra and is denoted by 〈ψ|. The inner product of kets |ψ〉 and
|ϕ〉 is denoted by 〈ψ |ϕ〉, so that the unit-norm condition for |ψ〉 reads 〈ψ |ψ〉= 1.

When I want to emphasize the irrelevance of the overall phase in Dirac notation,

I will represent ψ by the rank-1 projector |ψ〉〈ψ| instead. To simplify notation,

I will frequently concatenate kets, operators, and their Hilbert-space labels to

denote the tensor product. For example, I might express UA ⊗ UB(|0〉A ⊗ |1〉B) as
UA ⊗ UB |0〉A |1〉B or UA ⊗ UB |01〉AB or even UAUB |01〉AB.

2.1.2 General remarks on quantum mechanics

In Chapters 3 and 5, I will re-examine these rules and their ramifications as I

develop new techniques for solving quantum information processing problems. In-

stead of waiting until then to comment on these rules, I would like to make some

general remarks regarding them before proceeding further.

Remark 2.1.1 (On interpretations). Addressing just what exactly probability

means is the subject of interpretations of quantum mechanics. As far as I can tell,

progress in this metaphysical endeavor is measured only by aesthetics. I’ll lay my

cards on the table and confess that I subscribe to the Bayesian interpretation1 of

1I reserve the right to change my metaphysics in the future!
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quantum mechanics; namely, I believe that probabilities represent subjective states

of knowledge (or belief) about the outcomes of future events, which are updated

according to Bayes’ rule. Mine is certainly not the only view! For a lucid descrip-

tion of the Bayesian viewpoint as well as a comparison to other epistemological

viewpoints, see the well-written (but unabashedly biased) samizdat by Caves on

his home page [21].

Remark 2.1.2 (On pictures). Suppose all states and observables in quantum

mechanics were rotated by some unitary operator V , i.e., suppose ψ → V ψ and

Π → VΠV †. The predictions of this new theory are the same as the old one,

because ψ†V †VΠV †V ψ = ψ†Πψ. Hence there is a freedom in what objects one

uses to represent the states and measurements of a physical theory. Each choice of

the unitary V corresponds to what is called a picture of quantum mechanics. The

reason for moving from one picture to another is to make the dynamics appear

simpler.

In this thesis, I will mostly work in the Schrödinger picture, where V = 11.

The infinitesimal form of dynamics in this picture is the well-known Schrödinger

equation:
d

dt
|ψ(t)〉= −i

}
H(t) |ψ(t)〉.

When discussing quantum error correction in Chapters 3 and 4, I will sometimes

switch pictures and work in the Heisenberg picture, where V = U , the evolution

operator. The infinitesimal form of dynamics in this picture is the Heisenberg

equation:
d

dt
A(t) =

−i
}
[H(t), A(t)],

where A(t) is the Hermitian operator (observable) corresponding to the measure-

ment being acted upon.

Remark 2.1.3 (On Planck’s constant). The origin of } in each of the pictures

above comes from experiment and appears to be universal, although it is not ex-

plicitly included in the quantum rules. I find its appearance the most mysterious
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aspect of quantum mechanics (even more than entanglement). Is } a phenomeno-

logical parameter? Is it fundamental? Computable? Information-bearing? No-

body really knows. Perhaps scientists of the future will learn how } came to take

on the value that it has. In this thesis, I’ll take the pragmatic view and simply

accept that it has a certain value. To make it even more ignorable, I’ll set } = 1;

in other words, I’ll work in units which are set by the value of }.

Remark 2.1.4 (On the need for measurement). It is natural to ask whether

or not one can derive the quantum measurement rule 2.1.3 from the other three

rules. On the one hand, it seems it ought to be possible because the measuring

system, the measured system, and their interactive dynamics can be described by

the other quantum rules. On the other hand, the quantum measurement rule does

not explicitly refer to time, whereas the dynamics rule does. This problem comes

up in Chapter 5, where it will be necessary to use a simulation of the measurement

process by unitary dynamics in order to calculate the computational complexity

of measurement.

Remark 2.1.5 (On the need for subsystems). As with the measurement rule,

it is unclear whether or not the subsystem rule is fundamental or derivable. In

particular, it is known that dynamics can impose subsystem structure through

superselection rules. Some have speculated that all subsystem structure is estab-

lished in this way. Whether or not this is the case remains an open, and perhaps

unresolvable, question.

Remark 2.1.6 (On the invertibility of the rules). It is important to recognize

that the quantum rules can only be used in the forward direction. Every physical

object may be represented by one of these mathematical objects, but not every such

mathematical object can be realized as a corresponding physical object. Physical

science and computer science place additional restrictions on which objects are

physically realizable. For example, causality and computability place restrictions
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on physically realizable measurements as shown in [12, 11] and [78]. Similarly the

observed statistics of particles with spin (famously) place symmetry restrictions

on physically realizable quantum states. In fact, the rules themselves were arrived

at by experiments demonstrating that the mathematical objects used to represent

physical objects had to be of the form specified by the rules.

2.2 Quantum information mechanics

The rules of quantum mechanics are useful when one has maximal information

about a quantum system. When one does not, rays, unitary groups, PVMs, and

tensor products are (in general) no longer the correct mathematical objects to use

to represent Nature. Instead, one must use density matrices, quantum operations,

positive operator-valued measures (POVMs), and direct sums—notions I elaborate

in this section via quantum information rules analogous the quantum rules of the

preceding section.

What is the source of the non-maximality of information? There is no unique

answer. In quantum statistical mechanics, the source is a coarse-graining of mi-

croscopic degrees of freedom. In open quantum systems mechanics, the answer is

uncontrollable couplings to an external environment. In quantum communication

theory the answer is a noisy quantum channel. In each of these scenarios, there

is an uncontrollable/unobservable part of the quantum system that is deemed

responsible for the lack of maximal information. The idea that there exists a max-

imal information description on a larger system is the basis for the purification

principle2 , which I will discuss in Section 2.3.

Without further ado, here are the quantum information rules:

2.2.1 The rules of quantum information mechanics

Representation Rule 2.2.1 (States). The state of a physical system is repre-

sented by a Hermitian, unit-trace, positive operator ρ on a Hilbert space H.

2This principle is sometimes colorfully referred to as the “Church of the larger Hilbert space”.
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Representation Rule 2.2.2 (Dynamics). The time-evolution of a physical sys-

tem is represented by a linear hermiticity-preserving, trace-preserving, completely

positive map on L(H).

Representation Rule 2.2.3 (Measurement). A measurement of a state ρ is

represented by a positive operator-valued measure (POVM) on L(H).

Representation Rule 2.2.4 (Subsystems). Let {Aij} be a collection of math-

ematical objects that represent states, dynamics, or measurements on subsystems

{Sij}. Then the representation of the object they form on the combined system is

a direct sum (⊕) over the tensor product (⊗) of the corresponding objects on the

subsystems:
⊕

i

⊗

j Aij.

2.3 The density matrix

In this section, I motivate the density matrix as a way to represent an ensemble

of quantum states. I then present some well-known theorems regarding density

matrices. The proofs of these theorems can be found in many places; for proofs

with a quantum information-theoretic flair, see [80, 86, 63].

Consider a probability distribution {p1 . . . , pi, . . .} over a finite set of states

given by {|ψ〉, . . . , |ψi〉, . . .}. That is, consider the ensemble E = {pi, |ψi〉}. Suppose
we draw a state from this ensemble and measure it. The probability that it will

be observed in the subspaceM is

p(E ,M) =
∑

i

pi p
(

|ψi〉,M
)

(2.1)

=
∑

i

pi 〈ψi|ΠM |ψi〉 (2.2)

=
∑

i

pi tr
(

ΠM |ψi〉〈ψi|
)

(2.3)

= trΠMρ, (2.4)

where ρ =
∑

i pi |ψi〉〈ψi| is called the density matrix or density operator for E .



Chapter 2: Background 13

Because the probabilities and associated measurement outcomes are encoded in ρ,

it makes sense to define ρ as the quantum state of the ensemble E where the rule

(2.4) defines the probability of measurement outcomes.

A useful way to classify density matrices is in terms of their purity :

Definition 2.3.1 (Purity). The purity of a density matrix ρ is defined as P (ρ) =

tr ρ2. A density matrix is said to be a pure state if P (ρ) = 1; otherwise it is said

to be a mixed state.

It is straightforward to verify that pure states are exactly the rank-1 density ma-

trices, i.e., ρ is a pure state iff ρ = |ψ〉〈ψ| for some |ψ〉.
When does an operator represent the quantum state of an ensemble? In other

words, when is an operator a density operator? The answer is given by the following

theorem:

Theorem 2.3.1 (Axiomatic characterization). An operator ρ on the Hilbert

space H is a density matrix iff it is a positive unit-trace Hermitian operator, i.e.,

iff

i) ∀ |ψ〉 ∈ H, 〈ψ| ρ |ψ〉 ≥ 0; ii) tr ρ = 1; iii) ρ = ρ†.

This theorem provides an equivalent definition of density matrices, which is

why it is given the status of a representational rule in Section 2.2.1. This theorem

also has two useful corollaries which characterize the space of density matrices:

Corollary 2.3.1.1 (Convexity). The density matrices on the Hilbert space H
form a convex subset of the Hermitian operators on H.

Corollary 2.3.1.2 (Extremal points). The extremal points of the set of density

matrices are the pure states.

It is tempting to think that further generalization is achieved by considering

ensembles of mixed states (ensembles of ensembles). However, any ensemble of

mixed states E = {pi, ρi}, where ρi =
∑

k p
(i)
k |ψ

(i)
k 〉〈ψ

(i)
k |, is equivalent to the en-

semble of pure states E ′ = {pip
(i)
k , |ψ

(i)
k 〉}, where some states in the ensemble E ′ may

be repeated. Hence it suffices to restrict attention to ensembles of pure states.
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A surprising observation is that the mapping g : E → ρ is not injective, i.e.,

different ensembles can give rise to the same state ρ. Apparently some information

about the preparation of a state has no physical consequence. The following the-

orem cements this idea by characterizing the freedom in choice of ensemble that

one may ascribe to a density operator:

Theorem 2.3.2 (Ensemble freedom). The ensembles E = {pi, |ψi〉} and E =

{qi, |ϕi〉} give rise to the same density matrix ρ iff
√
pi |ψi〉 =

∑

j uij
√
qj |ϕj〉 for

some unitary matrix with entries uij.

A recurring theme in quantum information mechanics is the purification prin-

ciple alluded to earlier. To define the principle rigorously, it is necessary to first

define the partial trace:

Definition 2.3.2 (Partial trace). Let ρAB be a density matrix on L(HA⊗HB).

The partial trace trB : L(HA⊗HB)→ L(HA) of ρAB over the space HB is defined

by the linear extension of the map

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2| tr |b1〉〈b2| , (2.5)

where |a1〉, |a2〉 ∈ HA and |b1〉, |b2〉 ∈ HB. The output of the partial trace, ρA, is

called the reduced density matrix on HA.

Using the partial trace, the purification principle may be formulated as follows:

Theorem 2.3.3 (Purification principle). Let ρA be a density matrix on HA.

Then ρA = trB |ψ〉AB AB〈ψ| for some pure state |ψ〉AB ∈ HA ⊗HB, where HB is

a Hilbert space having dimHB ≤ dimHA. The ket |ψ〉AB is called a purification

of ρA.

As might be expected for an extension to a larger Hilbert space, the purification

of a density matrix ρ is not unique. The following theorem characterizes the

freedom in purifications:
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Theorem 2.3.4 (Purification freedom). Let |ψ〉AB, |ϕ〉AB ∈ HA ⊗HB be pu-

rifications of ρA ∈ L(HA). Then there exists a unitary operator U ∈ L(H) such

that |ψ〉= (11⊗ U) |ϕ〉.

This purification freedom also allows pure bipartite quantum states to be ex-

pressed in a standard form called the Schmidt decomposition, as the following

corollary shows:

Corollary 2.3.4.1 (Schmidt decomposition). Let |ψ〉AB ∈ HA ⊗ HB. Then

there exist orthonormal sets of vectors {|i〉A} ⊂ HA and {|i〉B} ⊂ HB and nonneg-

ative numbers pi summing to 1 such that |ψ〉AB =
∑

i

√
pi |i〉A |i〉B. The numbers

√
pi are called the Schmidt coefficients of |ψ〉AB.

The real power behind the Schmidt decomposition is that the Schmidt coeffi-

cients,
√
pi are, by construction, invariant under local unitary operations on each

subsystem—such operations merely rotate the orthonormal bases of each subsys-

tem to other orthonormal bases of those subsystems. A quantity that is invariant

under all such transformations is its Schmidt number :

Definition 2.3.3 (Schmidt number). The Schmidt number of a bipartite pure

state |ψ〉AB is the number of nonzero Schmidt coefficients in its Schmidt decom-

position.

The Schmidt number has many applications in the study of entanglement, a

complete discussion of which is beyond the scope of this thesis.

In the special case of a density matrix on a two-dimensional Hilbert space, the

density matrix can be represented by a three-dimensional Bloch vector. This rep-

resentation is called the Bloch sphere representation (although it probably should

be called the Bloch ball representation) for the density matrix:

Theorem 2.3.5 (Bloch sphere representation). A density matrix ρ ∈ B,
where B is the Hilbert space of a qubit, can be uniquely expressed as

ρ =
1

2
(11+ p · σ) , (2.6)



Chapter 2: Background 16

where p ∈ R
3 satisfies ‖p‖ ≤ 1 and σ = (σ1, σ2, σ3), where the σi are the (non-

identity) Pauli matrices. The vector p ∈ R
3 is called the Bloch vector for ρ, the

space spanned by Bloch vectors is called the Bloch ball, the boundary of which is

called the Bloch sphere.

One of the most useful properties of the Bloch ball representation is that the

boundary of the Bloch ball, the Bloch sphere, corresponds precisely to the extremal

points of density matrices, the pure states. The boundary points of a generic space

are not necessarily extremal, as can be seen by the example of a triangle, but for

qubit density matrices (and, as it turns out, only for qubit density matrices),

boundary points and extremal points are one and the same.

As a parting remark on density matrices, I would like to point out that density

matrices represent the most general classical states as well, namely probability

distributions over orthogonal sets of pure states. In fact, one can define what one

means by “classical” by this subset of density matrices:

Definition 2.3.4 (Classical). A quantum state is said to be classical relative

to the basis β when the density matrix describing that state is diagonal in the β

basis.

Notice that the definition of classicality is always with reference to some basis.

A classical system is one in which the dynamics keep classical states classical.

2.4 Quantum operations

Because density matrices are the most general representation for states of a physical

system, it is natural to ask what the corresponding most general representations are

for dynamics and measurements. A reasonable criterion for these representations

is that they preserve the ensemble interpretation of density matrices. In other

words, dynamics and measurements should act linearly on density matrices. A

linear map between Hilbert spaces is a superoperator :
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Definition 2.4.1 (Superoperator). A superoperator Q is a linear map between

operator spaces of Hilbert spaces: Q : L(H)→ L(K).

A subset that is usually regarded as the “right” one to represent physically

realizable superoperators is the set of quantum operations. Quantum operations

have several representations, all of which are equivalent. It is therefore a matter

of taste as to which one is taken as the definition. I shall take the axiomatic

representation as the definition below, and consider the equivalence of the other

representations to be theorems. As in the previous discussion regarding density

matrices, proofs of these theorems can be found in [80, 86, 63].

Definition 2.4.2 (Quantum operation; Axiomatic representation). A map

Q is called a quantum operation if it is a completely positive superoperator that

maps density matrices to density matrices. In other words, the superoperator Q

is a quantum operation on L(H) iff it satisfies the following axioms (note that ρ

is not necessarily a density matrix in the criteria below):

i) ∀ρ ∈ L(H) trQ(ρ) = tr ρ

ii) ∀ρ ∈ L(H) Q(ρ)† = Q(ρ†)

iii) ∀ρ ∈ L+(H ⊗K) (Q⊗ 11L(K))(ρ) ≥ 0,

where K is any Hilbert space and L+(G) represents the positive operators on G.

This definition is equivalent to the representational rule for dynamics stated in

Sec. 2.2.1.

Theorem 2.4.1 (Unitary representation). A superoperator Q is a quantum

operation on L(HA) iff it can be expressed as

Q(ρA) = trB

[

UAB(ρA ⊗ |ψ〉B B〈ψ|)U
†
AB

]

(2.7)

for some |ψ〉B ∈ HB and some unitary operator UAB ∈ L(HA ⊗HB).
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Theorem 2.4.2 (Operator-sum representation). A superoperator Q is a quan-

tum operation on L(H) iff it can be expressed as

Q(ρA) =
∑

i

AiρA
†
i , where

∑

i

A†iAi = 11. (2.8)

Theorem 2.4.3 (Matrix representation). A superoperator Q on L(H), ex-

pressed in coordinate form as

Q(|i〉〈j|) =
∑

i′j′

Q(i′i)(j′j)

∣

∣i′
〉〈

j′
∣

∣ , (2.9)

is a quantum operation iff the following are satsified

i)
∑

kQ(ki)(kj) = δij

ii) Q∗(i′i)(j′j) = Q(j′j)(i′i)

iii) (Q(i′i)(j′j)) is a positive matrix.

2.5 Perturbation theory

Few problems can be solved exactly using the mathematical framework of quantum

mechanics. What might be called the “art” of physics is first determining which

effects are the most important in a problem and then applying an appropriate

approximation method. One well-developed approximation method is the pertur-

bation method, useful when one has a problem that is only slightly deformed, or

perturbed, from a previously solved problem. The basic approach in the pertur-

bation method is to expand the problem and its solution in a power series in the

perturbation, keeping only the lowest order terms.

In this section, I will review the application of the perturbation method to

the problem of finding the eigenstates of a time-independent Hamiltonian that is

only slightly perturbed from a time-independent Hamiltonian having a discrete

spectrum of nondegenerate eigenvalues. For obvious reasons, this procedure is



Chapter 2: Background 19

called nondegenerate time-independent perturbation theory. My discussion here

closely follows Messiah [77].

Let H(0) be a time-independent Hamiltonian with a discrete spectrum of non-

degenerate energy eigenvalues {E(0)
i } and corresponding eigenvectors {|E(0)

i 〉}.
Namely, let

H(0)|E(0)
i 〉 = E

(0)
i |E

(0)
i 〉, (2.10)

where

〈E(0)
i |E

(0)
j 〉 = δij (2.11)

and
∑

i

|E(0)
i 〉〈E

(0)
i | = 11. (2.12)

Consider the perturbed Hamiltonian H = H (0) + δH ′ arising from the time-

independent perturbation δH ′. Let Ei be the energy eigenvalue of H that tends

to E
(0)
i when δ → 0. It will also be a nondegenerate eigenvalue when δ is small:

H|Ei〉 = Ei|Ei〉. (2.13)

The corresponding eigenvector is defined up to a constant, which we shall fix

via

〈0 |Ei〉= 1, (2.14)

where |E(0)
i 〉≡ |0〉.

When δ is sufficiently small, the changes in the energy levels caused by H ′ are

much smaller than the differences between them, so the new energy eigenvalues

and (unnormalized) eigenvectors can be expanded in terms of the old ones in a

power series:

Ei = E
(0)
i + δε

(1)
i + δ2ε

(2)
i + · · · (2.15)

|Ei〉= |0i〉+ δ |1i〉+ δ2 |2i〉+ · · · . (2.16)
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By eq. (2.14), the perturbative eigenvectors are orthogonal to the δ → 0

eigenvector:

〈0i |1i〉= 〈0i |2i〉= · · · = 〈0i |ni〉= 0. (2.17)

Substituting the expansions (2.15) and (2.16) into eq. (2.13) and matching

terms of the same order, one obtains the following set of equations:

(H(0) − E(0)) |0i〉 = 0

(H(0) − E(0)) |1i〉 + (δH ′ − ε(1)i ) |0i〉 = 0

(H(0) − E(0)) |2i〉 + (δH ′ − ε(1)i ) |1i〉 − ε
(2)
i |0i〉 = 0

· · ·
(H(0) − E(0)) |ni〉 + (δH ′ − ε(1)i ) |(n− 1)i〉 + · · · − ε

(n)
i |0i〉 = 0.

(2.18)

The first-order correction is usually all that is considered—when higher order

corrections are important, the perturbation method begins to break down.

The first-order correction to the eigenstate |E(0)
i 〉 is

|1i〉=
∑

j

|E(0)
j 〉〈E

(0)
j |1i〉, (2.19)

where 〈E(0)
j |1i〉 is found by projecting the first of eqs. (2.18) onto the bra 〈E(0)

j |
(and recalling the orthogonality condition (2.17)). When i 6= j, the resulting

overlap is

〈E(0)
j |1i〉 =

1

E
(0)
i − E

(0)
j

〈E(0)
j |δH ′|E

(0)
i 〉, (2.20)

and when i = j, the resulting overlap vanishes by the orthogonality condition

(2.17). Hence, to first order in δ, the new (unnormalized) eigenstates are

|Ei〉 ∼= |E(0)
i 〉+ δ

∑

j 6=i

(

〈E(0)
j |H ′|E

(0)
i 〉

E
(0)
i − E

(0)
j

)

|E(0)
j 〉. (2.21)

A quantity that will be useful in Chapter 3 is the error distance dE between
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associated energy eigenstates of the perturbed and unperturbed Hamiltonians:

dE(|Ei〉, |E(0)
i 〉) ≡ 1− |〈Ei|E(0)

i 〉|2. (2.22)

In the present context, the error distance can be interpreted as the probability that

the perturbing Hamiltonian δH ′ will cause an “erroneous” transition to a different

state. Although the error distance can sometimes be calculated exactly, it is helpful

to bound it generically in terms of two variables: the smallest separation in energy

eigenvalues of H(0), or minimum gap,

g = min
i6=j

(

E
(0)
i − E

(0)
j

)

, (2.23)

and the minimum variance of H ′ in the ith state of H(0), or state perturbation

variance,

(Γi)
2 = (∆H ′)i = 〈E(0)

i |(H ′)2|E
(0)
i 〉 − 〈E

(0)
i |H ′|E

(0)
i 〉2. (2.24)

Using these two quantities, and using the normalized version of eq. (2.21), one can

bound the error probability of the perturbed eigenstates:

dE(|Ei〉, |E(0)
i 〉) = 1− |〈Ei|E(0)

i 〉|2 (2.25)

∼= 1−



1 + δ2
∑

j 6=i

|〈E(0)
j |H ′|E

(0)
i 〉|2

|E(0)
i − E

(0)
j |2





−1

(2.26)

∼= δ2
∑

j 6=i

|〈E(0)
j |H ′|E

(0)
i 〉|2

|E(0)
i − E

(0)
j |2

(2.27)

>
δ2

g2





∑

j

〈E(0)
i |H ′|E

(0)
j 〉〈E

(0)
j |H ′|E

(0)
i 〉 − |〈E

(0)
i |H ′|E

(0)
i 〉|2





(2.28)

=
δ2Γ2

i

g2
. (2.29)
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2.6 The adiabatic theorem

The adiabatic theorem is a powerful theorem in quantum mechanics that relates

the asymptotic behavior of a unitary operator generated by a time-varying Hamil-

tonian and the projectors onto the eigenspaces of that Hamiltonian. Much of

my treatment of this theorem3 and its associated approximation is adapted from

Messiah [77].

Theorem 2.6.1 (Adiabatic theorem). Consider a Hamiltonian that continu-

ously varies from H0 at time t0 to H1 at time t1 such that its spectrum of eigen-

values E1, E2, . . . remains discrete throughout the variation. Let H(s) denote the

Hamiltonian at time t = t0 + sT , where

T = t1 − t0 s =
t− t0
T

, (2.30)

and let Ej(s) and Πj(s) denote the eigenvalues and associated subspace projectors

of H(s). Suppose that the following conditions are satisfied:

(i) (Continuity) Ej(s) and Πj(s) are continuous functions of s.

(ii) (Non-crossing) Ej(s) 6= Ek(s) when j 6= k for all s ∈ [0, 1].

(iii) (Differentiability)
dΠj

ds
and

d2Πj

ds2
are piecewise continuous functions on

[0, 1].

Then the unitary evolution operator UT (s) ≡ U(t, t0) generated by H(s) via

UT (s) =

∫ s

0
dσ exp(−iH(σ)) (2.31)

= 11+ i

∫ s

0
TH(σ)U(σ)dσ (2.32)

3The theorem is even more general than the statement I give for it here. The restrictions I

place are sufficient for how I shall consider it in Chapter 5, and make the proof simpler.
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has the following asymptotic property:

lim
T→∞

UT (s)Πj(0) = Πj(s) lim
T→∞

UT (s) (2.33)

(j = 1, 2, . . .) (2.34)

Proof. Let H(s) be the Hamiltonian

H(s) =
∑

j

Ej(s)Πj(s) (2.35)

that generates the unitary operator

UT (s) = 11− i
∫ s

0
TH(σ)U(σ)dσ. (2.36)

Consider the operator K(s) defined by

K(s) = i
∑

j

dΠj

ds
Πj(s). (2.37)

This operator is Hermitian, as can be verified using the product rule for and lin-

earity of differentiation, and the Hermiticity, idempotency, and unit-summability
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of projectors:

K(s)† = −i
∑

j

Πj(s)
† dΠ

†
j

ds
(2.38)

= −i
∑

j

Πj(s)
dΠj

ds
(2.39)

= −i
∑

j

(

d(ΠjΠj)

ds
− dΠj

ds
Πj

)

(2.40)

= −i
∑

j

dΠj

ds
+K(s) (2.41)

= −i d
ds

∑

j

Πj +K(s) (2.42)

= −i d
ds

11 +K(s) (2.43)

= K(s). (2.44)

As K(s) is Hermitian, it may be thought of as a Hamiltonian, which generates the

unitary operator

A(s) = 11− i
∫ s

0
K(σ)A(σ)dσ. (2.45)

By definitions (2.37) and (2.45), we see that

d

ds

(

A†ΠjA
)

= iA†KΠjA+A†
dΠj

ds
A− iA†ΠjKA (2.46)

= A†
(

−dΠj

ds
Πj +

dΠj

ds
−Πj

dΠj

ds

)

A (2.47)

= A†
(

−d(ΠjΠj)

ds
+Πj

dΠj

ds
+
dΠj

ds
−Πj

dΠj

ds

)

A (2.48)

= 0, (2.49)

so that, in particular,

A†(s)Πj(s)A(s) = Πj(0). (2.50)
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Let ΦT (s) be the unitary operator generated by TA†(s)H(s)A(s):

ΦT (s) = 11− i
∫ s

0
TA†(σ)H(σ)A(σ)ΦT (σ)dσ. (2.51)

This integral equation for ΦT (s) may be solved with the help of eqs. (2.35) and

(2.50):

ΦT (s) =
∑

j

exp

[

−iT
∫ s

0
Ej(σ)dσ

]

Πj(0) (2.52)

=
∑

j

e−iTϕj(s)Πj(0), (2.53)

where I have introduced the following to simplify notation:

ϕj(s) =

∫ s

0
Ej(σ)dσ. (2.54)

Consider the unitary operator

W (s) = Φ†T (s)A
†(s)UT (s). (2.55)

By eqs. (2.36), (2.45) and (2.51), W (s) obeys the integral equation

W (s) = 11 + i

∫ s

0
K̄(σ)W (σ)dσ, (2.56)

where

K̄ ≡ Φ†TA
†KAΦT . (2.57)

Integrated by parts, eq. (2.56) may be rewritten as

W (s) = 11 + iF (s)W (s) +

∫ s

0
F (σ)K̄(σ)W (σ)dσ, (2.58)
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where

F (s) ≡
∫ s

0
K̄(σ)dσ. (2.59)

Using the solution (2.53) for ΦT (s) and the conjugation property (2.50), F (s)

may be rewritten as

F (s) =
∑

jk

∫ s

0
eiT (ϕj−ϕk)K

(A)
jk (σ)dσ, (2.60)

where

K
(A)
jk (s) ≡ Πj(0)A

†(σ)K(σ)A(σ)Πk(0) (2.61)

= A†(σ)Πj(σ)K(σ)Πk(σ)A(σ). (2.62)

The terms in the sum (2.60) when j = k vanish because ΠjKΠj = 0 by eq. (2.37).

The remaining terms may be integrated by parts:

F (s) =
∑

j 6=k

1

iT



eiT (ϕj−ϕk)
K

(A)
jk

Ej − Ek

∣

∣

∣

∣

∣

∣

s

0

−
∫ s

0
eiT (ϕj−ϕk)





d

dσ





K
(A)
jk

Ej − Ek











 dσ.

(2.63)

The terms in the outer brackets are independent of T and remain finite when

conditions (i)–(iii) are satisfied, so

F (s) = O
(

1

T

)

. (2.64)

Hence, eq. (2.58) for W (s), when rewritten using eq. (2.55), reads

UT (s) = A(s)ΦT (s)

[

1 +O
(

1

T

)]

. (2.65)

Applying the ΦT (s) solution (2.53) and the conjugation property (2.50) to this
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expression and taking the asymptotic limit, we obtain the desired result:

lim
T→∞

UT (s)Πj(0) = Πj(s) lim
T→∞

UT (s) (2.66)

(j = 1, 2, . . .) (2.67)

¥

2.7 The adiabatic approximation

The proof of the adiabatic theorem suggests that when T is large, it is reasonable

to make the following adiabatic approximation to UT (s):

UT (s) ' A(s)ΦT (s), (2.68)

where A(s) and ΦT (s) are defined by (2.45) and (2.51). One way to view this ap-

proximation is as a simulation of the unitary UT (s), much in the same way that a

quantum circuit is a simulation of a unitary operation. To understand the complex-

ity of this simulation, it is important to quantify how good this approximation is.

The error distance is one reasonable measure of its performance. (Other measures

are certainly possible.) Operationally, this distance measures the probability that

a measurement won’t be able to distinguish between UT (1) |i〉 and A(1)ΦT (1) |i〉,
where |i〉 is an initial eigenstate of H(0). This probability should be small when

the approximation is good.
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The error distance of the adiabatic approximation is

∆ ≡ dE(A(1)Φ(1) |i〉, UT (1) |i〉) (2.69)

= 1− |〈i|Φ†T (1)A†(1)UT (1) |i〉|2 (2.70)

= 1− |〈i|W |i〉|2 (2.71)

=
∑

j

〈i|W |j〉〈j|W † |i〉− |〈i|W |i〉|2 (2.72)

=
∑

j 6=i
| 〈j|W |i〉|2. (2.73)

where W ≡W (1) is defined by eq. (2.55).

Because W can be expressed in terms of F ≡ F (1) via eq. (2.58), and because

F = O(1/T ) by eq. (2.64), we can substitute the solution of eq. (2.58) into itself

and obtain a power series for W in 1/T . To first order in 1/T , this expansion

yields W = 11 + iF . Introducing the notational shorthands ωij ≡ ϕi − ϕj and

αij ≡ 〈i|K(A)
ij |j〉, and using eqs. (2.60) and (2.62) for F and K (A), the error

distance ∆ may be rewritten as follows:

∆ =
∑

j 6=i
| 〈j|W |i〉|2 (2.74)

=
∑

j 6=i
| 〈j|F |i〉|2 (2.75)

=
∑

j 6=i

∣

∣

∣

∣

∫ 1

0
dsαij(s) e

iTωij(s)

∣

∣

∣

∣

2

. (2.76)

The function αij(s) may be expressed in terms of H ′(s) ≡ dH/ds via the

following identity:

Πi
dH

ds
Πj = Πi

(

∑

k

Ek
dΠk

ds
+
dEk
ds

Πk

)

Πj (2.77)

=
∑

k

EkΠi

[

d

ds
(ΠkΠj)−Πk

dΠj

ds

]

Πj +
dEj
ds

δijΠi (2.78)

= (Ej − Ei)Πi
dΠj

ds
Πj +

dEj
ds

δijΠi. (2.79)
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Applying this identity, αij(s) becomes

αij(s) = 〈i|K(A)
ij (s) |j〉 (2.80)

= 〈i|A†(s)Πi(s)K(s)Πj(s)A(s) |j〉 (2.81)

= i〈i|A†(s)Πi(s)
∑

k

dΠk

ds
Πk(s)Πj(s)A(s) |j〉 (2.82)

= i〈i|A†(s)Πi(s)
dΠj

ds
Πj(s)A(s) |j〉 (2.83)

=
i

Ej(s)− Ei(s)
〈i|A†(s)Πi(s)

dH

ds
Πj(s)A(s) |j〉 (2.84)

=
i

Ej(s)− Ei(s)
〈i|Πi(0)A

†(s)H ′(s)A(s)Πj(0) |j〉 (2.85)

=
i

Ej(s)− Ei(s)
〈i|A†(s)H ′(s)A(s) |j〉 (2.86)

= i
〈i(s)|H ′(s) |j(s)〉
Ej(s)− Ei(s)

, (2.87)

where |i(s)〉 denotes the eigenstate of H(s) arrived at from the eigenstate |i〉 of
H(0) by continuity (viz., by application of A(s)).

Although it is not entirely rigorous, Messiah [77] argues that the integral on the

right-hand side of eq. (2.76) should have a value no greater in order-of-magnitude

than the value it has when αij(s) and ωij(s) are independent of s. In other words,

he argues that

∆ ≤
∑

j 6=i
max
s
|αij(s)|2max

σ

4 sin2 ωij(σ)T/2

T 2 |ωij(σ)|2
(2.88)

≤ 4

T 2

∑

j 6=i

maxs |αij(s)|2

minσ |ωij(σ)|2
. (2.89)

Taking this argument at face value, and introducing notational shorthands for

the minimum gap and maximal perturbation variance in a manner similar to the
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way it was introduced in Section 2.5,

g ≡ min
σ,j
|ω(σ)ij | (2.90)

Γ2 ≡ max
s
〈i(s)|

(

dH

ds

)2

|i(s)〉− 〈i(s)| dH
ds
|i(s)〉2 (2.91)

≡ ∆H ′ in state |i(s)〉, (2.92)

the bound on the error distance becomes

∆ ≤ 4

T 2g4
max
s

∑

j 6=i

∣

∣

∣
〈i(s)|H ′(s) |j(s)〉

∣

∣

∣

2
(2.93)

=
4

T 2g4
max
s
〈i(s)|H ′(s)2 |i(s)〉− 〈i(s)|H ′(s)|i(s)〉2 (2.94)

≡ 4Γ2

T 2g4
, (2.95)

which applies whenever the maximum over s can be taken outside the sum. (In

general, this bound may not apply; only the weaker version with the maximization

inside the sum applies.)

Thus, to ensure that ∆¿ 1, we require that

T À Γ

g2
. (2.96)

This is the central result I will use later in Chapter 5.
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Chapter 3

Continuous-time quantum error

correction

Abstract

In this chapter, I describe a new protocol for continuously protecting unknown

quantum states from decoherence that incorporates design principles from both

quantum error correction and quantum feedback control. This protocol uses con-

tinuous measurements and Hamiltonian operations, which are weaker control tools

than are typically assumed for quantum error correction. A cost function appro-

priate for unknown quantum states is developed and used to optimize the state-

estimate feedback. This protocol is studied in detail for the three-qubit bit-flip

code by the use of Monte Carlo simulations. For this code, it is shown that the

protocol improves the fidelity of quantum states beyond what is achievable using

ordinary quantum error correction when the time between quantum error correc-

tion cycles is limited.

The work presented in this chapter is the result of a collaboration with Ahn

and Doherty [5]. The single qubit example in 3.4.2 and the proof in 3.7 are due to

Ahn.
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3.1 Introduction

Long-lived coherent quantum states are essential for many quantum information

science applications including quantum cryptography [15], quantum computation

[80, 86], and quantum teleportation [16]. Unfortunately, coherent quantum states

have extremely short lifetimes in realistic open quantum systems due to strong

decohering interactions with the environment. Overcoming this decoherence is the

chief hurdle faced by experimenters studying quantum-limited systems.

Quantum error correction is a “software solution” to this problem [92, 94].

It works by redundantly encoding quantum information across many quantum

systems. The key to this approach is the use of measurements which reveal infor-

mation about which errors have occurred and not about the encoded data. This

feature is particularly useful for protecting the unknown quantum states that ap-

pear frequently in the course of quantum computations. The physical tools used

in this approach are projective von Neumann measurements that discretize errors

onto a finite set and fast unitary gates that restore corrupted data. When com-

bined with fault-tolerant techniques, and when all noise sources are below a critical

value known as the accuracy threshold, quantum error correction enables quantum

computations of arbitrary length with arbitrarily small output error, or so-called

fault-tolerant quantum computation [93, 60].

Quantum feedback control is also sometimes used to combat decoherence [111,

46, 97]. This approach has the advantage of working well even when control tools

are limited. The information about the quantum state fed into the controller

typically comes from continuous measurements and the operations the controller

applies in response are typically bounded-strength Hamiltonians. The performance

of the feedback may also be optimized relative to the resources that are available.

For example, one can design a quantum feedback control scheme which minimizes

the distance between a quantum state and its target subject to the constraint that

all available controlling manipulations have bounded strengths [31].

The availability of quantum error correction, which can protect unknown quan-
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tum states, and quantum feedback control, which uses weak measurements and

slow controls, suggests that there might be a way to merge these approaches into a

single technique with all of these features. Previous work to account for continuous

time using quantum error correction has focused on “automatic” recovery and has

neglected the role of continuous measurement [9, 25, 84, 10]. On the other hand,

previous work on quantum state protection using quantum feedback control has

focused on protocols for known states and has not addressed the issue of protecting

unknown quantum states [106, 68]; however see [73] for related work.

This chapter is organized as follows. In Sec. 3.2, I review quantum feedback

control and introduce the formalism of stochastic master equations. In Sec. 3.3,

I present the three-qubit bit-flip code as a simple example of a quantum error-

correcting code and sketch the general theory using the stabilizer formalism. In

Sec. 3.4, I present a protocol for continuous-time quantum error correction as de-

rived from an optimal non-Markovian feedback strategy. In Sec. 3.5, I demonstrate

the efficacy of this feedback strategy for the bit-flip code via Monte Carlo simu-

lations, and compare the behavior to discrete quantum error correction when the

time between quantum error correction cycles is finite. Section 3.6 concludes.

3.2 Quantum feedback control

3.2.1 Open quantum systems

To describe quantum feedback control, we first need to describe uncontrolled open

quantum system dynamics. Let S be an open quantum system weakly coupled to

a reservoir R, whose self-correlation time is much shorter than both the time scale

of the system’s dynamics and the time scale of the system-reservoir interaction.

The Born-Markov approximation applies in this case and enables us to write down

a master equation [20] describing the induced dynamics in S:

ρ̇ = −i [H, ρ] +
m
∑

µ=1

D[cµ] ρ. (3.1)
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Here ρ denotes the reduced density matrix for S, H its Hamiltonian, and D a

decohering Lindblad superoperator that takes a system-reservoir coupling operator

(or jump operator) c as an argument and acts on density matrices as

D[c]ρ = cρc† − 1

2
c†cρ− 1

2
ρc†c. (3.2)

One way to derive this master equation is to imagine that the reservoir con-

tinuously measures the system but quickly forgets the outcomes because of rapid

thermalization. The induced dynamics on S therefore appear as an average over

all possible quantum trajectories that could have been recorded by the reservoir.

What kinds of measurements can the reservoir continuously perform? The

most general measurement quantum mechanics allows is a positive operator-valued

measure (POVM) {Ej} acting on S. According to a theorem by Kraus [69], the

POVM {Ej} can always be decomposed as

∑

i

Ω†ijΩij = Ej , (3.3)

such that its stochastic action is ρ→ ρj with probability pj = tr(ρEj), where

ρj =
1

tr(ρEj)

∑

i

ΩijρΩ
†
ij . (3.4)

This POVM is called a strong measurement when it can generate finite state

changes and a weak measurement when it cannot [72]. POVMs that generate

the master equation (3.1) involve infinitesimal changes of state, and therefore are

weak measurements.

One reservoir POVM that results in the master equation (3.1) is the continuous

weak measurement with Kraus operators

Ω0(dt) = 1−



iH +
1

2

m
∑

µ=1

c†µcµ



 dt (3.5)

Ωµ(dt) =
√
dt cµ, µ = 1, . . . ,m. (3.6)
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Moreover, any POVM related to the one above via the unitary rotation

Ω′α =
∑

β

UαβΩβ (3.7)

will generate the same master equation. We call each distinct POVM that gener-

ates the master equation when averaged over quantum trajectories an unravelling

[112] of the master equation.

3.2.2 Quantum feedback control

The previous discussion of the master equation suggests a route for feedback con-

trol. If we replace the reservoir with a device that records the measurement current,

then we could feed the measurement record back into the system’s dynamics by

way of a controller. For example, the master equation (3.1) with m = 1 can be

unravelled into the stochastic master equation (SME) [20, 113]

dρc(t) = −i [H, ρc(t)] dt

+D[c]ρc(t)dt+H[c]ρc(t)dW (t) (3.8)

dQ(t) = 〈c+ c†〉c dt+ dW (t), (3.9)

where ρc is the conditioned density matrix, conditioned on the outcomes of the

measurement record Q(t), the expectation 〈a〉c means tr(ρca), dW is a normally

distributed infinitesimal random variable with mean zero and variance dt (aWiener

increment [45]), and H is a superoperator that takes a jump operator as an argu-

ment and acts on density matrices as

H[c]ρ = cρ+ ρc† − ρ tr [cρ+ ρc†]. (3.10)

This sort of unravelling occurs, for example, when one performs a continuous

weak homodyne measurement of a field c by first mixing it with a classical local

oscillator in a beamsplitter and then measuring the output beams with photodetec-
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tors [113]. The stochastic model (3.8–3.9) is flexible enough to incorporate other

noise sources such as detector inefficiency, dark counts, time delays, and finite

measurement bandwidth [107].

We can add feedback control by introducing a Q(t)-dependent Hamiltonian

to the dynamics of ρc. There are two well-studied ways of doing this. The first,

and simplest, is to use Wiseman-Milburn feedback [111, 113], or current feedback ,

in which the feedback depends only on the instantaneous measurement current

IQ(t) = dQ(t)/dt. For example, adding the Hamiltonian IQ(t)F to the SME (3.8)

using current feedback leads to the dynamics [111]

dρc(t) = −i [H, ρc(t)] dt

+D[c]ρc(t)dt+H[c]ρc(t)dW (t)

−i
[

F, cρc(t) + ρc(t)c
†
]

dt

+D[F ]ρc(t)dt− i [F, ρc(t)] dW (3.11)

dQ(t) = 〈c+ c†〉c dt+ dW (t). (3.12)

The second, and more general, way to add feedback is to modulate the Hamil-

tonian by a functional of the entire measurement record. An important class of

this kind of feedback is estimate feedback [31], in which feedback is a function

of the current conditioned state estimate ρc. This kind of feedback is of especial

interest because of the quantum Bellman theorem [30], which proves that the op-

timal feedback strategy will be a function only of conditioned state expectation

values for a large class of physically reasonable cost functions. An example of such

an estimate feedback control law analogous to the current feedback Hamiltonian

used in (3.11) is to add the Hamiltonian 〈IQ(t)〉cF = 〈c+ c†〉cF , which depends

on what we expect the current IQ(t) should be given the previous measurement

history rather than its actual instantaneous value. Adding this feedback to the
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SME (3.8) leads to the dynamics

dρc(t) = −i [H, ρc(t)] dt

+D[c]ρc(t)dt+H[c]ρc(t)dW (t)

−i〈IQ〉c [F, ρc(t)] dt (3.13)

dQ(t) = 〈c+ c†〉c dt+ dW (t). (3.14)

3.3 Quantum error correction

Although quantum feedback control has many merits, it has not been used to

protect unknown quantum states from noise. Quantum error correction, however,

is specifically designed to protect unknown quantum states; for this reason it has

been an essential ingredient in the design of quantum computers [48, 66, 85]. The

salient aspects of quantum error correction can already be seen in the three-qubit

bit-flip code, even though it is not a fully quantum error correcting code. For that

reason, I shall introduce quantum error correction with this example and discuss

its generalization using the stabilizer formalism.

3.3.1 The bit-flip code

The bit-flip code protects a single two-state quantum system, or qubit, from bit-

flipping errors by mapping it onto the state of three qubits:

|0〉 → |000〉 ≡ |0̄〉 (3.15)

|1〉 → |111〉 ≡ |1̄〉. (3.16)

The states |0̄〉 and |1̄〉 are called the basis states for the code and the space spanned

by them is called the codespace, whose elements are called codewords.

After the qubits are subjected to noise, quantum error correction proceeds in

two steps. First, the parities of neighboring qubits are projectively measured.
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These are the observables1

M0 = ZZI (3.17)

M1 = IZZ. (3.18)

The error syndrome is the pair of eigenvalues (m0,m1) returned by this measure-

ment.

Once the error syndrome is known, the second step is to apply one of the

following unitary operations conditioned on the error syndrome:

(−1,+1) → XII (3.19)

(−1,−1) → IXI (3.20)

(+1,−1) → IIX (3.21)

(+1,+1) → III. (3.22)

This procedure has two particularly appealing characteristics: the error syn-

drome measurement does not distinguish between the codewords, and the projec-

tive nature of the measurement discretizes all possible quantum errors onto a finite

set. These properties hold for general stabilizer codes as well.

If the bit-flipping errors arise from reservoir-induced decoherence, then prior

to quantum error correction the qubits evolve via the master equation

dρnoise = γ(D[XII] +D[IXI] +D[IIX])ρ dt, (3.23)

where γdt is the probability of a bit-flip error on each qubit per time interval

1We use the notation of [48] in which X, Y , and Z denote the Pauli matrices σx, σy and σz

respectively, and concatenation denotes a tensor product (e.g., ZZI = σz ⊗ σz ⊗ I).
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[t, t+ dt]. This master equation has the solution

ρ(t) =

a (t) ρ0

+b (t) (XIIρ0XII + IXIρ0IXI + IIXρ0IIX)

+c (t) (XXIρ0XXI +XIXρ0XIX + IXXρ0IIX)

+d (t)XXXρ0XXX, (3.24)

where

a(t) =
(

1 + 3e−2γt + 3e−4γt + e−6γt
)

/8 (3.25)

b(t) =
(

1 + e−2γt − e−4γt − e−6γt
)

/8 (3.26)

c(t) =
(

1− e−2γt − e−4γt + e−6γt
)

/8 (3.27)

d(t) =
(

1− 3e−2γt + 3e−4γt − e−6γt
)

/8. (3.28)

The functions a(t)–d(t) express the probability that the system is left in a

state that can be reached by zero, one, two, or three bit-flips from the initial

state, respectively. After quantum error correction is performed, single errors are

identified correctly but double and triple errors are not. As a result, the recovered

state, averaged over all possible measurement syndromes, is

ρ = (a (t) + b (t)) ρ0 + (c (t) + d (t))XXXρ0XXX. (3.29)

The overlap of this state with the initial state depends on the initial state, but is

at least as large as when the initial state is |0̄〉; namely, it is at least as large as

F3̄ =
(

2 + 3e−2γt − e−6γt
)

/4

' 1− 3(γt)2. (3.30)

Recalling that a single qubit subject to this decoherence has error probability
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p = γt, we see that, when applied sufficiently often, the bit-flip code reduces the

error probability on each qubit from O(p) to O(p2).

3.3.2 Stabilizer formalism

The bit-flip code is one of many quantum error correcting codes that can be de-

scribed by the stabilizer formalism [48]. Let C be a 2k-dimensional subspace of

a 2n-dimensional n-qubit Hilbert space. Then the system can be thought of as

encoding k qubits in n, where the codewords are elements of C. Let us further

define the Pauli group to be Pn = {±1,±i}⊗{I,X, Y, Z}⊗n, and let the weight of

an operator in Pn be the number of non-identity components it has when written

as a tensor product of operators in P1. The stabilizer of C, S(C), is the group of

operators which fix all codewords in C. We call C an [[n, k, d]] stabilizer code when

(a) the n − k generators of S(C) form a subgroup of Pn and (b) d is the smallest

weight of an element in Pn \ S(C) that commutes with every element in S(C).
In this general setting, quantum error correction proceeds in two steps. First,

one projectively measures the stabilizer generators to infer the error syndrome.

Second, one applies a unitary recovery operator conditioned on the error syndrome.

The strong measurement used in this procedure guarantees that all errors, even

unitary errors, are discretized onto a finite set. For this reason I will sometimes

refer to this procedure as discrete quantum error correction. When the noise rate

is low and when correction is applied sufficiently often, this procedure reduces the

error probability from O(p) to O(p2).

3.4 Continuous quantum error correction via quantum

feedback control

In this section, I present a method for continuously protecting an unknown quan-

tum state using weak measurement, state estimation, and Hamiltonian correction.

As in the previous section, this method is introduced via the bit-flip code and then

generalized.
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3.4.1 Bit-flip code: Theoretical model

Suppose ρ is subjected to bit-flipping decoherence as in (3.23); to protect against

such decoherence, we have seen that we can encode ρ using the bit-flip code (3.15–

3.16). Here we shall define a similar protocol that operates continuously and uses

only weak measurements and slow corrections.

The first part of the protocol is to weakly measure the stabilizer generators

ZZI and IZZ for the bit-flip code, even though these measurements will not

completely collapse the errors. To localize the errors even further, we also measure

the remaining nontrivial stabilizer operator ZIZ.2 The second part of the protocol

is to apply the slow Hamiltonian corrections XII, IXI, and IIX corresponding to

the unitary corrections XII, IXI, and IIX, with control parameters λk that are

to be determined. If we parameterize the measurement strength by κ and perform

the measurements using the unravelling (3.8–3.9), the SME describing the protocol

is

dρc = γ(D[XII] +D[IXI] +D[IIX])ρcdt

+κ(D[ZZI] +D[IZZ] +D[ZIZ])ρcdt

+
√
κ(H[ZZI]dW1 +H[IZZ]dW2

+H[ZIZ]dW3)ρc

−i[F, ρc]dt (3.31)

dQ1 = 2κ〈ZZI〉c dt+
√
κdW1 (3.32)

dQ2 = 2κ〈IZZ〉c dt+
√
κdW2 (3.33)

dQ3 = 2κ〈ZIZ〉c dt+
√
κdW3, (3.34)

where

F = λ1XII + λ2IXI + λ3IIX (3.35)

2The modest improvement gained by this extra measurement is offset by an unfavorable scaling

in the number of extra measurements required when applied to general [[n, k, d]] codes having 2n−k

stabilizer elements and only n− k generators.
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is the feedback Hamiltonian having control parameters λk.

Following the logic of quantum error correction, it is natural to choose the λk

to be functions of the error syndrome. For example, the choice

λ1 =
λ

8
(1− 〈ZZI〉c )(1 + 〈IZZ〉c )(1− 〈ZIZ〉c )

λ2 =
λ

8
(1− 〈ZZI〉c )(1− 〈IZZ〉c )(1 + 〈ZIZ〉c )

λ3 =
λ

8
(1 + 〈ZZI〉c )(1− 〈IZZ〉c )(1− 〈ZIZ〉c ), (3.36)

where λ is the maximum feedback strength that can be applied, is reasonable3: it

acts trivially when the state is in the codespace and applies a maximal correction

when the state is orthogonal to the codespace. Unfortunately this feedback is

sometimes harmful when it need not be. For example, when the controller receives

no measurement inputs (i.e., κ = 0), it still adds an extra coherent evolution

which, on average, will drive the state of the system away from the state we wish

to protect.

This weakness of the feedback strategy suggests that we should choose the

feedback more carefully. To do this, we introduce a cost function describing how

far away the state is from its target and choose a control which minimizes this

cost. The difficulty is that the target is an unknown quantum state. However,

we can choose the target to be the codespace, which we do know. We choose the

cost function, therefore, to be the norm of the component of the state outside the

codespace. Since the codespace projector is ΠC = 1
4(III + ZZI + ZIZ + IZZ),

the cost function is 1− f , where f(ρ) = tr(ρΠC). Under the SME (3.31), the time

evolution of f due to the feedback Hamiltonian F is

ḟfb = 2λ1〈Y ZI + Y IZ〉c

+2λ2〈ZY I + IY Z〉c

+2λ3〈ZIY + IZY 〉c . (3.37)

3The factor of 1
8
is included to limit the maximal strength of any parameter λk to λ.
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Maximizing ḟfb minimizes the cost, yielding the optimal feedback coefficients

λ1 = λ sgn〈Y ZI + Y IZ〉c

λ2 = λ sgn〈ZY I + IY Z〉c

λ3 = λ sgn〈ZIY + IZY 〉c , (3.38)

where, again, λ is the maximum feedback strength that can be applied.

This feedback scheme is a bang-bang control scheme, meaning that the control

parameters λk are always at the maximum or minimum value possible (λ or −λ,
respectively), which is a typical control solution both classically [56] and quan-

tum mechanically [102]. In practice, the bang-bang optimal controls (3.38) can

be approximated by a bandwidth-limited sigmoid, such as a hyperbolic tangent

function.

The control solution (3.38) requires the controller to integrate the SME (3.31)

using the measurement currents Qi(t) and the initial condition ρc. However,

typically the initial state ρc(0) will be unknown. Fortunately the calculation of

the feedback (3.38) does not depend on where the initial condition is within the

codespace, so the controller may assume the maximally mixed initial condition

ρe = 1
2(|0̄〉〈0̄| + |1̄〉〈1̄|) for its calculations. This property generalizes for a wide

class of stabilizer codes, as is proved in Sec. 3.7; this property is conjectured to

hold for all stabilizer codes.

3.4.2 Intuitive one-qubit picture

Before generalizing the procedure, it is helpful to gain some intuition about how

it works by considering an even simpler “code”: the spin-up state (i.e., |0〉) of a

single qubit. The stabilizer is M0 = Z, the noise it protects against is bit flips X,

and the correction Hamiltonian is proportional to X. The optimal feedback, by a

similar analysis to that for the bit-flip code, is F = λ sgn〈Y 〉cX, and the resulting

stochastic master equation can be rewritten as a set of Bloch sphere equations as

follows:
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d〈X〉c = −2γ〈X〉c dt− 2
√
κ〈X〉c 〈Z〉c dW (3.39)

d〈Y 〉c = −2γ〈Y 〉c dt− 2κ〈Y 〉c − 2
√
κ〈Y 〉c 〈Z〉c dW

−2λ(sgn〈Y 〉c )〈Z〉c dt (3.40)

d〈Z〉c = −2γ〈Z〉c dt+ 2
√
κ(1− 〈Z〉2c )dW

+2λ(sgn〈Y 〉c )〈Y 〉c dt. (3.41)

The Bloch vector representation (〈X〉 , 〈Y 〉 , 〈Z〉) [85] of the qubit provides a

simple geometric picture of evolution. Decoherence (the γ term) shrinks the Bloch

vector, measurement (the κ terms) lengthens the Bloch vector and moves it closer

to the z-axis, and correction (the λ term) rotates the Bloch vector in the y–z plane.

Fig. 3.1 depicts this evolution: depending on whether the Bloch vector is in the

hemisphere with 〈Y 〉 > 0 or 〈Y 〉 < 0, the feedback will rotate the vector as quickly

as possible in such a way that it is always moving towards the codespace (spin-up

state). Note that if the Bloch vector lies exactly on the z-axis with 〈Z〉 < 0,

rotating it either way will move it towards the spin-up state—the two directions

are equivalent, and it suffices to choose one of them arbitrarily.

3.4.3 Feedback for a general code

This continuous feedback approach generalizes for a full [[n, k, d]] quantum error-

correcting code, which can protect against depolarizing noise [85] acting on each

qubit independently. The depolarizing channel, unlike the bit-flip channel, gener-

ates a full range of quantum errors—it applies either X, Y , or Z to each qubit

equiprobably at a rate γ. We weakly measure the n−k stabilizer generators {Ml}
with strength κ. For each syndrome m, we apply a slow Hamiltonian correction

Fm with control strength λm, the weight of each correction being d or less. The
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y=1

z=1

z=-1

y=-1

Figure 3.1: Bloch sphere showing the action of the feedback scheme on one qubit.

Wherever the Bloch vector is in the y–z plane, the feedback forces it back to the

spin-up state, which is the codespace of this system. All the vectors shown lie,

without loss of generality, in the x = 0 plane.
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SME describing this process is

dρc = γ
∑

j=x,y,z

n
∑

i=1

(D[σ(i)j ])ρcdt+ κ
n−k
∑

l=1

D[Ml]ρcdt

+
√
κ

n−k
∑

l=1

H[Ml]dWjρc − i
R
∑

r=1

λr[Fr, ρc]dt. (3.42)

The number of feedback termsR needed will be less than or equal to the number

of errors the code corrects against. The reason that this equality is not strict is

that quantum error correcting codes can be degenerate, meaning that there can

exist inequivalent errors that have the same effect on the state—a purely quantum

mechanical property [48].

We optimize the λr relative to a cost function equal to the state’s overlap with

the codespace. For a general stabilizer code C, the codespace projector is

ΠC =
1

2n−k

n−k
∏

l=1

(I +Ml)

and the rate of change of the codespace overlap due to feedback is

ḟfb = −i tr
n−k
∑

r=0

λr[ΠC , Fr]ρ.

Maximizing this overlap subject to a maximum feedback strength λ yields the

feedback coefficients

λr = λ sgn〈[ΠC , Fr]〉c . (3.43)

This control solution, as for the bit-flip code, requires a controller to compute

the feedback (3.43). A natural question to ask is how the scaling of the classical

computation behaves. In Sec. 3.7, it is shown that the evolution of (2n−k)2 param-

eters must be calculated in order to compute the feedback for an [[n, k, d]] code,

which at first does not seem promising. However, if one encodes mk qubits using

m copies of an [[n, k, d]] code, as might well be the case for a quantum memory,

the SME (3.42) will not couple the dynamics of the m logical qubits; and, as in
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the bit-flip case, the initial condition for the controller’s integration can still be the

completely mixed state in the total codespace. Then the relevant scaling for this

system, the dependence on m, is linear: the number of parameters is m(2n−k)2.

3.5 Simulation of the bit-flip code

In this section, I present the results of Monte Carlo simulations of the implemen-

tation of the protocol described in Section 3.4 for the bit-flip code.

3.5.1 Simulation details

Because the bit-flip code feedback control scheme (3.31–3.34) uses a nonlinear feed-

back Hamiltonian, numerical simulation is the most tractable route for its study.

To obtain ρc(t), these equations were integrated using a simple Euler integrator

and a Gaussian random number generator. Stable convergent solutions were found

when the dimensionless time step γdt was on the order of 10−6 and averaged over

104 quantum trajectories. As a benchmark, a typical run using these parameters

took 2–8 hours on a 400 MHz Sun Ultra 2. More sophisticated Milstein [65] in-

tegrators were found to converge more quickly but required too steep a reduction

in time step to achieve the same level of stability. All of these simulations began

in the state ρc(0) = |0̄〉〈0̄|, because it is maximally damaged by bit-flipping noise

and therefore it yielded the most conservative results.

Two measures are used to assess the behavior of the bit-flip code feedback

control scheme. The first measure is the codeword fidelity Fcw(t) = tr(ρc(0)ρc(t)),

the overlap of the state with the target codeword. This measure is appropriate

when one cannot perform strong measurements and fast unitary operations, a

realistic scenario for many physical systems. The quantity Fcw(t) is compared to

the fidelities of one unprotected qubit F1(t) =
1
2(1+e

−2γt) and of three unprotected

qubits F3(t) = (F1(t))
3.
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The second measure is the correctable overlap

Fcorr(t) = tr(ρc(t)Πcorr), (3.44)

where

Πcorr = ρ0 +XIIρ0XII

+IXIρ0IXI + IIXρ0IIX (3.45)

is the projector onto the states that can be corrected back to the original codeword

by discrete quantum error correction applied (once) at time t. This measure is ap-

propriate when one can perform strong measurements and fast unitary operations,

but only at discrete time intervals of length t. The quantity Fcorr(t) is compared

to the fidelity F3̄(t) obtained when, instead of using the protocol up to time t, no

correction was performed until the final discrete quantum error correction at time

t. As was shown in equation (3.30), the expression for F3̄(t) may be calculated

analytically; it is F3̄(t) =
1
4(2 + 3e−2γt − e−6γt) ∼ 1− 3γ2t2.

3.5.2 Results

The Monte Carlo simulations demonstrate that both the optimized estimate feed-

back scheme (3.38) and the heuristically motivated feedback scheme (3.36) effec-

tively protect a qubit from bit-flip decoherence. Figs. 3.2 and 3.3 depict how these

schemes behave for the (scaled) measurement and feedback strengths κ/γ = 64,

λ/γ = 128 when averaged over 104 quantum trajectories. Using the first measure,

one can see that at very short times, both schemes have codeword fidelities Fcw(t)

that follow the three-qubit fidelity F3(t) closely. For both schemes, Fcw(t) improves

and surpasses the fidelity of a single unprotected qubit F1(t). Indeed, perhaps the

most exciting feature of these figures is that eventually Fcw(t) surpasses F3̄(t),

the fidelity achievable by discrete quantum error correction applied at time t. In

other words, continuous-time quantum error correction alone outperforms discrete
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Figure 3.2: Behavior of the feedback protocol with optimized feedback (3.38) for

parameters κ/γ = 64, λ/γ = 128, averaged over 104 quantum trajectories. The

analytical curves shown are as follows: the dashed line is the fidelity of one deco-

hering qubit, F1(t); the dashed-dotted line is the fidelity of three decohering qubits,

F3(t); and the dotted line is the fidelity of an encoded qubit after one round of

discrete error correction, F3̄(t). The simulation results are as follows: the solid line

is the codeword fidelity Fcw(t), and the thick solid line is the correctable overlap

Fcorr(t).

quantum error correction alone if the time between corrections is sufficiently long.

Looking at the second measure in Figs. 3.2 and 3.3, one can see that Fcorr(t)

is as good as or surpasses F3̄(t) almost everywhere. For times even as short as a

tenth of a decoherence time, the effect of using (weak) continuous-time quantum

error correction (CTQEC) between discrete quantum error correction cycles is

quite noticeable. This improvement suggests that, even when one can approximate

discrete quantum error correction but only apply it every so often, it pays to use

CTQEC in between corrections. Therefore, CTQEC offers a means of improving

the fidelity of a quantum memory even after the system has been isolated as well as

possible and discrete quantum error correction is applied as frequently as possible.

There is a small time range from t ∼= 0.01 to t ∼= 0.05 for the parameters
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Figure 3.3: Behavior of continuous-time quantum error correction with feedback

(3.36) for parameters κ/γ = 64, λ/γ = 128, averaged over 104 quantum trajecto-

ries. As in Fig. 3.2, the dashed line is F1(t), the dashed-dotted line is F3(t), the

dotted line is F3̄(t), the solid line is Fcw(t) and the thick solid line is Fcw(t). Note

that this feedback is qualitatively similar to that in Fig. 3.2 but does not perform

as well.

used in Fig. 3.2 in which using CTQEC before discrete quantum error correction

actually underperforms not doing anything before the correction. The simulations

suggest that the reason for this narrow window of deficiency is that, in the absence

of CTQEC, it is possible to have two errors on a qubit (e.g., two bit flips) that

cancel each other out before discrete quantum error correction is performed. In

contrast, CTQEC will immediately start to correct for the first error before the

second one happens, so the advantage of this sort of cancellation is lost. This

view is supported by the fact that Fcorr(t) in the simulations always lies above the

fidelity line obtained by subtracting such fortuitous cancellations from F3̄(t). In

any case, this window can be made arbitrarily small and pushed arbitrarily close

to the beginning of CTQEC by increasing the measurement strength κ and the

feedback strength λ.

In Figs. 3.2 and 3.3, the Fcw(t) line is much more jagged than the Fcorr(t) line.
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The jaggedness in both of these lines is due to statistical noise in the simulation

and is reduced when averaged over more than 104 trajectories. The reason for the

reduced noise in the Fcorr(t) line has to do with the properties of discrete quantum

error correction—on average, neighboring states get corrected back to the same

state by discrete quantum error correction, so noise fluctuations become smoothed

out.

The improvement the optimized estimate CTQEC feedback protocol yields

beyond the heuristically motivated CTQEC feedback protocol is more noticeable

in Fcw(t) than in Fcorr(t) as seen in Figs. 3.2 and 3.3. The optimized protocol acts

to minimize the distance between the current state and the codespace, not between

the current state and the space of states correctable back to the original codeword,

so this observation is perhaps not surprising. In fact, optimizing feedback relative

to Fcorr(t) is not even possible without knowing the codeword being protected.

Nevertheless, the optimized protocol does perform better, so henceforth I shall

restrict my discussion to it.

How CTQEC behaved when the scaled measurement strength κ/γ and feedback

strength λ/γ were varied was also studied using the two measures described in

Sec. 3.5.1. The first measure, the codeword fidelity Fcw(t), crosses the unprotected

qubit fidelity F1(t) at various times τ as depicted in Fig. 3.4. This time is of interest

because it is the time after which the optimized protocol improves the fidelity of

a qubit beyond what it would have been if it were left to itself. Increasing the

scaled feedback strength λ/γ improves the CTQEC scheme and reduces τ , but the

dependence on the scaled measurement strength κ/γ is not so obvious from Fig.

3.4.

By looking at cross sections of Fig. 3.4, such as at λ/γ = 80 as in Fig. 3.5, one

can see that, for a given scaled feedback strength λ/γ, there is a minimum crossing

time τ as a function of measurement strength κ/γ. In other words, there is an

optimal choice of measurement strength κ/γ. This optimal choice arises because

syndrome measurements, which localize states near error subspaces, compete with

Hamiltonian correction operations, which coherently rotate states between the
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Figure 3.4: Time τ at which Fcw(τ) = F1(τ) as a function of measurement strength

κ/γ and feedback strength λ/γ. This crossing time is the time after which the

optimized continuous-time quantum error correction protocol improves the fidelity

of a qubit beyond what it would have been if it were left to itself.

nontrivial error subspaces to the trivial error subspace. This phenomenon is a

feature of continuous-time quantum error correction that is not present in discrete

quantum error correction; in the former, measurement and correction are simulta-

neous, while in the latter, measurement and correction are separate processes that

don’t interfere.

In order to study how the second measure, the correctable overlap Fcorr(t),

varies with κ and λ, it is instructive to examine its behavior at a particular time.

Fig. 3.6 plots Fcorr(t), evaluated at the time t = 0.2/γ, as a function of κ and λ. As

was found with the crossing time τ , increasing λ always improves performance, but

increasing κ does not because measurement can compete with correction. Since

F3̄(0.2/γ)
∼= 0.927, for all the κ and λ plotted in Fig. 3.6, using CTQEC between

discrete quantum error correction intervals of time 0.2/γ improves the reliability

of the encoded data.
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Figure 3.5: Time τ at which Fcw(τ) = F1(τ) as a function of measurement strength

κ/γ, keeping correction strength fixed at λ/γ = 80.
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Figure 3.6: Fcorr at γt = 0.2 as a function of measurement strength κ/γ and

feedback strength λ/γ. This quantity corresponds to the fidelity of a state given

continuous error-correction up to γt = 0.2, at which point discrete error-correction

is performed.
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3.6 Conclusion

Often, in realistic quantum computing architectures, weak measurements and

Hamiltonian operations are likely to be the tools available to protect quantum

states from decoherence. Moreover, even quantum systems in which strong mea-

surements and fast operations are well approximated, such as ion traps [110],

it is likely that these operations will only be possible at some maximum rate.

Continuous-time quantum error correction (CTQEC) is able to continuously pro-

tect unknown quantum states using only weak measurements and Hamiltonian

corrections and can improve the fidelity of quantum states beyond rate-limited

quantum error correction. In addition, because CTQEC responds to the entire

measurement record and not to instantaneous measurement results, it will not

propagate errors badly and therefore has a limited inherent fault-tolerance that

ordinary quantum error correction does not.

Continuous-time quantum error correction is expected to be applicable to other

continuous-time quantum information processes, such as reliable state preparation

and fault-tolerant quantum computation. It is also expected that this protocol

will work when different continuous-time measurement tools are available, such as

direct photodetection. Finally, although current computing technology has limited

investigation by simulation to few-qubit versions of CTQEC, it is expected that

many of the salient features found in the three-qubit bit-flip code example will

persist when CTQEC is applied to larger codes.

3.7 Feedback based on the completely mixed state

Although the CTQEC scheme described in Section 3.4 does not distinguish be-

tween codewords, it is not obvious that in order to use it one does not need to

first know the initial codeword to integrate the SME and calculate the relevant

expectation values. Since one of the primary selling points of CTQEC is that it can

protect unknown quantum states, this property is crucial to the scheme’s success.
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Fortunately, for a large class of stabilizer codes, the computation of the feedback

can be done by assuming the initial state is the completely mixed codespace state

ρe =
1
2n

∏n−k
l=1 (I +Ml), which I prove here. The proof is originally due to Ahn [5].

Defining the set G for the [[n, k, d]] code C with stabilizer S(C) as

G = {αs |α ∈ Pn, s ∈ S(C), [s, α] = 0 iff |α| is even} , (3.46)

where |α| denotes the weight of α as defined in section 3.3.2.

The normalizer N(S) for the code is defined to be the group of operators that

commute with every element in S(C). The elements of N(S) \ S can be thought

of as the encoded operations for the code—they move one codeword to another.

Let g = σi1 ⊗ ... ⊗ σin , where i1 . . . in take on the values x, y, z, I and σI = I.

Define the Pauli basis coefficients Rg(ρ) of a density matrix ρ as follows:

Rg(ρ) ≡ tr(ρg)/2n = 〈g〉/2n, (3.47)

The following theorem shows that the conditions for the feedback to be insen-

sitive to the initial codeword can be expressed as

1. For every Rg used in CTQEC, g ∈ G.

2. For every g ∈ G and every ρ1 and ρ2 in C, Rg(ρ1) = Rg(ρ2).

3. Evolution under the SME couples members of the set {Rg|g ∈ G} only to

each other.

Theorem 3.7.1. Let C be an [[n, 1, 3]] 4 stabilizer code whose stabilizer S(C) has
generators of only even weight and whose encoded operations set N(S) \ S has

elements of only odd weight.5 Then the conditions 1–3 above are satisfied; conse-

4The restriction to [[n, 1, 3]] codes is for simplicity of analysis; the proof may be extended to

larger codes. Note that for an [[n, 1, 3]] code, the Fl in the master equation (3.42) are all of the

form σ
(k)
j , where this notation denotes the weight-one Pauli operator σj acting on qubit k.

5It is possible that this restriction may be able to be relaxed; however, it is sufficiently general

that it holds for the most well-known codes, including the bit-flip code, the five-bit code, the
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quently, continuous-time quantum error correction does not require knowledge of

where the initial codeword lies in C.

Proof. In this proof, any variable of the form αa is an arbitrary element of Pn, and

any variable of the form sa is an arbitrary element of S(C). Each of the conditions

listed above are proven separately.

Condition 1: By construction, G contains allM of the formM = siσ
(k)
j , where

[si, σ
(k)
j ] 6= 0. These are precisely the operators used to compute the feedback in

(3.43) for a code encoding one qubit.

Condition 2: Let g = αs ∈ G and let ρ ∈ C. We know either α ∈ S, α ∈
N(S) \ S, or α /∈ N(S). Suppose α ∈ S. Then g ∈ S acts trivially on all

states in the codespace, so Rg = 1/2n tr(ρg) = 1/2n for this case. Now suppose

α ∈ N(S)\S. Then [α, s] = 0, and since αs ∈ G, |α| is even. But every element of

N(S) \ S has odd weight by hypothesis, which is a contradiction. Hence α cannot

be in N(S) \ S. Finally, suppose α /∈ N(S). Then there exists some s′ ∈ S such

that [α, s′] 6= 0; let s′ be such an element. Then for |ψ〉, |φ〉 ∈ C,

〈ψ|α |φ〉 = 〈ψ|αs′ |φ〉= −〈ψ| s′α |φ〉

= −〈ψ|α |φ〉= 0. (3.48)

Hence for this case Rg = 1/2n tr(ραs) = 0. Note that these expressions for

Rg must be the same no matter where ρ is in the codespace; therefore, for every

g ∈ G and ρ1, ρ2 ∈ C, Rg(ρ1) = Rg(ρ2).

Condition 3: Consider dRM , where M ∈ G. It will be shown that dRM =

f({RN |N ∈ G}) for some real function f . For any M ∈ Pn, dRM = Tr(dρ M),

where dρ is given by the master equation (3.42). Hence the satisfaction of condi-

tion three can be demonstrated for each term of the master equation separately.

First, substituting in the master equation shows that any term of the form D[c]ρdt
Steane code, and the nine-bit Shor code. This condition also ensures that G is consistent, i.e., if

αjsk ∈ G and αj = αnsm, then αn and smsk also fulfill the conditions for αn(smsk) to be in G.
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contributes either 0 or the simple exponential damping term −2RM to dRM if M

and c commute or anticommute, respectively.

As for the master equation term H[sj ]dWjρ, by writing the master equation in

the Pauli basis one can see that RN contributes to dRM through this term precisely

when Nsj =M and {sj , N} 6= 0. SinceM ∈ G, one may writeM = αksl (with the

appropriate restriction on [αk, sl] depending on the weight of αk) . N = αkslsj =

αksm, so the condition above that [sj , N ] = 0 becomes [sj , αkslsj ] = (αk[sj , slsj ]+

[sj , αk]slsj) ⇒ [sj , αk] = 0. Therefore, [αk, sm] = sl[αk, sj ] + [αk, sl]sj = [αk, sl]sj

which is zero or not depending on the original weight of αk. So ifM = αksl is such

that M ∈ G, N = αksm must fulfill that same condition, implying that N ∈ G
also.

Similarly, RN contributes to dRM through the master equation term [σ
(k)
j , ρ]

when Nσ
(k)
j = M and [σ

(k)
j , N ] 6= 0. Now, M ∈ G so M = αlsm, again with

the appropriate restriction on [αl, sm] depending on the weight of αl. Then N =

σ
(k)
j αlsm ≡ αnsm, so the condition above that {σ(k)j , N} 6= 0 becomes

{σ(k)j , σ
(k)
j αlsm} = σ

(k)
j [σ

(k)
j , αl]sm + σ

(k)
j αl{σ(k)j , sm}

= σ
(k)
j {σ

(k)
j , αl}sm − σ(k)j αl[σ

(k)
j , sm]

= 0. (3.49)

The analysis of this term can be divided into two cases. Case 1 occurs when

σ
(k)
j αl has weight |αl|, implying that {αl, σ(k)j } = 0. Then {σ(k)j , σ

(k)
j αlsm} =

−σ(k)j αl[σ
(k)
j , sm] = 0, which implies that [sm, αn] = [sm, σ

(k)
j ]αl + σ

(k)
j [sm, αl] =

σ
(k)
j [sm, αl]. So [sm, αn] = 0 just when [sm, αl] = 0, which means that N ∈ G since

|αn| = |αl|.
In Case 2, σ

(k)
j αl has weight |αl ± 1| ⇒ [αl, σ

(k)
j ] = 0. Then (3.49) be-

comes {σ(k)j , σ
(k)
j αlsm} = σ

(k)
j αl{σ(k)j , sm} = 0, which implies that [sm, αn] =

{sm, σ(k)j }αl+σ
(k)
j {sm, αl} = σ

(k)
j {sm, αl}. So [sm, αn] = 0 just when {sm, αl} = 0,

which means that N ∈ G since |αn| = |αl ± 1|. ¥
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In summary, the theorem demonstrates that all three of the conditions above

are satisfied: all the R’s used to compute the feedback are of the form RN∈G; for

a given M ∈ G, RM will be the same for any state in the codespace; and evo-

lution via the master equation mixes the R’s of the form RN∈G only with each

other. Therefore, CTQEC works the same for any state initially in the codespace,

including the true initial state and the entirely mixed state, so it suffices to pre-

suppose the completely mixed state as the initial condition rather than the actual

(unknown) code state.

Another consequence of using the completely mixed state for feedback arises

from the fact that doing so corresponds to discarding information about the state

of the system. Therefore, this procedure should reduce the number of parame-

ters needed to compute the feedback. Unfortunately, this only leads to a modest

reduction in the number of parameters, which can be found by using a simple

counting argument. There are 2n/2k = 2n−k different error subspaces, including

the no-error (code) space, and if one starts with the completely mixed state in the

codespace one does not need to worry at all about any movement within any of

these spaces. One only needs to worry about which error space the state is actu-

ally in, along with coherences between these spaces, so that (2n−k)2 parameters

are needed to describe the system.
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Chapter 4

Topological quantum memory

Abstract

In this chapter, I present an analysis of surface codes, the topological quantum

error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in

a two-dimensional array on a surface of nontrivial topology, and encoded quantum

operations are associated with nontrivial homology cycles of the surface. I present

new protocols for error recovery, and study the efficacy of these protocols. An

order-disorder phase transition occurs in this system at a nonzero critical value of

the error rate; if the error rate is below the critical value (the accuracy threshold),

encoded information can be protected arbitrarily well in the limit of a large code

block. This phase transition can be accurately modelled by a three-dimensional

Z2 lattice gauge theory with quenched disorder. I present an estimation of the

accuracy threshold, assuming that all quantum gates are local, that qubits can be

measured rapidly, and that polynomial-size classical computations can be executed

instantaneously. I also describe a robust recovery procedure that does not require

measurement or fast classical processing; however, for this procedure the quantum

gates are local only if the qubits are arranged in four or more spatial dimensions.

I present procedures for encoding, measurement, and performing fault-tolerant

universal quantum computation with surface codes, and argue that these codes

provide a promising framework for quantum computing architectures.
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The work presented in this chapter is the result of a collaboration with Dennis,

Kitaev, and Preskill [29]. Large sections of this chapter were originally written by

Preskill.

4.1 Introduction

The microscopic world is quantum mechanical, but the macroscopic world is classi-

cal. This fundamental dichotomy arises because a coherent quantum superposition

of two readily distinguishable macroscopic states is highly unstable. The quantum

state of a macroscopic system rapidly decoheres due to unavoidable interactions

between the system and its surroundings.

Decoherence is so pervasive that it might seem to preclude subtle quantum

interference phenomena in systems with many degrees of freedom. However, re-

cent advances in the theory of quantum error correction suggest otherwise [92, 94].

Quantum states can be cleverly encoded so that the debilitating effects of deco-

herence, if not too severe, can be resisted. Furthermore, fault-tolerant protocols

have been devised that allow an encoded quantum state to be reliably processed

by a quantum computer with imperfect components [93]. In principle, then, very

intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coher-

ent quantum states, information processing can prevent information loss. In this

chapter, we will study a particular approach to quantum fault tolerance that has

notable advantages: in this approach, based on the surface codes introduced in

[60, 61], the quantum processing needed to control errors has especially nice local-

ity properties. Hence, surface codes suggest a particularly promising approach to

quantum computing architecture.

One glittering achievement of the theory of quantum fault tolerance is the

threshold theorem, which asserts that an arbitrarily long quantum computation

can be executed with arbitrarily high reliability, provided that the error rates of

the computer’s fundamental quantum gates are below a certain critical value, the
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accuracy threshold [67, 2, 62, 87, 48]. The numerical value of this accuracy thresh-

old is of great interest for future quantum technologies, as it defines a standard

that should be met by designers of quantum hardware. The critical error prob-

ability per gate pc has been estimated as pc >∼ 10−4; very roughly speaking, this

means that robust quantum computation is possible if the decoherence time of

stored qubits is at least 104 times longer than the time needed to execute one

fundamental quantum gate [52], assuming that decoherence is the only source of

error.

This estimate of the accuracy threshold is obtained by analyzing the efficacy

of a concatenated code, a hierarchy of codes within codes, and it is based on many

assumptions, which will be elaborated in Sec. 4.2. Some of these assumptions

are less realistic than others. For example, one assumption is that a quantum

gate can act on any pair of qubits, with a fidelity that is independent of the

spatial separation of the qubits. This assumption is clearly unrealistic; it is made

because it greatly simplifies the analysis. Thus this estimate will be reasonable for

a practical device only to the extent that the hardware designer is successful in

arranging that qubits that must interact are kept close to one another. It is known

that the threshold theorem still applies if quantum gates are required to be local

[2, 51], but for this realistic case careful estimates of the threshold have not been

carried out.

In this chapter, I will perform a quite different estimate of the accuracy thresh-

old, based on surface codes rather than concatenated codes. This estimate applies

to a device with strictly local quantum gates, if the device is controlled by a classi-

cal computer that is perfectly reliable, and whose clock speed is much faster than

the clock speed of the quantum computer. In this approach, some spatial nonlo-

cality in effect is still allowed, but all the nonlocal processing is demanded to be

classical. Specifically, an error syndrome is extracted by performing local quantum

gates and measurements; then a classical computation is executed to infer what

quantum gates are needed to recover from error. We will assume that this classical

computation, which actually requires a time bounded above by a polynomial in
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the number of qubits in the quantum computer, can be executed in a constant

number of time steps. Under this assumption, the existence of an accuracy thresh-

old can be established and its value can be estimated. It will be shown that,

under the assumption that the classical computation can be completed in a single

time step, the critical error probability pc per qubit and per time step satisfies

pc ≥ 1.7× 10−4. This estimate applies to the accuracy threshold for reliable stor-

age of quantum information, rather than for reliable processing. The threshold for

quantum computation is not as easy to analyze definitively, but it will be argued

that its numerical value is not likely to be substantially different.

It is reasonable to believe that the principles of fault tolerance will dictate

the shape of future quantum computing architectures. In Sec. 4.2, the hardware

features that are conducive to fault-tolerant processing will be listed, and the

design of a fault-tolerant quantum computer that incorporates surface coding will

be outlined. I review the properties of surface codes in Sec. 4.3, emphasizing in

particular that the qubits in the code block can be arranged in a planar sheet

[17, 42], and that errors in the syndrome measurement complicate the recovery

procedure. The core of the chapter is Sec. 4.4, where recovery from errors using

surface codes is related to a statistical-mechanical model with local interactions.

In the (unrealistic) case where syndrome measurements are perfect, this model

becomes the two-dimensional Ising model with quenched disorder, whose phase

diagram has been studied by Monte Carlo simulations. These simulations indicate

that if the syndrome information is put to optimal use, error recovery succeeds

with a probability that approaches one in the limit of a large code block, if and

only if both phase errors and bit-flip errors occur with a probability per qubit less

than about 11%. In the more realistic case where syndrome measurements are

imperfect, error recovery is modelled by a three-dimensional Z2 gauge theory with

quenched disorder, whose phase diagram (to the best knowledge of me and my

collaborators) has not been studied previously. The third dimension that arises

can be interpreted as time—since the syndrome information cannot be trusted,

one must repeat the measurement many times before one can be confident about



Chapter 4: Topological quantum memory 63

the correct way to recover from the errors. It will be argued that an order-disorder

phase transition of this model corresponds to the accuracy threshold for quantum

storage, and furthermore that the optimal recovery procedure can be computed

efficiently on a classical computer. In Sec. 4.5, a rather crude lower bound on

the accuracy threshold will be proved, concluding that error recovery procedure

is sure to succeed in the limit of a large code block under suitable conditions: for

example, if in each round of syndrome measurement, qubit phase errors, qubit

bit-flip errors, and syndrome bit errors all occur with probability below 1.14%.

Tighter estimates of the accuracy threshold could be obtained through numerical

studies of the quenched gauge theory.

In deriving this accuracy threshold for quantum storage, it is assumed that an

unlimited amount of syndrome data could be deposited in a classical memory, if

necessary. But in Sec. 4.6, it will be shown that this threshold, and a corresponding

accuracy threshold for quantum computation, remain intact even if the classical

memory is limited to polynomial size. Then in Sec. 4.7, quantum circuits for syn-

drome measurement are analyzed, so that the estimate of the accuracy threshold

can be reexpressed as a fidelity requirement for elementary quantum gates. The

conclusion is that such a quantum memory can resist decoherence if gates can be

executed in parallel, and if the qubit decoherence time is at least 6000 times longer

than the time needed to execute a gate. In Sec. 4.8, it will be shown that encoded

qubits can be accurately prepared and reliably measured. It will also be shown

how a surface code with a small block size can be built up gradually to a large

block size; this procedure allows one to enter a qubit in an unknown quantum

state into this quantum memory with reasonable fidelity, and then to maintain

that fidelity for an indefinitely long time. It will be explained in Sec. 4.9 how a

universal set of quantum gates acting on protected quantum information can be

executed fault-tolerantly.

Most of the analysis of the accuracy threshold in this chapter is premised on the

assumption that qubits can be measured quickly and that classical computations

can be done instantaneously and perfectly. In Sec. 4.10, these assumptions are
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dropped. A recovery procedure that does not require measurement or classical

computation will be presented, and a lower bound on the accuracy threshold will

be inferred. Unfortunately, though, the quantum processing in this procedure is

not spatially local unless the dimensionality of space is at least four. Sec. 4.11

contains some concluding remarks.

This chapter analyzes applications of surface coding to quantum memory and

quantum computation that could in principle be realized in any quantum computer

that meets the criteria outlined in Sec. 4.2, whatever the details of how the local

quantum gates are physically implemented. It has also been emphasized [60, 61]

that surface codes may point the way toward realizations of intrinsically stable

quantum memories (physical fault tolerance). In that case, protection against

decoherence would be achieved without the need for active information processing,

and how accurately the protected quantum states can be processed might depend

heavily on the details of the implementation.

4.2 Fault tolerance and quantum architecture

To prove that a quantum computer with noisy gates can perform a robust quantum

computation, we must make some assumptions about the nature of the noise and

about how the computer operates. In fact, similar assumptions are needed to prove

that a classical computer with noisy gates is robust [44]. Still, it is useful to list

these requirements—they should always be kept in mind when we contemplate

proposed schemes for building quantum computing hardware:

• Constant error rate. We assume that the strength of the noise is independent

of the number of qubits in the computer. If the noise increases as we add

qubits, then we cannot reduce the error rate to an arbitrarily low value by

increasing the size of the code block.

• Weakly correlated errors. Errors must not be too strongly correlated, either

in space or in time. In particular, fault-tolerant procedures fail if errors

act simultaneously on many qubits in the same code block. If possible, the
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hardware designer should strive to keep qubits in the same block isolated

from one another.

• Parallel operation. We need to be able to perform many quantum gates in

a single time step. Errors occur at a constant rate per unit time, and we

are to control these errors through information processing. We could never

keep up with the accumulating errors except by doing processing in different

parts of the computer at the same time.

• Reusable memory. Errors introduce entropy into the computer, which must

be flushed out by the error recovery procedure. Quantum processing transfers

the entropy from the qubits that encode the protected data to “ancilla”

qubits that can be discarded. Thus fresh ancilla qubits must be continually

available. The ability to erase (or replace) the ancilla quickly is an essential

hardware requirement [3].

In some estimates of the threshold, additional assumptions are made. While not

strictly necessary to ensure the existence of a threshold, these assumptions may be

useful, either because they simplify the analysis of the threshold or because they

allow us to increase its numerical value. Hence these assumptions, too, should

command the attention of the prospective hardware designer:

• Fast measurements. It is helpful to assume that a qubit can be measured as

quickly as a quantum gate can be executed. For some implementations, this

may not be a realistic assumption—measurement requires the amplification

of a microscopic quantum effect to a macroscopic signal, which may take a

while. But by measuring a classical error syndrome for each code block, we

can improve the efficiency of error recovery. Furthermore, if we can measure

qubits and perform quantum gates conditioned on classical measurement

outcomes, then we can erase ancilla qubits by projecting onto the {|0〉, |1〉}
basis and flipping the qubit if the outcome is |1〉.
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• Fast and accurate classical processing. If classical processing is faster and

more accurate than quantum processing, then it is beneficial to substitute

classical processing for quantum processing when possible. In particular, if

the syndrome is measured, then a classical computation can be executed to

determine how recovery should proceed. Ideally, the classical processors that

coordinate the control of the quantum computer should be integrated into

the quantum hardware.

• No leakage. It is typically assumed that, though errors may damage the

state of the computer, the qubits themselves remain accessible—they do not

“leak” out of the device. In fact, at least some types of leakage can be

readily detected. If leaked qubits, once detected, can be replaced easily by

fresh qubits, then leakage need not badly compromise performance. Hence,

a desirable feature of hardware is that leaks are easy to detect and correct.

• Nonlocal quantum gates. Higher error rates can be tolerated, and the esti-

mate of the threshold is simplified, if we assume that two-qubit quantum

gates can act on any pair of qubits with a fidelity independent of the dis-

tance between the qubits. However useful, this assumption is not physically

realistic. What the hardware designer can and should do, though, is try to

arrange that qubits that will need to interact with one another are kept close

to one another. In particular, the ancilla qubits that absorb entropy should

be carefully integrated into the design [51].

If we do insist that all quantum gates are local, then another desirable feature

is

• High coordination number. A threshold theorem applies even if qubits form a

one-dimensional array [2, 51]. But local gates are more effective if the qubits

are arranged in three dimensions, so that each qubit has more neighbors.

Suppose, then, that we are blessed with an implementation of quantum compu-

tation that meets all of our desiderata. Qubits are arranged in a three-dimensional
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lattice, and can be projectively measured quickly. Reasonably accurate quantum

gates can be applied in parallel to single qubits or to neighboring pairs of qubits.

Fast classical processing is integrated into the qubit array. Under these conditions

planar surface codes provide an especially attractive way to operate the quantum

computer fault-tolerantly.

We may envision our quantum computer as a stack of planar sheets, with a

protected logical qubit encoded in each sheet. Adjacent to each logical sheet is

an associated sheet of ancilla qubits that are used to measure the error syndrome

of that code block; after each measurement, these ancilla qubits are erased and

then immediately reused. Encoded two-qubit gates can be performed between

neighboring logical sheets, and any two logical sheets in the stack can be brought

into contact by performing swap gates that move the sheets through the interven-

ing layers of logical and ancilla qubits. As a quantum circuit is executed in the

stack, error correction is continually applied to each logical sheet to protect against

decoherence and other errors. Portions of the stack are designated as “software

factories,” where special ancilla states are prepared and purified—this software

is then consumed during the execution of certain quantum gates that cannot be

implemented directly.

A notable feature of this design (or other fault-tolerant designs) is that most of

the information processing in the device is devoted to controlling errors, rather than

moving the computation forward. How accurately must the fundamental quantum

gates be executed for this error control to be effective, so that our machine is

computationally powerful? The goal of this chapter is to address this question.

4.3 Surface codes

We will study the family of quantum error-correcting codes introduced in [60, 61].

These codes are especially well suited for fault-tolerant implementation, because

the procedure for measuring the error syndrome is highly local.
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4.3.1 Toric codes

For the code originally described in [60, 61], it is convenient to imagine that the

qubits are in one-to-one correspondence with the links of a square lattice drawn on

a torus, or, equivalently, drawn on a square with opposite edges identified. Hence

we will refer to them as “toric codes.” Toric codes can be generalized to a broader

class of quantum codes, with each code in the class associated with a tessellation

of a two-dimensional surface. Codes in this broader class will be called “surface

codes.”

A surface code is a special type of “stabilizer code” [18, 47]. A (binary) sta-

bilizer code can be characterized as the simultaneous eigenspace with eigenvalue

one of a set of mutually commuting check operators (or “stabilizer generators”),

where each generator is a “Pauli operator.” We use the notation

I =





1 0

0 1



 , X =





0 1

1 0



 , (4.1)

Y =





0 −i
i 0



 , Z =





1 0

0 −1



 (4.2)

for the 2 × 2 identity and Pauli matrices; a Pauli operator acting on n qubits is

one of the 22n tensor product operators

{I,X, Y, Z}⊗n. (4.3)

For the toric code defined by the L × L square lattice on the torus, there are

2L2 links of the lattice, and hence 2L2 qubits in the code block. Check operators

are associated with each site and with each elementary cell (or “plaquette”) of the

lattice, as shown in Fig. 4.1. The check operator at site s acts nontrivially on the

four links that meet at the site; it is the tensor product

Xs = ⊗`3sX` (4.4)
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XX
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Figure 4.1: Check operators of the toric code. Each plaquette operator is a tensor

product of Z’s acting on the four links contained in the plaquette. Each site

operator is a tensor product of X’s acting on the four links that meet at the site.

acting on those four qubits, times the identity acting on the remaining qubits. The

check operator at plaquette P acts nontrivially on the four links contained in the

plaquette, as the tensor product

ZP = ⊗`∈PZ`, (4.5)

times the identity on the remaining links.

Although X and Z anticommute, the check operators are mutually commuting.

Obviously, site operators commute with site operators, and plaquette operators

with plaquette operators. Site operators commute with plaquette operators be-

cause a site operator and a plaquette operator act either on disjoint sets of links,

or on sets whose intersection contains two links. In the former case, the operators

obviously commute, and in the latter case, two cancelling minus signs arise when

the site operator commutes through the plaquette operator. The check operators

generate an Abelian group, the code’s stabilizer.

The check operators can be simultaneously diagonalized, and the toric code

is the space in which each check operator acts trivially. Because of the periodic
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boundary conditions, each site or plaquette operator can be expressed as the prod-

uct of the other L2 − 1 such operators; the product of all L2 site operators or all

L2 plaquette operators is the identity, since each link operator occurs twice in the

product, and X2 = Z2 = I. There are no further relations among these operators;

therefore, there are 2·(L2−1) independent check operators, and hence two encoded

qubits (the code subspace is four dimensional).

A Pauli operator that commutes with all the check operators will preserve the

code subspace. What operators have this property? To formulate the answer,

it is convenient to recall some standard mathematical terminology. A mapping

that assigns an element of Z2 = {0, 1} to each link of the lattice is called a (Z2-

valued) 1-chain. In a harmless abuse of language, we will also use the term 1-chain

(or simply chain) to refer to the set of all links that are assigned the value 1 by

such a mapping. The 1-chains form a vector space over Z2—intuitively, the sum

u + v of two chains u and v is a disjoint union of the links contained in the two

1-chains. Similarly, 0-chains assign elements of Z2 to lattice sites and 2-chains

assign elements of Z2 to lattice plaquettes; these also form vector spaces. A linear

boundary operator ∂ can be defined that takes 2-chains to 1-chains and 1-chains

to 0-chains: the boundary of a plaquette is the sum of the four links comprising

the plaquette, and the boundary of a link is the sum of the two sites at the ends

of the link. A chain whose boundary is trivial is called a cycle.

Now, any Pauli operator can be expressed as a tensor product of X’s (and

I’s) times a tensor product of Z’s (and I’s). The tensor product of Z’s and I’s

defines a Z2-valued 1-chain, where links acted on by Z are mapped to 1 and links

acted on by I are mapped to 0. This operator trivially commutes with all of the

plaquette check operators, but commutes with a site operator if and only if an

even number of Z’s act on the links adjacent to the site. Thus, the corresponding

1-chain must be a cycle. Similarly, the tensor product of X’s trivially commutes

with the site operators, but commutes with a plaquette operator only if an even

number of X’s act on the links contained in the plaquette. This condition can

be more conveniently expressed if we consider the dual lattice, in which sites and
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plaquettes are interchanged; the links dual to those on which X acts form a cycle

of the dual lattice. In general, then, a Pauli operator that commutes with the

stabilizer of the code can be represented as a tensor product of Z’s acting on a

cycle of the lattice, times a tensor product of X’s acting on a cycle of the dual

lattice.

Cycles are of two distinct types. A 1-cycle is homologically trivial if it can be

expressed as the boundary of a 2-chain (Fig. 4.2a). Thus, a homologically trivial

cycle on our square lattice has an interior that can be “tiled” by plaquettes, and

a product of Z’s acting on the links of the cycle can be expressed as a product

of the enclosed plaquette operators. This operator is therefore a product of the

check operators—it is contained in the code stabilizer and acts trivially on the code

subspace. Similarly, a product of X’s acting on links that comprise a homologically

trivial cycle of the dual lattice is also a product of check operators. Furthermore,

any element of the stabilizer group of the toric code (any product of the generators)

can be expressed as a product of Z’s acting on a homologically trivial cycle of the

lattice times X’s acting on a homologically trivial cycle of the dual lattice.

But a cycle could be homologically nontrivial, that is, not the boundary of any-

thing (Fig. 4.2b). A product of Z’s corresponding to a nontrivial cycle commutes

with the code stabilizer (because it is a cycle), but is not contained in the stabilizer

(because the cycle is nontrivial). Therefore, while this operator preserves the code

subspace, it acts nontrivially on encoded quantum information. Associated with

the two fundamental nontrivial cycles of the torus, then, are the encoded opera-

tions Z̄1 and Z̄2 acting on the two encoded qubits. Associated with the two dual

cycles of the dual lattice are the corresponding encoded operations X̄1 and X̄2, as

shown in Fig 4.3.

A Pauli operator acting on n qubits is said to have weight w if the identity I

acts on n− w qubits and nontrivial Pauli matrices act on w qubits. The distance

d of a stabilizer code is the weight of the minimal-weight Pauli operator that

preserves the code subspace and acts nontrivially within the code subspace. If an

encoded state is damaged by the action of a Pauli operator whose weight is less
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C

(a) (b)

C

Figure 4.2: Cycles on the lattice. (a) A homologically trivial cycle bounds a region

that can be tiled by plaquettes. The corresponding tensor product of Z’s lies in the

stabilizer of the toric code. (b) A homologically nontrivial cycle is not a boundary.

The corresponding tensor product of Z’s commutes with the stabilizer but is not

contained in it. It is a logical operation that acts nontrivially in the code subspace.

than half the code distance, then we can recover from the error successfully by

applying the minimal weight Pauli operator that returns the damaged state to the

code subspace (which can be determined by measuring the check operators). For

a toric code, the distance is the number of lattice links contained in the shortest

homologically nontrivial cycle on the lattice or dual lattice. Thus in the case of an

L× L square lattice drawn on the torus, the code distance is d = L.

The great virtue of the toric code is that the check operators are so simple.

Measuring a check operator requires a quantum computation, but because each

check operator involves just four qubits in the code block, and these qubits are

situated near one another, the measurement can be executed by performing just a

few quantum gates. Furthermore, the ancilla qubits used in the measurement can

be situated where they are needed, so that the gates act on pairs of qubits that

are in close proximity.

The observed values of the check operators provide a “syndrome” that we may

use to diagnose errors. If there are no errors in the code block, then every check
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Figure 4.3: Basis for the operators that act on the two encoded qubits of the toric

code. The logical operators Z̄1 and Z̄2 are tensor products of Z’s associated with

the fundamental nontrivial cycles of the torus constructed from links of the lattice.

The complementary operators X̄1 and X̄2 are tensor products of X’s associated

with nontrivial cycles constructed from links of the dual lattice.

operator takes the value 1. Since each check operator is associated with a definite

position on the surface, a site of the lattice or the dual lattice, we may describe the

syndrome by listing all positions where the check operators take the value −1. It

is convenient to regard each such position as the location of a particle, a “defect”

in the code block.

If errors occur on a particular chain (a set of links of the lattice or dual lattice),

then defects occur at the sites on the boundary of the chain. Evidently, then, the

syndrome is highly ambiguous, as many error chains can share the same boundary,

and all generate the same syndrome. For example, the two chains shown in Fig. 4.4

end on the same two sites. If errors occur on one of these chains, we might

incorrectly infer that the errors actually occured on the other chain. Fortunately,

though, this ambiguity need not cause harm. If Z errors occur on a particular

chain, then by applying Z to each link of any chain with the same boundary as the

actual error chain, we will successfully remove all defects. Furthermore, as long

as the chosen chain is homologically correct (differs from the actual error chain



Chapter 4: Topological quantum memory 74

Figure 4.4: The highly ambiguous syndrome of the toric code. The two site defects

shown could arise from errors on either one of the two chains shown. In general,

error chains with the same boundary generate the same syndrome, and error chains

that are homologically equivalent act on the code space in the same way.

by the one-dimensional boundary of a two-dimensional region), then the encoded

state will be undamaged by the errors. In that event, the product of the actual Z

errors and the Z’s that we apply is contained in the code stabilizer and therefore

acts trivially on the code block.

Heuristically, an error chain can be interpreted as a physical process in which a

defect pair nucleates, and the two members of the pair drift apart. To recover from

the errors, we lay down a “recovery chain” bounded by the two defect positions,

which we can think of as a physical process in which the defects are brought

together to reannihilate. If the defect world line consisting of both the error chain

and the recovery chain is homologically trivial, then the encoded quantum state is

undamaged. But if the world line is homologically nontrivial (if the two members

of the pair wind around a cycle of the torus before reannihilating), then an error

afflicts the encoded quantum state.
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4.3.2 Planar codes

If all check operators are to be readily measured with local gates, then the qubits of

the toric code need to be arranged on a topologically nontrivial surface, the torus,

with the ancilla qubits needed for syndrome measurement arranged on an adjacent

layer. In practice, the toroidal topology is likely to be inconvenient, especially if we

want qubits residing in different tori to interact with one another in the course of

a quantum computation. Fortunately, surface codes can be constructed in which

all check operators are local and the qubits are arranged on planar sheets [17,

42]. The planar topology will be more conducive to realistic quantum computing

architectures.

In the planar version of the surface code, there is a distinction between the

check operators at the boundary of the surface and the check operators in the

interior. Check operators in the interior are four-qubit site or plaquette operators,

and those at the boundary are three-qubit operators. Furthermore, the boundary

has two different types of edges as shown in Fig. 4.5. Along a “plaquette edge” or

“rough edge,” each check operator is a three-qubit plaquette operator Z⊗3. Along

a “site edge” or “smooth edge,” each check operator is a three-qubit site operator

X⊗3.

As before, in order to commute with the code stabilizer, a product of Z’s must

act on an even number of links adjacent to each site of the lattice. Now, though,

the links acted upon by Z’s may comprise an open path that begins and ends on a

rough edge. We may then say that the 1-chain comprised of all links acted upon by

Z is a cycle relative to the rough edges. Similarly, a product of X’s that commutes

with the stabilizer acts on a set of links of the dual lattice that comprise a cycle

relative to the smooth edges.

Cycles relative to the rough edges come in two varieties. If the chain contains

an even number of the free links strung along the rough edge, then it can be tiled by

plaquettes (including the boundary plaquettes), and so the corresponding product

of Z’s is contained in the stabilizer. We say that the relative 1-cycle is a relative
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(a) (b)

Z

X

Figure 4.5: A planar quantum code. (a) At the top and bottom are the “plaquette

edges” (or “rough edges”), where there are three-qubit plaquette operators, and

at the left and right are the “site edges” (or “smooth edges”), where there are

three-qubit site operators. The logical operation Z̄ for the one encoded qubit is a

tensor product of Z’s acting on a chain running from one rough edge to the other,

and the logical operation X̄ is a tensor product of X’s acting on a chain of the

dual lattice running from one smooth edge to the other. For the lattice shown, the

code’s distance is L = 8. (b) Site and plaquette defects can appear singly, rather

than in pairs. An isolated site defect arises from an error chain that ends at a

rough edge, and an isolated plaquette defect arises from a dual error chain that

ends at a smooth edge.
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boundary of a 2-chain. However, a chain that stretches from one rough edge to

another is not a relative boundary—it is a representative of a nontrivial relative

homology class. The corresponding product of Z’s commutes with the stabilizer

but does not lie in it, and we may take it to be the logical operation Z̄ acting

on an encoded logical qubit. Similarly, cycles relative to the smooth edges also

come in two varieties, and a product of X’s associated with the nontrivial relative

homology cycle of the dual lattice may be taken to be the logical operation X̄ (see

Fig. 4.5a).

A code with distance L is obtained from a square lattice, if the shortest paths

from rough edge to rough edge, and from smooth edge to smooth edge, both contain

L links. The lattice has L2 + (L − 1)2 links, L(L − 1) plaquettes, and L(L − 1)

sites. Now all plaquette and site operators are independent, which is another way

to see that the number of encoded qubits is L2 + (L− 1)2 − 2L(L− 1) = 1.

The distinction between a rough edge and a smooth edge can also be charac-

terized by the behavior of the defects at the boundary, as shown in Fig. 4.5b. In

the toric codes, defects always appear in pairs, because every 1-chain has an even

number of boundary points. But for planar codes, individual defects can appear,

since a 1-chain can terminate on a rough edge. Thus a propagating site defect

can reach the rough edge and disappear. But if the site defect reaches the smooth

edge, it persists at the boundary. Similarly, a plaquette defect can disappear at

the smooth edge, but not at the rough edge.

Let us briefly note some generalizations of the toric codes and planar codes

that we have described. First, there is no need to restrict attention to lattices

that have coordination number 4 at each site and plaquette. Any tessellation of a

surface (and its dual tessellation) can be associated with a quantum code. Second,

we may consider surfaces of higher genus. For a closed orientable Riemann surface

of genus g, 2g qubits can be encoded—each time a handle is added to the surface,

there are two new homology cycles and hence two new logical Z̄’s. The distance

of the code is the length of the shortest nontrivial cycle on lattice or dual lattice.

For planar codes, we may consider a surface with e distinct rough edges separated
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by e distinct smooth edges. Then e−1 qubits can be encoded, associated with the

relative 1-cycles that connect one rough edge with any of the others. The distance

is the length of the shortest path reaching from one rough edge to another, or from

one smooth edge to another on the dual lattice. Alternatively, we can increase the

number of encoded qubits stored in a planar sheet by punching holes in the lattice.

For example, if the outer boundary of the surface is a smooth edge, and there are h

holes, each bounded by a smooth edge, then h qubits are encoded. For each hole,

a cycle on the lattice that encloses the hole is associated with the corresponding

logical Z̄, and a path on the dual lattice from the boundary of the hole to the

outer boundary is associated with the logical X̄.

If (say) phase errors are more common than bit-flip errors, quantum informa-

tion can be stored more efficiently with an asymmetric planar code, such that the

distance from rough edge to rough edge is longer than the distance from smooth

edge to smooth edge. However, these asymmetric codes are less convenient for

processing of the encoded information.

The surface codes can also be generalized to higher dimensional manifolds,

with logical operations again associated with homologically nontrivial cycles. In

Sec. 4.10, I will discuss a four-dimensional example.

4.3.3 Fault-tolerant recovery

A toric code defined on a lattice of linear size L has block size 2L2 and distance L.

Therefore, if the probability of error per qubit is p, the number of errors expected

in a large code block is of order pL2, and therefore much larger than the code

distance.

However, the performance of a toric code is much better than would be guessed

naively based on its distance. In principle, L/2 errors could suffice to cause damage

to the encoded information. But in fact this small number of errors can cause

irrevocable damage only if the distribution of the errors is highly atypical.

If the error probability p is small, then links where errors occur (“error links”)

are dilute on the lattice. Long connected chains of error links are quite rare, as
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Figure 4.6: Pairs of defects. If the error rate is small and errors on distinct links

are uncorrelated, then connected error chains are typically short and the positions

of defects are highly correlated. It is relatively easy to guess how the defects should

be paired up so that each pair is the boundary of a connected chain.

indicated in Fig. 4.6. It is relatively easy to guess a way to pair up the observed

defects that is homologically equivalent to the actual error chain. Hence we expect

that a number of errors that scales linearly with the block size can be tolerated.

That is, if the error probability p per link is small enough, we expect to be able to

recover correctly with a probability that approaches one as the block size increases.

We therefore anticipate that there is an accuracy threshold for storage of quantum

information using a toric code.

Unfortunately, life is not quite so simple, because the measurement of the

syndrome will not be perfect. Occasionally, a faulty measurement will indicate

that a defect is present at a site even though no defect is actually there, and

sometimes an actual defect will go unobserved. Hence the population of real

defects (which have strongly correlated positions) will be obscured by a population

of phony “ghost defects” and “missing defects” (which have randomly distributed

positions), as in Fig. 4.7.

Therefore, we should execute recovery cautiously. It would be dangerous to

blithely proceed by flipping qubits on a chain of links bounded by the observed
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Genuine defect:

Ghost defect:

Figure 4.7: Ghost defects. Since faults can occur in the measurement of the error

syndrome, the measured syndrome includes both genuine defects (lightly shaded)

associated with actual errors and phony “ghost defects” (darkly shaded) that arise

at randomly distributed locations. To perform recovery successfully, we need to

be able to distinguish reliably between the genuine defects and the ghost defects.

The position that is shaded both lightly and darkly represents a genuine defect

that goes unseen due to a measurement error.
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defect positions. Since a ghost defect is typically far from the nearest genuine de-

fect, this procedure would introduce many additional errors—what was formerly a

ghost defect would become a real defect connected to another defect by a long error

chain. Instead we must repeat the syndrome measurement an adequate number of

times to verify its authenticity. It is subtle to formulate a robust recovery proce-

dure that incorporates repeated measurements, since further errors accumulate as

the measurements are repeated and the gas of defects continues to evolve.

There are three well-studied general strategies that can be invoked to achieve

robust macroscopic control of a system that is subjected to microscopic disorder.

One method is to introduce a hierarchical organization in such a way that effects

of noise get weaker and weaker at higher and higher levels of the hierarchy. This

approach is used by Gács [44] in his analysis of robust one-dimensional classical

cellular automata, and also in concatenated quantum coding [67, 2, 62, 87, 48]. A

second method is to introduce more spatial dimensions. A fundamental principle

of statistical physics is that local systems with higher spatial dimensionality and

hence higher coordination number are more resistant to the disordering effects of

fluctuations. In Sec. 4.10 this strategy will be followed in devising and analyzing

a topological code that has nice locality properties in four dimensions. From the

perspective of block coding, the advantage of extra dimensions is that local check

operators can be constructed with a higher degree of redundancy, which makes it

easier to reject faulty syndrome information.

In the bulk of this chapter I will address the issue of achieving robustness

through a third strategy, namely by introducing a modest amount of nonlocality

into the recovery procedure. However, all quantum processing will be demanded

to be strictly local; the nonlocality will be isolated in classical processing. Specif-

ically, to decide on the appropriate recovery step, a classical computation will be

performed whose input is an error syndrome measured at all the sites of the lat-

tice. This classical computation will be required to be able to be executed in a

time bounded by a polynomial in the number of lattice sites. For the purpose of

estimating the accuracy threshold, we will imagine that the classical calculation is
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instantaneous and perfectly accurate.

This approach is guided by the expectation that quantum computers will be

slow and unreliable while classical computers are fast and accurate. It is therefore

advantageous to replace quantum processing by classical processing if the classical

processing can accomplish the same task.

4.3.4 Surface codes and physical fault tolerance

In this chapter, the surface codes are regarded as block quantum error-correcting

codes with properties that make them especially amenable to fault-tolerant quan-

tum storage and computation. It is worth remarking that because of the locality

of the check operators, these codes admit another tempting interpretation that

was emphasized in [60, 61].

Consider a model physical system, with qubits arranged in a square lattice, and

with a (local) Hamiltonian that can be expressed as minus the sum of the check

operators of a surface code. Since the check operators are mutually commuting, we

can diagonalize the Hamiltonian by diagonalizing each check operator separately,

and its degenerate ground state is the code subspace. Thus, a real system that is

described well enough by this model could serve as a robust quantum memory.

The model system has several crucial properties. First of all, it has a mass

gap, so that its qualitative properties are stable with respect to generic weak local

perturbations. Secondly, it has two types of localized quasiparticle excitations,

the site defects and plaquette defects. And third, there is an exotic long-range

interaction between a site defect and a plaquette defect.

The interaction between the two defects is exactly analogous to the Aharonov-

Bohm interaction between a localized magnetic flux Φ and a localized electric

charge Q in two-spatial dimensions. When a charge is adiabatically carried around

a flux, the wave function of the system is modified by a phase exp(iQΦ/~c) that is

independent of the separation between charge and flux. Similarly, if a site defect is

transported around a plaquette defect, the wave function of the system is modified

by the phase −1 independent of the separation between the defects. Formally,
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this phase arises because of the anticommutation relation satisfied by X and Z.

Physically, it arises because the ground state of the system is very highly entangled

and thus is able to support very long range quantum correlations. The protected

qubits are encoded in the Aharonov-Bohm phases acquired by quasiparticles that

travel around the fundamental nontrivial cycles of the surface; these could be

measured in principle in a suitable quantum interference experiment.

It is useful to observe that the degeneracy of the ground state of the system

is a necessary consequence of the unusual interactions among the quasiparticles

[34, 108]. A unitary operator US,1 can be constructed that describes a process in

which a pair of site defects is created, one member of the pair propagates around

a nontrivial cycle C1 of the surface, and then the pair reannihilates. Similarly

a unitary operator UP,2 can be constructed associated with a plaquette defect

that propagates around a complementary nontrivial cycle C2 that intersects C1

once. These operators commute with the Hamiltonian H of the system and can

be simultaneously diagonalized with H, but US,1 and UP,2 do not commute with

one another. Rather, they satisfy (in an infinite system)

UP,2
−1 US,1

−1 UP,2 US,1 = −1. (4.6)

The nontrivial commutator arises because the process in which (1) a site defect

winds around C1, (2) a plaquette defect winds around C2 (3) the site defect winds

around C1 in the reverse direction, and (4) the plaquette defect winds around C2

in the reverse direction, is topologically equivalent to a process in which the site

defect winds once around the plaquette defect.

Because the unitary operators US,1 and UP,2 do not commute, they cannot be

simultaneously diagonalized—indeed applying UP,2 to an eigenstate of US,1 flips

the sign of the US,1 eigenvalue. Physically, there are two distinct ground states

that can be distinguished by the Aharonov-Bohm phase that is acquired when a

site defect is carried around C1; we can change this phase by carrying a plaquette

defect around C2. Similarly, the operator US,2 commutes with US,1 and UP,2 but
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anticommutes with UP,1. Therefore there are four distinct ground states, labelled

by their US,1 and US,2 eigenvalues.

This reasoning shows that the topological interaction between site defects and

plaquette defects implies that the system on an (infinite) torus has a generic four-

fold ground-state degeneracy. The argument is easily extended to show that the

generic degeneracy on a genus g Riemann surface is 22g. By a further extension,

we see that the generic degeneracy is q2g if the Aharonov-Bohm phase associated

with winding one defect around another is

exp(2πip/q), (4.7)

where p and q are integers with no common factor.

The same sort of argument can be applied to planar systems with a mass gap in

which single defects can disappear at an edge. For example, consider an annulus

in which site defects can disappear at the inner and outer edges. Then states

can be classified by the Aharonov-Bohm phase acquired by a plaquette defect that

propagates around the annulus, a phase that flips in sign if a site defect propagates

from inner edge to outer edge. Hence there is a twofold degeneracy on the annulus.

For a disc with h holes, the degeneracy is 2h if site defects can disappear at any

boundary, or qh if the Aharonov-Bohm phase of site defect winding about plaquette

defect is exp(2πip/q).

These degeneracies are exact for the unperturbed model system, but will be

lifted slightly in a weakly perturbed system of finite size. Loosely speaking, the

effect of perturbations will be to give the defects a finite effective mass, and the

lifting of the degeneracy is associated with quantum tunneling processes in which

a virtual defect winds around a cycle of the surface. The amplitude A for this

process has the form

A ∼ C exp
(

−
√
2(m∗∆)1/2L/~

)

, (4.8)

where L is the physical size of the shortest nontrivial (relative) cycle of the surface,
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m∗ is the defect effective mass, and ∆ is the minimal energy cost of creating a

defect. The energy splitting is proportional to A, and like A becomes negligible

when the system is large compared to the characteristic length l ≡ ~(m∗∆)−1/2.

In this limit, and at sufficiently low temperature, the degenerate ground state

provides a reliable quantum memory. If a pair of defects is produced by a thermal

fluctuation, and one of the defects wanders around a nontrivial cycle before the

pair reannihilates, then the encoded quantum information will be damaged. These

fluctuations are suppressed by the Boltzmann factor exp(−∆/kT ) at low temper-

ature. Even if defect nucleation occurs at a nonnegligible rate, we could enhance

the performance of the quantum memory by continually monitoring the state of

the defect gas. If the winding of defects around nontrivial cycles is detected and

carefully recorded, damage to the encoded quantum information can be controlled.

4.4 The statistical physics of error recovery

One of the main objectives of this chapter is to invoke surface coding to estab-

lish an accuracy threshold for quantum computation—how well must quantum

hardware perform for quantum storage, or universal quantum computation, to

be achievable with arbitrarily small probability of error? In this section, rather

than study the efficacy of a particular fault-tolerant protocol for error recovery, I

will address whether the syndrome of a surface code is adequate in principle for

protecting quantum information from error. Specifically, an order parameter that

distinguishes two phases of a quantum memory will be formulated: an “ordered”

phase, in which reliable storage is possible, and a “disordered phase,” in which

errors unavoidably afflict the encoded quantum information. Of course, this phase

boundary also provides an upper bound on the accuracy threshold that can be

reached by any particular protocol. The toric code and the planar surface code

have the same accuracy threshold, so we may study either to learn about the other.
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4.4.1 The error model

Let us imagine that in a single time step, we will execute a measurement of each

stabilizer operator at each site and each plaquette of the lattice. During each time

step, new qubit errors might occur. To be concrete and to simplify the discussion,

we assume that all qubit errors are stochastic, and so can be assigned probabilities.

(For example, errors that arise from decoherence have this property.) We will also

assume that the errors acting on different qubits are independent, that bit-flip (X)

errors and phase (Z) errors are uncorrelated with one another, and that X and Z

errors are equally likely. Thus the error in each time step acting on a qubit with

state ρ can be represented by the quantum channel

ρ→ (1− p)2IρI + p(1− p)XρX

+p(1− p)ZρX + p2Y ρY, (4.9)

where p denotes the probability of either an X error or a Z error. It is easy

to modify our analysis if some of these assumptions are relaxed; in particular,

correlations between X and Z errors would not cause much trouble, since we have

separate procedures for recovery from the X errors and the Z errors.

Faults can also occur in the syndrome measurement. We assume that these

measurement errors are uncorrelated. We will denote by q the probability that the

measured syndrome bit is faulty at a given site or plaquette.

Aside from being uncorrelated in space, the qubit and measurement errors are

also assumed to be uncorrelated in time. Furthermore, the qubit and measurement

errors are not correlated with one another. We assume that p and q are known

quantities—the choice of recovery algorithm depends on their values. In Sec. 4.7,

I will discuss how p and q can be related to more fundamental quantities, namely

the fidelities of elementary quantum gates. There we will see that the execution

of the syndrome measurement circuit can introduce correlations between errors.

Fortunately, these correlations (which we ignore for now) do not have a big impact

on the accuracy threshold.
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4.4.2 Defects in spacetime

Because syndrome measurement may be faulty, it is necessary to repeat the mea-

surement to improve our confidence in the outcome. But since new errors may arise

during the repeated measurements, it is a subtle matter to formulate an effective

procedure for rejecting measurement errors.

Let us suppose, for a toric block of arbitrarily large size, that we measure the

error syndrome once per time step, that we monitor the block for an arbitrarily

long time, and that we store all of the syndrome information that is collected. We

want to address whether this syndrome information enables us to recover from

errors with a probability of failure that becomes exponentially small as the size of

the toric block increases. The plaquette check operators identify bit flips and the

site check operators identify phase errors; therefore, we consider bit-flip and phase

error recovery separately.

For analyzing how the syndrome information can be used most effectively,

it is quite convenient to envision a three-dimensional simple cubic lattice, with

the third dimension representing an integer-valued time. We imagine that the

error operation acts at each integer-valued time t, with a syndrome measurement

taking place in between each t and t + 1. Qubits in the code block can now be

associated with timelike plaquettes, those lying in the tx and ty planes. A qubit

error that occurs at time t is associated with a horizontal (spacelike) link that lies

in the time slice labelled by t. The outcome of the measurement of the stabilizer

operator Xs = X⊗4 = ±1 at site s, performed between time t and time t + 1, is

marked on the vertical (timelike) link connecting site s at time t and site s at time

t + 1. A similar picture applies to the history of the ZP stabilizer operators at

each plaquette, but with the lattice replaced by its dual.

On some of these vertical links, the measured syndrome is erroneous. We will

repeat the syndrome measurement T times in succession, and the “error history”

can be described as a set of marked links on a lattice with altogether T time slices.

The error history encompasses both error events that damage the qubits in the
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 time

space

Figure 4.8: The two-dimensional lattice depicting a history of the error syndrome

for the quantum repetition code, with time running upward. Each row represents

the syndrome at a particular time. Qubits reside on plaquettes, and two-qubit

check operators are measured at each vertical link. Links where the syndrome is

nontrivial are shaded.

code block, and faults in the syndrome measurements. On the initial (t = 0) slice

are marked all uncorrected qubit errors that are left over from previous rounds of

error correction; new qubit errors that arise at a later time t (t = 1, 2, . . . , T − 1)

are marked on horizontal links on slice t. Errors in the syndrome measurement

that takes place between time t and t+1 are marked on the corresponding vertical

links. Errors on horizontal links occur with probability p, and errors on vertical

links occur with probability q.

For purposes of visualization, it is helpful to consider the simpler case of a

quantum repetition code, which can be used to protect coherent quantum infor-

mation from bit-flip errors if there are no phase errors (or phase errors if there are

no bit-flip errors). In this case we may imagine that qubits reside on sites of a

periodically identified one-dimensional lattice (i.e., a circle); at each link the sta-

bilizer generator ZZ acts on the two neighboring sites. Then there is one encoded

qubit—the two-dimensional code space is spanned by the state |000 . . . 0〉 with all

spins “up,” and the state |111 . . . 〉 with all spins “down.” In the case where the
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 time

space

Figure 4.9: An error history shown together with the syndrome history that it gen-

erates, for the quantum repetition code. Links where errors occurred are darkly

shaded, and links where the syndrome is nontrivial are lightly shaded. Errors on

horizontal links indicate where a qubit flipped between successive syndrome mea-

surements, and errors on vertical links indicate where the syndrome measurement

was wrong. Vertical links that are shaded both lightly and darkly are locations

where a nontrivial syndrome was found erroneously. The chain of lightly shaded

links (the syndrome) and the chain of darkly shaded links (the errors) both have

the same boundary.
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syndrome measurement is repeated to improve reliability, we may represent the

syndrome’s history by associating qubits with plaquettes of a two-dimensional lat-

tice, and syndrome bits with the timelike links, as shown in Fig. 4.8 and Fig. 4.9.

Again, bit-flip errors occur on horizontal links with probability p and syndrome

measurement errors occur on vertical links with probability q.

Of course, as already noted in Sec. 4.3.3, we may also use a two-dimensional

lattice to represent the error configuration of the toric code, in the case where

the syndrome measurements are perfect. In that case, we can collect reliable

information by measuring the syndrome in one shot, and errors occur on links of

the two-dimensional lattice with probability p.

4.4.3 Error chains, world lines, and magnetic flux tubes

In practice, we will always want to protect quantum information for some finite

time. But for the purpose of investigating whether error correction will work

effectively in principle, it is convenient to imagine that our repeated rounds of

syndrome measurement extend indefinitely into the past and into the future. Qubit

errors are continually occurring; as defects are created in pairs, propagate about on

the lattice, and annihilate in pairs, the world lines of the defects form closed loops

in spacetime. Some loops are homologically trivial and some are homologically

nontrivial. Error recovery succeeds if we are able to correctly identify the homology

class of each closed loop. But if a homologically nontrivial loop arises that we fail

to detect, or if we mistakenly believe that a homologically nontrivial loop has

been generated when none has been, then error recovery will fail. For now, let us

consider this scenario in which we continue to measure the syndrome forever—in

Sec. 4.6, we will consider some issues that arise when we perform error correction

for a finite time.

So let us imagine a particular history extending over an indefinite number of

time slices, with the observed syndrome marked on each vertical link, measurement

errors marking selected vertical links, and qubit errors marking selected horizontal

links. For this history we may identify several distinct 1-chains (sets of links).
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We denote by S the syndrome chain containing all (vertical) links at which the

measured syndrome is nontrivial (Xs = −1). We denote by E the error chain

containing all links where errors have occurred, including both qubit errors on

horizonal links and measurement errors on vertical links. Consider S + E, the

disjoint union of S and E (S + E contains the links that are in either S or E,

but not both). The chain S +E represents the “actual” world lines of the defects

generated by qubit errors, as illustrated in Fig. 4.9. Its vertical links are those

on which the syndrome would be nontrivial were it measured without error. Its

horizontal links are events where a defect pair is created, a pair annihilates, or

an existing defect propagates from one site to a neighboring site. Since the world

lines never end, the chain S + E has no boundary, ∂(S + E) = 0. Equivalently S

and E have the same boundary, ∂S = ∂E.

Hence, the measured syndrome S reveals the boundary of the error chain E;

we may write E = S + C, where C is a cycle (a chain with no boundary). But

any other error chain E ′ = S +C ′, where C ′ is a cycle, has the same boundary as

E and therefore could have caused the same syndrome. To recover from error, we

will use the syndrome information to make a hypothesis, guessing that the actual

error chain was E ′ = S + C ′. Now, E′ may not be the same chain as E, but as

long as the cycle E + E ′ = C + C ′ is homologically trivial (the boundary of a

surface) then recovery will be successful. If C + C ′ is homologically nontrivial,

then recovery will fail. We say that C and C ′ are in the same homology class if

C + C ′ is homologically trivial. Therefore, whether we can protect against error

hinges on our ability to identify, not the cycle C, but rather the homology class of

C.

Considering the set of all possible histories, let prob(E ′) denote the probability

of the error chain E ′ (strictly speaking, we should consider the total elapsed time

to be finite for this probability to be defined). Then the probability that the

syndrome S was caused by any error chain E ′ = S + C ′, such that C ′ belongs to
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the homology class h, is

prob(h|S) =
∑

C′∈h prob(S + C ′)
∑

C′ prob(S + C ′)
. (4.10)

Clearly, then, given a measured syndrome S, the optimal way to recover is to guess

that the homology class h of C is the class with the highest probability according

to eq. (4.10). Recovery succeeds if C belongs to this class, and fails otherwise.

We say that the probability of error per qubit lies below the accuracy threshold

if and only if the recovery procedure fails with a probability that vanishes as the

linear size L of the lattice increases to infinity. Therefore, below threshold, the cycle

C actually belongs to the class h that maximizes eq. (4.10) with a probability that

approaches one as L → ∞. It is convenient to restate this criterion in a different

way that makes no explicit reference to the syndrome chain S. We may write the

relation between the actual error chain E and the hypothetical error chain E ′ as

E′ = E+D, where D is the cycle that we called C+C ′ above. Let prob[(E+D)|E]

denote the normalized conditional probability for error chains E ′ = E + D that

have the same boundary as E. Then, the probability of error per qubit lies below

threshold if and only if, in the limit L→∞,

∑

E

prob(E) ·
∑

D nontrivial

prob[(E +D)|E] = 0. (4.11)

Eq. (4.11) says that error chains that differ from the actual error chain by a homo-

logically nontrivial cycle have probability zero. Therefore, the observed syndrome

S is sure to point to the correct homology class, in the limit of an arbitrarily large

code block.

This accuracy threshold achievable with toric codes can be identified with a

phase transition in a particular statistical-physics model defined on a lattice. In a

sense that I will make precise, the error chains are analogous to magnetic flux tubes

in a superconductor, and the boundary points of the error chains are magnetic

monopoles where these flux tubes terminate. Fixing the syndrome pins down the

monopoles, and the ensemble of chains with a specified boundary can be regarded
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as a thermal ensemble. As the error probability increases, the thermal fluctuations

of the flux tubes increase, and at the critical temperature corresponding to the

accuracy threshold, the flux tubes condense and the superconductivity is destroyed.

A similar analogy applies to the case where the syndrome is measured perfectly,

and a two-dimensional system describes the syndrome on a single time slice. Then

the error chains are analogous to domain walls in an Ising ferromagnet, and the

boundary points of the error chains are “Ising vortices” where domain walls ter-

minate. Fixing the syndrome pins down the vortices, and the ensemble of chains

with a specified boundary can be interpreted as a thermal ensemble. As the error

probability increases, the domain walls heat up and fluctuate more vigorously. At

a critical temperature corresponding to the accuracy threshold, the domain walls

condense and the system becomes magnetically disordered. This two-dimensional

model also characterizes the accuracy threshold achievable with a quantum repeti-

tion code, if the syndrome is imperfect and the qubits are subjected only to bit-flip

errors (or only to phase errors).

4.4.4 Derivation of the model

Let us establish the precise connection between our error model and the corre-

sponding statistical-physics model. In the two-dimensional case, we consider a

square lattice with links representing qubits, and assume that errors arise indepen-

dently on each link with probability p. In the three-dimensional case, we consider

a simple cubic lattice. Qubits reside on the timelike plaquettes, and qubit errors

arise independently with probability p on spacelike links. Measurement errors oc-

cur independently with probability q on timelike links. For now, we will make the

simplifying assumption that q = p so that the model is isotropic; the generalization

to q 6= p is straightforward.

An error chain E, in either two or three dimensions, can be characterized by a

function nE(`) that takes a link ` to nE(`) ∈ {0, 1}, where nE(`) = 1 for each link



Chapter 4: Topological quantum memory 94

` that is occupied by the chain. Hence the probability that error chain E occurs is

prob(E) =
∏

`

(1− p)1−nE(`)pnE(`)

=

[

∏

`

(1− p)
]

·
∏

`

(

p

1− p

)nE(`)

, (4.12)

where the product is over all links of the lattice.

Now suppose that the error chain E is fixed, and we are interested in the

probability distribution for all chains E ′ that have the same boundary as E. Note

that we may express E ′ = E + C, where C is a cycle (a chain with no boundary)

and consider the probability distribution for C. Then if nC(`) = 1 and nE(`) = 0,

the link ` is occupied by E ′ but not by E, an event whose probability (aside from

an overall normalization) is
(

p

1− p

)nC(`)

. (4.13)

But if nC(`) = 1 and nE(`) = 1, then the link ` is not occupied by E ′, an event

whose probability (aside from an overall normalization) is

(

1− p
p

)nC(`)

. (4.14)

Thus a chain E′ = E + C with the same boundary as E occurs with probability

prob(E′|E) ∝
∏

`

exp (J`u`) ; (4.15)

here we have defined

u` = 1− 2nC(`) ∈ {1,−1}, (4.16)

and the coupling J` assigned to link ` has the form

e−2J` =











p/(1− p), for ` 6∈ E,

(1− p)/p, for ` ∈ E.
(4.17)
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Recall that the 1-chain {`|u` = −1} is required to be a cycle—it has no boundary.

It is obvious from this construction that prob(E ′|E) does not depend on how

the chain E is chosen—it depends only on the boundary of E. We will verify this

explicitly below.

The cycle condition satisfied by the u`’s can be expressed as

∏

`3s
u` = 1; (4.18)

at each site s, an even number of links incident on that site have u` = −1. It is

convenient to solve this condition, expressing the u`’s in terms of unconstrained

variables. To achieve this in two dimensions, we associate with each link ` a link

`∗ of the dual lattice. Under this duality, sites are mapped to plaquettes, and the

cycle condition becomes
∏

`∗∈P ∗

u`∗ = 1. (4.19)

To solve the constraint, we introduce variables σi ∈ {1,−1} associated with each

site i of the dual lattice, and write

uij = σiσj (4.20)

where i and j are nearest-neighbor sites.

Our solution to the constraint is not quite the most general possible. In the

language of differential forms, we have solved the condition du = 0 (where u is a

discrete version of a one-form, and d denotes the exterior derivative) by writing

u = dσ, where σ is a zero-form. Thus our solution misses the cohomologically

nontrivial closed forms, those that are not exact. In the language of homology, our

solution includes all and only those cycles that are homologically trivial—that is,

cycles that bound a surface.

In three dimensions, links are dual to plaquettes, and sites to cubes. The cycle



Chapter 4: Topological quantum memory 96

condition becomes, on the dual lattice,

∏

P ∗∈C∗

uP ∗ = 1; (4.21)

each dual cube C∗ contains an even number of dual plaquettes that are occupied

by the cycle. We solve this constraint by introducing variables σ`∗ ∈ {1,−1} on

the dual links, and defining

uP ∗ =
∏

`∗∈P ∗

σ`∗ . (4.22)

In this case, we have solved a discrete version of du = 0, where u is a two-form,

by writing u = dσ, where σ is a one-form. Once again, our solution generates only

the cycles that are homologically trivial.

We have now found that, in two dimensions, the “fluctuations” of the error

chains E′ that share a boundary with the chain E are described by a statistical-

mechanical model with partition function

Z[J, η] =
∑

{σi}
exp



J
∑

〈ij〉
ηijσiσj



, (4.23)

where e−2J = p/(1 − p). The sum in the exponential is over pairs of nearest

neighbors on a square lattice, and η` ∈ {1,−1} is defined by

η` =











1, if ` 6∈ E∗,

−1 if ` ∈ E∗.
(4.24)

Furthermore if the error chains E and E ′ are generated by sampling the same

probability distribution, then the η`’s are chosen at random subject to

η` =











1, with probability 1− p,

−1 with probability p.

(4.25)

This model is the well-known “random-bond Ising model.” Furthermore, the re-
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Figure 4.10: The “quenched” error chain E and the “fluctuating” error chain E ′, as

represented in the two-dimensional random-bond Ising model. Ising spins taking

values in {±1} reside on plaquettes, Ising vortices are located on the sites marked

by filled circles, and the coupling between neighboring spins is antiferromagnetic

along the path E that connects the Ising vortices. The links of E ′ comprise a

domain wall connecting the vortices. The closed path C = E + E ′ encloses a

domain of spins with the value −1.

lation e−2J = p/(1 − p) between the coupling and the bond probability defines

the “Nishimori line” [81] in the phase diagram of the model, which has attracted

substantial attention1 because the model is known to have enhanced symmetry

properties on this line.

Perhaps the interpretation of this random-bond Ising model can be grasped

better if we picture the original lattice rather than the dual lattice, so that the

Ising spins reside on plaquettes as in Fig. 4.10. The coupling between spins on

neighboring plaquettes is antiferromagnetic on the links belonging to the chain E

(where η` = −1), meaning that it is energetically preferred for the spins to antialign

at these links. At links not in E (where η = 1), it is energetically preferred for

the spins to align. Thus a link ij is excited if ηijσiσj = −1. We say that the

excited links constitute “domain walls.” In the case where η` = 1 on every link, a

1For a recent discussion, see [54].



Chapter 4: Topological quantum memory 98

wall marks the boundary between two regions in which the spins point in opposite

directions. Walls can never end, because the boundary of a boundary is zero.

But if the η configuration is nontrivial then the “walls” can end. Indeed each

boundary point of the chain E of links with η` = −1 is an endpoint of a wall,

what we will call an “Ising vortex.” For example, for the configuration shown in

Fig 4.10, a domain wall occupies the chain E ′ that terminates on Ising vortices at

the marked sites. The figure also illustrates that the model depends only on the

boundary of the chain E, and not on other properties of the chain. To see this,

imagine performing the change of variables

σi → −σi, (4.26)

on the shaded plaquettes of Fig. 4.10. A mere change of variable cannot alter the

locations of the excited links—rather the effect is to shift the antiferromagnetic

couplings from the chain E to a different chain E ′ with the same boundary.

In three dimensions, the fluctuations of the error chains that share a boundary

with the specified chain E are described by a model with partition function

Z[J, η] =
∑

{σ`}
exp(J

∑

P

ηPuP ), (4.27)

where uP =
∏

`∈P σ` and

ηP =











1, if P 6∈ E∗,

−1, if P ∈ E∗.
(4.28)

This model is a “random-plaquette” Z2 gauge theory in three dimensions, which,

to the best of my knowledge, has not been much studied previously. Again, we are

interested in the “Nishimori line” of this model where e−2J = p/(1 − p), and p is

the probability that a plaquette has ηP = −1.
In this three-dimensional model, we say that a plaquette P is excited if ηPuP =

−1. The excited plaquettes constitute “magnetic flux tubes”—these form closed
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loops on the original lattice if ηP = 1 on every plaquette. But at each boundary

point of the chain E on the original lattice (each cube on the dual lattice that

contains an odd number of plaquettes with ηP = −1), the flux tubes can end. The

sites of the original lattice (or cubes of the dual lattice) that contain endpoints of

magnetic flux tubes are said to be “magnetic monopoles.”

4.4.5 Order parameters

As noted, our statistical-mechanical model includes a sum over those and only

those chains E ′ that are homologically equivalent to the chain E. To determine

whether errors can be corrected reliably, we want to know whether chains E ′ in

a different homology class than E have negligible probability in the limit of a

large lattice (or code block). The relative likelihood of different homology classes

is determined by the free energy difference of the classes; in the ordered phase,

we anticipate that the free energy of nontrivial classes exceeds that of the trivial

classes by an amount that increases linearly with L, the linear size of the lattice.

But for the purpose of finding the value of the error probability at the accuracy

threshold, it suffices to consider the model in an infinite volume (where there is

no nontrivial homology). In the ordered phase where errors are correctable, large

fluctuations of domain walls or flux tubes are suppressed, while in the disordered

phase the walls or tubes “dissolve” and cease to be well defined.

Thus, the phase transition corresponding to the accuracy threshold is a singu-

larity, in the infinite-volume limit, in the “quenched” free energy, defined as

〈βF [J, η]〉p ≡ −
∑

{η}
Prob(η) · lnZ[J, η], (4.29)

where

Prob(η) =
∏

`

(1− p)1−η`pη` (4.30)

in two dimensions, or

Prob(η) =
∏

P

(1− p)1−ηP pηP (4.31)
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in three dimensions. The term “quenched” signifies that, although the η chains

are generated at random, we consider thermal fluctuations with the positions of

the vortices or monopoles pinned down. The inverse temperature β is identical

to the coupling J . We use the notation 〈·〉p to indicate an average with respect

to the quenched randomness, and we will denote by 〈·〉β an average over thermal

fluctuations.

There are various ways to describe the phase transition in this system, and to

specify an order parameter. For example, in the two-dimensional Ising system, we

may consider a “disorder parameter” Φ(x) that inserts a single Ising vortex at a

specified position x. To define this operator, we must consider either an infinite

system or a finite system with a boundary; on the torus, Ising vortices can only be

inserted in pairs. But for a system with a boundary, we can consider a domain wall

with one end at the boundary and one end in the bulk. In the ferromagnetic phase,

the cost in free energy of introducing an additional vortex at x is proportional to

L, the distance from x to the boundary. Correspondingly we find

〈〈Φ(x)〉β〉p = 0 (4.32)

in the limit L → ∞. The disorder parameter vanishes because we cannot intro-

duce an isolated vortex without creating an infinitely long domain wall. In the

disordered phase, an additional vortex can be introduced at finite free energy cost,

and hence

〈〈Φ(x)〉β〉p 6= 0. (4.33)

On the torus, we may consider an operator that inserts, not a semi-infinite

domain wall terminating on a vortex, but instead a domain wall that winds about

a cycle of the torus. Again, in the ferromagnetically ordered phase, the cost in free

energy of inserting the domain wall will be proportional to L, the minimal length

of a cycle. Specifically, in our two-dimensional Ising spin model, consider choosing
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an η-chain and evaluating the corresponding partition function

Z[J, η] = exp[−βF (J, η)]. (4.34)

Now choose a set of links C of the original lattice that constitute a nontrivial cycle

wound around the torus, and replace η` → −η` for the corresponding links of the

dual lattice, ` ∈ C∗. Evaluate, again, the partition function, obtaining

ZC [J, η] = exp[−βFC(J, η)]. (4.35)

Then the free energy cost of the domain wall is given by

βFC(J, η)− βF (J, η) = − ln

(

ZC [J, η]

Z[J, η]

)

. (4.36)

After averaging over {η}, this free energy cost diverges as L → ∞ in the ordered

phase, and converges to a constant in the disordered phase.

There is also a dual order parameter that vanishes in the disordered phase—the

spontaneous magnetization of the Ising spin system. Strictly speaking, the defining

property of the non-ferromagnetic disordered phase is that spin correlations decay

with distance, so that

lim
r→∞
〈〈σ0σr〉β〉p = 0 (4.37)

in the disordered phase. Correspondingly, the mean squared magnetization per

site

m2 ≡ N−2
∑

i,j

〈〈σiσj〉β〉p, (4.38)

where i, j are summed over all spins and N is the total number of spins, approaches

a nonzero constant as N → ∞ in the ordered phase, and approaches zero as a

positive power of 1/N in the disordered phase.

Similarly in our three-dimensional gauge theory, there is a disorder parameter

that inserts a single magnetic monopole, which we may think of as the end of a

semi-infinite flux tube. Alternatively, we may consider the free energy cost of in-
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serting a flux tube that wraps around the torus, which is proportional to L in the

magnetically ordered phase. In the three-dimensional model, the partition func-

tion ZC [J, η] in the presence of a flux tube wrapped around the nontrivial cycle C

of the original lattice is obtained by replacing ηP → −ηP on the plaquettes dual

to the links of C. The magnetically ordered phase is called a “Higgs phase” or

a “superconducting phase.” The magnetically disordered phase is called a “con-

finement phase” because in this phase introducing an isolated electric charge has

a infinite cost in free energy, and electric charges are confined in pairs by electric

flux tubes.

An order parameter for the Higgs-confinement transition is the Wilson loop

operator

W (C) =
∏

`∈C
σ` (4.39)

associated with a closed loop C of links on the lattice. This operator can be

interpreted as the insertion of a charged particle source whose world line follows

the path C. In the confinement phase, this world line becomes the boundary of

the world sheet of an electric flux tube, so that the free energy cost of inserting

the source is proportional to the minimal area of a surface bounded by C; that is,

−〈ln〈W (C)〉β〉p (4.40)

increases like the area enclosed by the loop C in the confinement phase, while in

the Higgs phase it increases like the perimeter of C.2

In the case q 6= p, our gauge theory becomes anisotropic—p controls the cou-

pling and the quenched disorder on the timelike plaquettes, while q controls the

coupling and the quenched disorder on the spacelike plaquettes. The tubes of flux

2A subtle point is that the relevant Wilson loop operator differs from that considered in Sec.

10 of [6]. In that reference, the Wilson loop was modified so that the “Dirac strings” connecting

the monopoles would be invisible. But in our case, the Dirac strings have a physical meaning

(they comprise the chain E) and we are genuinely interested in how far the physical flux tubes

(comprising the chain E′) fluctuate away from the Dirac strings!
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in E + E′ will be stretched in the time direction for q > p and compressed in the

time direction for q < p. Correspondingly, spacelike and timelike Wilson loops

will decay at different rates. Still, one expects that (for 0 < q < 1/2) a single

phase boundary in the p–q plane separates the region in which both timelike and

spacelike Wilson loops decay exponentially with area (confinement phase) from

the region in which both timelike and spacelike Wilson loops decay exponentially

with perimeter. In the limit q → 0, flux on the spacelike plaquettes becomes com-

pletely suppressed, and the timelike plaquettes on distinct time slices decouple,

each described by the two-dimensional spin model described earlier. Similarly,

in the limit p → 0, the gauge theory reduces to decoupled one-dimensional spin

models extending in the vertical direction, with a critical point at q = 1/2.

4.4.6 Accuracy threshold

What accuracy threshold can be achieved by surface codes? We have found that

in the case where the syndrome is measured perfectly (q = 0), the answer is

determined by the value of critical point of the two-dimensional random-bond

Ising model on the Nishimori line. This value has been determined by numerically

evaluating the domain wall free energy; a recent result of Honecker et al. is [55]

pc = .1094± .0002. (4.41)

and an even more recent result of Merz and Chalker is [76]

pc = .1093± .0002. (4.42)

A surface code is a Calderbank-Shor-Steane (CSS) code, meaning that each

stabilizer generator is either a tensor product of X’s or a tensor product of Z’s

[19, 95]. If X errors and Z errors each occur with probability p, then it is known

that CSS codes exist with asymptotic rate R ≡ k/n (where n is the block size

and k is the number of encoded qubits) such that error recovery will succeed with
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probability arbitrarily close to one, where

R = 1− 2H2(p); (4.43)

here H2(p) = −p log2 p − (1 − p) log2(1 − p) is the binary Shannon entropy. This

rate hits zero when p has the value

pc = .1100, (4.44)

which agrees with eq. (4.41) within statistical errors. Thus the critical error proba-

bility is (at least approximately) the same regardless of whether we allow arbitrary

CSS codes or restrict to those with a locally measurable syndrome. This result

is analogous to the property that the classical repetition code achieves reliable

recovery from bit-flip errors for any error probability p < 1/2, the value for which

the Shannon capacity hits zero. Note that eq. (4.41) can also be interpreted as a

threshold for the quantum repetition code, in the case where the bit-flip error rate

and the measurement error rate are equal (p = q).

If measurement errors are incorporated, then the accuracy threshold achievable

with surface codes is determined by the critical point along the Nishimori line of the

three-dimensional Z2 gauge theory with quenched randomness. In that model the

measurement error probability q (the error weight for vertical links) and the bit-flip

probability p (the error weight for horizontal links) are independent parameters.

It seems that numerical studies of this quenched gauge theory have not been done

previously, even in the isotropic case; work on this problem is in progress.

Since recovery is more difficult with imperfect syndrome information than with

perfect syndrome information, the numerical data on the random-bond Ising model

indicate that pc < .11 for any q > 0. For the case p = q, we will derive the lower

bound pc ≥ .0114 in Sec. 4.5.
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4.4.7 Free energy versus energy

In either the two-dimensional model (if q = 0) or the three-dimensional model (if

q > 0), the critical error probability along the Nishimori line provides a criterion

for whether it is possible in principle to perform flawless recovery from errors. In

practice, we would have to execute a classical computation, with the measured

syndrome as input, to determine how error recovery should proceed. The defects

revealed by the syndrome measurement can be brought together to annihilate in

several homologically distinct ways; the classical computation determines which of

these “recovery chains” should be chosen.

We can determine the right homology class by computing the free energy for

each homology class, and choosing the one with minimal free energy. In the ordered

phase (error probability below threshold), the correct sector will be separated in

free energy from other sectors by an amount linear in L, the linear size of the

lattice.

The computation of the free energy could be performed by, for example, the

Monte Carlo method. It should be possible to identify the homology class that

minimizes the free energy in a time polynomial in L, unless the equilibration

time of the system is exponentially long. Such a long equilibration time would be

associated with spin-glass behavior—the existence of a large number of metastable

configurations. In the random-bond Ising model, spin glass behavior is expected in

the disordered phase, but not in the ferromagnetically ordered phase corresponding

to error probability below threshold. Thus, we expect that in the two-dimensional

model the correct recovery procedure can be computed efficiently for any p < pc.

Similarly, it is also reasonable to expect that, for error probability below threshold,

the correct recovery chain can be found efficiently in the three-dimensional model

that incorporates measurement errors.

In fact, there is reason to expect that when the error probability is below thresh-

old, we can recover successfully by finding a recovery chain that minimizes energy

rather than free energy. Nishimori [82] notes that along the Nishimori line, the free
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Figure 4.11: The phase diagram of the random-bond Ising model, with the tem-

perature β−1 on the vertical axis and the probability p of an antiferromagnetic

bond on the horizontal axis. The solid line is the boundary between the ferromag-

netic (ordered) phase and the paramagnetic (disordered) phase. The dotted line

is the Nishimori line e−2β = p/(1 − p), which crosses the phase boundary at the

Nishimori point N . From the point N to the horizontal axis, the phase boundary

is vertical.
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energy 〈βF [J ]〉p coincides with the entropy of frustration; that is, the Shannon en-

tropy of the distribution of Ising vortices, which does not depend on temperature.

(He considered the isotropic two-dimensional model, but his argument applies just

as well to our three-dimensional gauge theory, or to the anisotropic model with

q 6= p.) Thus, the singularity of the free energy on the Nishimori line can be

regarded as a singularity of this Shannon entropy, which is a purely geometrical

effect having nothing to do with thermal fluctuations. This led Nishimori to sug-

gest that the boundary between the ferromagnetic and paramagnetic phases below

the Nishimori point (pc, Tc) is vertical in the p–T plane (see Fig. 4.11). Kitatani

also conjectured this verticality property, motivated by an “appropriate condi-

tion” [64]. If this conjecture were true, then the threshold pc0 at T = 0 would be

the same as pc, so energy-minimization recovery would be just as effective as free

energy-minimization recovery.

Recent numerical results suggest that this conjecture is false, namely Kawa-

shima and Aoki [57] compute the zero-temperature critical bond concentration for

the random-bond Ising model to be

pc0 ' .105± .002, (4.45)

and Wang [104] computes the critical bond concentration to be

pc0 ' .1030± .0002 (4.46)

for the random-bond Ising model and

pc0 ' .0295± .0002 (4.47)

for the random-plaquette gauge model. While these results point to interesting

new physics for these models [105], and prevent the threshold from being tightly

calculated by an energy-minimization recovery algorithm, they are still useful in

establishing bounds on the accuracy threshold. Nishimori [81] convincingly argued
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that the phase boundary cannot extend to any value of of p greater than pc and

Le Doussal and Harris [32] argued that the tangent to the phase boundary is

vertical at the Nishimori point. Hence, pc0 < pc, so pc0 is a lower bound on the

accuracy threshold.

Minimizing the energy has advantages. For one, the minimum energy configu-

ration is the minimum weight chain with a specified boundary, which we know can

be computed in a time polynomial in L using the perfect matching algorithm of

Edmonds [33, 8]. Also, the minimum energy is easier to work with analytically—

in Sec. 4.5 we will derive a rigorous bound on the accuracy threshold in our error

model, by considering the efficacy of the energy minimization procedure in the

three-dimensional model.

4.5 Chains of minimal weight

4.5.1 The most probable world line

As argued in Sec. 4.4.7, an effective way to use the error syndrome in our three-

dimensional model is to construct an error chain that has the minimal “energy”—

that is, we select from among all error chains that have the same boundary as the

syndrome chain S, the single chain Emin that has the highest probability. In this

Section, we will study the efficacy of this procedure, and obtain a lower bound on

the accuracy threshold for quantum storage.

An error chain E with H horizontal links and V vertical links occurs with

probability (aside from an overall normalization)

(

p

1− p

)H ( q

1− q

)V

, (4.48)

where p is the qubit error probability and q is the measurement error probability.

Thus we choose Emin to be the chain with

∂Emin = ∂S (4.49)
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that has the minimal value of

H · log
(

1− p
p

)

+ V · log
(

1− q
q

)

; (4.50)

we minimize the effective length (number of links) of the chain, but with horizontal

and vertical links given different linear weights for p 6= q. If the minimal chain is

not unique, one of the minimal chains is selected randomly.

Given the measured syndrome, and hence its boundary ∂S, the minimal chain

Emin can be determined on a classical computer, using standard algorithms, in a

time bounded by a polynomial of the number of lattice sites [33, 8]. If p and q are

small, so that the lattice is sparsely populated by the sites contained in ∂S, this

algorithm typically runs quite quickly. We assume this classical computation can

be performed instantaneously and flawlessly.

4.5.2 A bound on chain probabilities

Recovery succeeds if our hypothesis Emin is homologically equivalent to the actual

error chain E that generated the syndrome chain S, and fails otherwise. Hence,

we wish to bound the likelihood of homologically nontrivial paths appearing in

E + Emin.

Consider a particular cycle on our spacetime lattice (or in fact any connected

path, whether or not the path is closed). Suppose that this path contains H

horizontal links and V vertical links. How likely is it that E + Emin contains this

particular set of links?

For our particular path with H horizontal links and V vertical links, letHm, Vm

be the number of those links contained in Emin, and let He, Ve be the number of

those links contained in E (Cf. Fig. 4.12). These quantities obey the relations

Hm +He ≥ H, Vm + Ve ≥ V, (4.51)
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Figure 4.12: The error chain E (darkly shaded) and one possible choice for the

chain Emin (lightly shaded), illustrated for a 6×6 torus in two dimensions. In this

case E+Emin contains a homologically nontrivial cycle of length 8, which contains

He = 4 links of E and Hm = 4 links of Emin.

and so it follows that

(

p

1− p

)Hm
(

q

1− q

)Vm

·
(

p

1− p

)He
(

q

1− q

)Ve

≤
(

p

1− p

)H ( q

1− q

)V

. (4.52)

Furthermore, our procedure for constructing Emin ensures that

(

p

1− p

)He
(

q

1− q

)Ve

≤
(

p

1− p

)Hm
(

q

1− q

)Vm

. (4.53)

This must be so because the e links and them links share the same boundary; were

eq. (4.53) not satisfied, we could replace the m links in Emin by the e links and

thereby increase the value of [p/(1−p)]Hm [q/(1−q)]Vm . Combining the inequalities

eq. (4.52) and eq. (4.53), we obtain

(

p

1− p

)He
(

q

1− q

)Ve

≤
[

(

p

1− p

)H ( q

1− q

)V
]1/2

. (4.54)
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What can we say about the probability Prob(H,V ) that a particular connected

path with (H,V ) horizontal and vertical links is contained in E+Emin? There are

altogether 2H+V ways to distribute errors (links contained in E) at locations on the

specified chain—each link either has an error or not. And once the error locations

are specified, the probability for errors to occur at those particular locations is

pHe(1− p)H−HeqVe(1− q)V−Ve

= (1− p)H(1− q)V
(

p

1− p

)He
(

q

1− q

)Ve

. (4.55)

But with those chosen error locations, the cycle can be in E+Emin only if eq. (4.54)

is satisfied. Combining these observations, we conclude that

Prob(H,V ) ≤ 2H+V
(

p̃H q̃V
)1/2

, (4.56)

where

p̃ = p(1− p), q̃ = q(1− q). (4.57)

We can now bound the probability that E+Emin contains any connected path

with (H,V ) links (whether an open path or a cycle) by counting such paths. We

may think of the path as a walk on the lattice (in the case of a cycle we randomly

choose a point on the cycle where the walk begins and ends). Actually, our primary

interest is not in how long the walk is (how many links it contains), but rather

in how far it wanders—in particular we are interested in whether a closed walk

is homologically nontrivial. The walks associated with connected chains of errors

visit any given link at most once, but it will suffice to restrict the walks further, to

be self-avoiding walks (SAW’s)—those that visit any given site at most once (or

in the case of a cycle, revisit only the point where the walk starts and ends). This

restriction proves adequate for our purposes, because given any open error walk

that connects two sites, we can always obtain an SAW by eliminating some closed

loops of links from that walk. Similarly, given any homologically nontrivial closed

walk, we can obtain a closed SAW (a self-avoiding polygon, or SAP) by eliminating
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some links.

If we wish to consider the probability of an error per unit time in the encoded

state, we may confine our attention to SAW’s that lie between two time slices

separated by the finite time T . (In fact, I will explain in Sec. 4.6 why we can

safely assume that T = O(L).) Such an SAW can begin at any one of L2 · T
lattice sites of our three-dimensional lattice (and in the case of an SAP, we may

arbitrarily select one site that it visits as its “starting point.”) If nSAP(H,V )

denotes the number of SAP’s with (H,V ) links and a specified starting site, then

the probability ProbSAP(H,V ) that E+Emin contains any SAP with (H,V ) links

satisfies

ProbSAP(H,V ) ≤ L2T · nSAP(H,V ) · 2H+V
(

p̃H q̃V
)1/2

. (4.58)

The upper bound eq. (4.58) will be the foundation of the results that follow.

The encoded quantum information is damaged if E +Emin contains homologi-

cally nontrivial paths. At a minimum, the homologically nontrivial (self-avoiding)

path must contain at least L horizontal links. Hence we can bound the failure

probability as

Probfail ≤
∑

V

∑

H≥L
ProbSAP(H,V )

≤ L2T
∑

V

∑

H≥L
nSAP(H,V ) · (4p̃)H/2(4q̃)V/2. (4.59)

4.5.3 Counting anisotropic self-avoiding walks

We will obtain bounds on the accuracy threshold for reliable quantum storage

with toric codes by establishing conditions under which the upper bound eq. (4.59)

rapidly approaches zero as L gets large. For this analysis, we will need bounds

on the number of self-avoiding polygons with a specified number of horizontal and

vertical links.

One such bound is obtained if we ignore the distinction between horizontal

and vertical links. The first step of an SAP on a simple (hyper)cubic lattice in d
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dimensions can be chosen in any of 2d directions, and each subsequent step in at

most 2d− 1 directions, so for walks containing a total of ` links we obtain

n
(d)
SAP(`) ≤ 2d(2d− 1)`−1, d dimensions. (4.60)

Some tighter bounds are known [101, 74] in the cases d = 2, 3:

n
(2)
SAP(`) ≤ P2(`)(µ2)`, µ2 ≈ 2.638, (4.61)

and

n
(3)
SAP(`) ≤ P3(`)(µ3)`, µ3 ≈ 4.684, (4.62)

where P2,3(`) are polynomials.

Since an SAP with H horizontal and V vertical links has ` = H+V total links,

we may invoke eq. (4.62) together with eq. (4.59) to obtain

Probfail

≤ L2T
∑

V

∑

H≥L
P3(H + V ) · (4µ23 p̃)H/2(4µ23 q̃)V/2. (4.63)

Provided that

p̃ < (4µ23)
−1, q̃ < (4µ23)

−1, (4.64)

we have

(4µ23 p̃)
H/2 · (4µ23 q̃)V/2 ≤ (4µ23 p̃)

L/2, (4.65)

for every term appearing in the sum. Since there are altogether 2L2T horizontal

links and L2T vertical links on the lattice, the sum over H,V surely can have at

most 2L4T 2 terms, so that

Probfail < Q3(L, T ) · (4µ23 p̃)L/2 (4.66)

whereQ3(L, T ) is a polynomial. To ensure that quantum information can be stored

with arbitrarily good reliability, it will suffice that Probfail becomes arbitrarily
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small as L gets large (with T increasing no faster than a polynomial of L). Thus

eq. (4.64) is sufficient for reliable quantum storage. Numerically, the accuracy

threshold is surely attained provided that

p̃, q̃ < (87.8)−1 = .0113, (4.67)

or

p, q < .0114. (4.68)

Not only does eq. (4.66) establish a lower bound on the accuracy threshold; it also

shows that, below threshold, the failure probability decreases exponentially with

L, the square root of the block size of the surface code.

Eq. (4.68) bounds the accuracy threshold in the case p = q, where the sum

in eq. (4.59) is dominated by isotropic walks with V ∼ H/2. But for q < .0114,

higher values of p can be tolerated, and for q > .0114, there is still a threshold, but

the condition on p is more stringent. To obtain stronger results than eq. (4.68)

from eq. (4.59), we need better ways to count anisotropic walks, with a specified

ratio of V to H.

One other easy case is the q → 0 limit (perfect syndrome measurement), where

the only walks that contribute are two-dimensional SAP’s confined to a single time

slice. Then we have

Probfail < Q2(L, T ) · (4 µ22 p̃)L/2 (4.69)

(where Q2(L, T ) is a polynomial) provided that

p̃ = p(1− p) < (4µ22)
−1 ≈ (27.8)−1 = .0359, (4.70)

or

p < .0373; (4.71)

the threshold value of p can be relaxed to at least .0373 in the case where syndrome

measurements are always accurate.
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This estimate of pc is considerably smaller than the value pc ' .1094 ± .0002
quoted in Sec. 4.4.6, obtained from the critical behavior of the random-bond Ising

model. That discrepancy is not a surprise, considering the crudeness of our ar-

guments in this section. If one accepts the results of the numerical studies of the

random-bond Ising model, and Nishimori’s argument that the phase boundary of

the model is vertical, then apparently constructing the minimum weight chain is

a more effective procedure than our bound indicates.

One possible way to treat the case q 6= p would be to exploit an observation due

to de Gennes [27], which relates the counting of SAP’s to the partition function of

a classical O(N) spin model in the limit N → 0. This spin model is anisotropic,

with nearest-neighbor couplings JH on horizontal links and JV on vertical links,

and its (suitably rescaled) free energy density has the high-temperature expansion

f(JH , JV ) =
∑

H,V

nSAP(H,V ) (JH)H (JV )
V . (4.72)

This expansion converges in the disordered phase of the spin system, but diverges

in the magnetically ordered phase. Thus, the phase boundary of the spin system

in the JH–JV plane can be translated into an upper bound on the storage accuracy

threshold in the p–q plane, through the relations

p̃ = J2
H/4, q̃ = J2

V /4, (4.73)

obtained by comparing eq. (4.72) and eq. (4.59).

To bound the failure probability for a planar code rather than the toric code,

we should count the “relative polygons” that stretch from one edge of the lattice

to the opposite edge. This change has no effect on the estimate of the threshold.

4.6 Error correction for a finite time interval

In estimating the threshold for reliable storage of encoded quantum information,

we found it convenient to imagine that we perform error syndrome measurement
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forever, without any beginning or end. Thus S + E is a cycle (where S is the

syndrome chain and E is the error chain) containing the closed world lines of the

defects. Though some of these world lines may be homologically nontrivial, result-

ing in damage to the encoded qubits, we can recover from the damage successfully

if the chain S +E ′ (where E′ is our estimated error chain) is homologically equiv-

alent to S + E. The analysis is simplified because we need to consider only the

errors that have arisen during preceding rounds of syndrome measurement, and

need not consider any pre-existing errors that were present when the round of error

correction began.

However, if we wish to perform a computation acting on encoded toric blocks,

the analysis is more complicated. In our analysis of the storage threshold, we

assumed that the complete syndrome history of an encoded block is known. But

when two blocks interact with one another in the execution of a quantum gate,

the defects in each block may propagate to the other block. Then to assemble

a complete history of the defects in any given block, we would need to take into

account the measured syndrome of all the blocks in the “causal past” of the block

in question. In principle this is possible. But in practice, the required classical

computation would be far too complex to perform efficiently—in T parallelized

time steps, with two-qubit gates acting in each step, it is conceivable that defects

from as many as 2T different blocks could propagate to a given block. Hence, if

we wish to compute fault-tolerantly using toric codes, we will need to intervene

and perform recovery repeatedly. Since the syndrome measurement is imperfect

and the defect positions cannot be precisely determined, errors left over from one

round of error correction may cause problems in subsequent rounds.

Intuitively, it should not be necessary to store syndrome information for a very

long period to recover successfully, because correlations decay exponentially with

time in our statistical-mechanical model. To take advantage of this property, we

must modify our recovery procedure.
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4.6.1 Minimal-weight chains

Consider performing syndrome measurement T times in succession (starting at

time t = 0), generating syndrome chain S and error chain E. Let the error

chain E contain any qubit errors that were already present when the syndrome

measurements began. Then the chain S + E consisting of all defect world lines

contains both closed loops and open paths that end on the final time slice—we say

that S + E is closed relative to the final time slice, or ∂rel(S + E) = 0. The open

connected paths contained in S+E are of two types: pairs of defects created prior

to t = 0 that have persisted until t = T (if the world line contains links on the

initial time slice), and pairs of defects created after t = 0 that have persisted until

t = T (if the world line contains no links on the initial slice).

The syndrome S could have been caused by any error chain E ′ with the same

relative boundary as E. To reconstruct the world lines, we should choose an E ′

that is likely given the observed S. A reasonable procedure is to choose the chain

E′ with ∂relE′ = ∂relS that minimizes the weight eq. (4.50).

The chain S + E ′ can be projected onto the final time slice—the projected

chain Π(S + E′) contains those and only those horizonal links that are contained

in S +E′ on an odd number of time slices. Of course, E ′ has the same projection

as S +E′; the syndrome chain S contains only vertical links so that its projection

is trivial. The projection Π(E ′) is our hypothesis about which links have errors

on the final time slice. After Π(E ′) is constructed, we may perform X’s or Z’s

on these links to compensate for the presumed damage. Note that, to construct

E′, we do not need to store all of S in our (classical) memory—only the relative

boundary of S is needed.

Actually, any homologically trivial closed loops in Π(E ′) are harmless and can

be safely ignored. Each homologically nontrivial world line modifies the encoded

information by the logical operation X̄ or Z̄. Thus, after the hypothetical closed

world lines are reconstructed, we may compensate for the homologically nontrivial

closed loops by applying X̄ and/or Z̄ as needed. Projecting the open world lines
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in E′ onto the final time slice produces a pairing of the presumed positions of

surviving defects on the final slice. These defects are removed by performing Z’s

or X’s along a path connecting the pair that is homologically equivalent to the

projected chain that connects them. Thus, this recovery step in effect brings the

paired defects together to annihilate harmlessly.

Of course, our hypothesis E ′ won’t necessarily agree exactly with the actual

error chain E. Thus E +E ′ contains open chains bounded by the final time slice.

Where these open chains meet the final time slice, defects remain that our recovery

procedure has failed to remove.

4.6.2 Overlapping recovery method

The procedure of constructing the minimal-weight chain E ′ with the same relative

boundary as S is not as effective as the procedure in which we continue to measure

the syndrome forever. In the latter case, we are in effect blessed with additional

information about where monopoles will appear in the future, at times later than

T , and that additional information allows us to make a more accurate hypothesis

about the defect world lines. However, we can do nearly as well if we use a

procedure that stores the syndrome history for only a finite time, if we recognize

that the older syndrome is more trustworthy than the more recent syndrome.

In our statistical physics model, the fluctuating closed loops in E + E ′ do not

grow indefinitely large in either space or in time. Therefore, we can reconstruct

an E′ that is homologically equivalent to E quasilocally in time—to pair up the

monopoles in the vicinity of a given time slice, we do not need to know the error

syndrome at times that are much earlier or much later.

So, for example, imagine measuring the syndrome 2T times in succession (start-

ing at time t = 0), and then constructing E ′ with the same relative boundary as

S. The chain E ′ can be split into two disjoint subchains, as indicated in Fig. 4.13.

The first part consists of all connected chains that terminate on two monopoles,

where both monopoles lie in the time interval 0 ≤ t < T ; call this part E ′old. The

rest of E′ we call E′keep. To recover, we flip the links in the projection Π(E ′old),
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 time

space

Current
Recovery 
Step

Previous
Recovery 
Step

Figure 4.13: The “overlapping recovery” method, shown schematically. All

monopoles (boundary points of the error syndrome chain) are indicated as filled

circles, including both monopoles left over from earlier rounds of error recovery

(those in the shaded region below the dotted line) and monopoles generated after

the previous round (those in the unshaded region above the dotted line). Also

shown is the minimum weight chain E ′ that connects each monopole to either

another monopole or to the current time slice. The chain E ′ contains E′old, whose

boundary lies entirely in the shaded region, and the remainder E ′keep. In the cur-

rent recovery step, errors are corrected on the horizontal links of E ′old, and its

boundary is then erased from the recorded syndrome history. The boundary of

E′keep is retained in the record, to be dealt with in a future recovery step.
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after which we may erase from memory our record of the monopoles connected

by E′old; only E
′
keep (indeed only the relative boundary of E ′keep) will be needed to

perform the next recovery step.

In the next step we measure the syndrome another T times in succession, from

t = 2T to t = 3T − 1. Then we choose our new E ′ to be the minimal-weight chain

whose boundary relative to the new final time slice is the union of the relative

boundary of S in the interval 2T ≤ t < 3T and the relative boundary of E ′keep

left over from previous rounds of error correction. We will call this procedure

the “overlapping recovery method” because the minimal-weight chains that are

constructed in successive steps occupy overlapping regions of spacetime.

If we choose T to be large compared to the characteristic correlation time of

our statistical physics model, then only rarely will a monopole survive for more

than one round, and the amount of syndrome information we need to store will

surely be bounded. Furthermore, for such T , this overlapping recovery method

will perform very nearly as well as if an indefinite amount of information were

stored.

The time T should be chosen large enough so that connected chains in E +E ′

are not likely to extend more than a distance T in the time direction. Arguing

as in Sec. 4.5.3 (and recalling that the number nSAW(`) of self-avoiding walks of

length ` differs from the number nSAP(`) of self-avoiding polygons of length ` by

a factor polynomial in `), we see that a connected chain containing H horizontal

links and V vertical links occurs with a probability

Prob(H,V ) ≤ Q′3(H,V )(4µ23p̃)
H/2(4µ23q̃)

V/2, (4.74)

where Q′3(H,V ) is a polynomial. Furthermore, a connected chain with temporal

extent T must have at least V = 2T vertical links if both ends of the chain lie on

the final time slice. Therefore the probability Prob(H,V ) is small compared to the

failure probability eq. (4.66), so that our procedure with finite memory differs in

efficacy from the optimal procedure with infinite memory by a negligible amount,
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provided that

T À L

2
· log(4µ

2
3p̃)

−1

log(4µ23q̃)
−1 . (4.75)

In particular, if the measurement error and qubit error probabilities are comparable

(q ' p), it suffices to choose T À L, where L is the linear size of the lattice.

Thus we see that the syndrome history need not be stored indefinitely for our

recovery procedure to be robust. The key to fault tolerance is that we should not

overreact to syndrome information that is potentially faulty. In particular, if we

reconstruct the world lines of the defects and find open world lines that do not

extend very far into the past, it might be dangerous to accept the accuracy of

these world lines and respond by bringing the defects together to annihilate. But

world lines that persist for a time comparable to L are likely to be trustworthy. In

our overlapping recovery scheme, we take action to remove only these long-lived

defects, leaving those of more recent vintage to be dealt with in the next recovery

step.

4.6.3 Computation threshold

Our three-dimensional model describes the history of a single code block; hence

its phase transition identifies a threshold for reliable storage of quantum informa-

tion. Analyzing the threshold for reliable quantum computation is more complex,

because we need to consider interactions between code blocks.

When two encoded blocks interact through the execution of a gate, errors can

propagate from one block to another, or potentially from one qubit in a block to

another qubit in the same block. It is important to keep this error propagation

under control. We will discuss in Sec. 4.9 how a universal set of fault-tolerant

quantum gates can be executed on encoded states. For now let us consider the

problem of performing a circuit consisting of CNOT gates acting on pairs of en-

coded qubits. The encoded CNOT gate with block 1 as its control and block 2 as

its target can be implemented transversally—that is, by performing CNOT gates

in parallel, each acting on a qubit in block 1 and the corresponding qubit in block
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2. A CNOT gate propagates bit-flip errors from control to target and phase errors

from target to control. Let us first consider the case in which storage errors occur

at a constant rate, but errors in the gates themselves can be neglected.

Suppose that a transversal CNOT gate is executed at time t = 0, propagating

bit-flip errors from block 1 to block 2, and imagine that we wish to correct the

bit-flip errors in block 2. We suppose that many rounds of syndrome measurement

are performed in both blocks before and after t = 0. Denote by S1 and S2 the

syndrome chains in the two blocks, and by E1 and E2 the error chains. Due to the

error propagation, the chain S2 + E2 in block 2 has a nontrivial boundary at the

t = 0 time slice. Therefore, to diagnose the errors in block 2 we need to modify

our procedure.

We may divide each syndrome chain and error chain into two parts, a portion

lying in the past of the t = 0 time slice, and a portion lying in its future. Then

the chain

S1,before + S2,before + S2,after

+E1,before + E2,before + E2,after (4.76)

has a trivial boundary. Therefore, we can estimate E1,before+E2,before+E2,after by

constructing the minimal chain with the same boundary as S1,before + S2,before +

S2,after. Furthermore, because of the error propagation, it is E1,before + E2,before +

E2,after whose horizontal projection identifies the damaged links in block 2 after

t = 0.

If in each block the probability of error per qubit and per time step is p,

while the probability of a syndrome measurement error is q, then the error chain

E1,before+E2,before+E2,after has in effect been selected from a distribution in which

the error probabilities are (2p(1−p), 2q(1−q)) before the gate, and (p, q) after the

gate. Obviously, these errors are no more damaging than if the error probabilities

had been (2p(1−p), 2q(1−q)) at all times, both before and after t = 0. Therefore,

if (p, q) lies below the accuracy threshold for accurate storage, then error rates
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(2p(1− p), 2q(1− q)) will be below the accuracy threshold for a circuit of CNOT

gates.

Of course, the transversal CNOT might itself be prone to error, damaging each

qubit with probability pCNOT, so that the probability of error is larger on the t = 0

slice than on earlier or later slices. However, increasing the error probability from

p to p+ pCNOT on a single slice is surely no worse than increasing the probability

of error to p+ pCNOT on all slices. For a given q, there is a threshold value pc(q),

such that for p < pc(q) a circuit of CNOT’s is robust if the gates are flawless; then

the circuit with imperfect gates is robust provided that p+ pCNOT < pc(q).

By such reasoning, we can infer that the accuracy threshold for quantum com-

putation is comparable to the threshold for reliable storage, differing by factors of

order one. Furthermore, below threshold, the probability of error in an encoded

gate decreases exponentially with L, the linear size of the lattice. Therefore, to

execute a quantum circuit that contains T gates with reasonable fidelity, we should

choose L = O(log T ), so that the block size 2L2 of the code is O(log2 T ).

4.7 Quantum circuits for syndrome measurement

In our model with uncorrelated errors, in which qubit errors occur with probability

p per time step and measurement errors occur with probability q, we have seen

in Sec. 4.4 that it is possible to identify a sharp phase boundary between values

of the parameters such that error correction is sure to succeed in the limit of a

large code block, and values for which error correction need not succeed. How can

we translate this accuracy threshold, expressed as a phase boundary in the p–q

plane, into a statement about how well the hardware in our quantum memory must

perform in order to protect quantum states effectively? The answer really depends

on many details about the kinds of hardware that are potentially at our disposal.

For purposes of illustration, we will relate p and q to the error probabilities for the

fundamental gates in a particular computational model.
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4.7.1 Syndrome measurement

Whenever a check operator Xs or ZP is measured, a quantum circuit is executed in

which each of the qubits occurring in the check operator interacts with an ancilla,

and then the ancilla is measured to determine the result. Our task is to study this

quantum circuit to determine how the faults in the circuit contribute to p and to

q. To start we must decide what circuit to study.

For many quantum codes, the design of the syndrome measurement circuit

involves subtleties. If the circuit is badly designed, a single error in the ancilla

can propagate to many qubits in the code block, compromising the effectiveness of

the error correction procedure. To evade this problem, Shor [93] and Steane [96]

proposed two different methods for limiting the propagation of error from ancilla

to data in the measurement of the check operators of a stabilizer code. In Shor’s

method, to extract each bit of the error syndrome, an ancilla “cat state” is prepared

that contains as many qubits as the weight of the check operator. The ancilla

interacts with the data code block, and then each qubit of the ancilla is measured;

the value of the check operator is the parity of the measurement outcomes. In

Steane’s method, the ancilla is prepared as an encoded block (containing as many

qubits as the length of the code). The ancilla interacts with the data, each qubit

in the ancilla is measured, and a classical parity check matrix is applied to the

measurement outcomes to extract the syndrome. In either scheme, each ancilla

qubit interacts with only a single qubit in the data, so that errors in the ancilla

cannot seriously damage the data. The price we pay is the overhead involved in

preparing the ancilla states and verifying that the preparation is correct.

We could use the Shor method or the Steane method to measure the stabilizer of

a surface code, but it is best not to. We can protect against errors more effectively

by using just a single ancilla qubit for the measurement of each check operator,

avoiding all the trouble of preparing and verifying ancilla states. The price we pay

is modest—a single error in the ancilla might propagate to become two errors in

the data, but we’ll see that these correlated errors in the data are not so damaging.
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So we imagine placing a sheet of ancilla qubits above the qubits of a planar code

block. Directly above the site s is the ancilla qubit that will be used to measure

Xs, and directly above the center of the plaquette P is the ancilla qubit that will

be used to measure ZP . We suppose that CNOT gates can be executed acting

on a data qubit and its neighboring ancilla qubits. The circuits for measuring the

plaquette operator Z⊗4 and the site operator X⊗4 are shown in Fig. 4.14:

data

data

data

data s
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s

g

s

g
s
g meas.
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Figure 4.14: Circuits for measurement of the plaquette (Z⊗4) and site (X⊗4)

stabilizer operators.

We have included the Hadamard gates in the circuit for measuring the site operator

to signify that the ancilla qubit is initially prepared in theX = 1 state, and the final

measurement is a measurement of X, while in the case of the plaquette operator

measurement the ancilla is prepared in the Z = 1 state and Z is measured at the

end. But we will suppose that our computer can measure X as easily as it can

measure Z; hence in both cases the circuit is executed in six time steps (including

preparation and measurement), and there is really no Hadamard gate.

4.7.2 Syndrome errors and data errors

We will assume that all errors in the circuit are stochastic (for example, they could

be errors caused by decoherence). We will consider both “storage errors” and “gate

errors.” In each time step, the probability that a “resting” qubit is damaged will

be denoted ps. For simplicity, we will assume that an error, when it occurs, is one

of the Pauli operators X, Y , or Z. (The analysis of the circuit is easily generalized

to more general models of stochastic errors.) In our analysis, we will always make
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a maximally pessimistic assumption about which error occurred at a particular

position in the circuit. If a gate acts on a qubit in a particular time step, we will

assume that there is still a probability ps of a storage error in that step, plus an

additional probability of error due to the execution of the gate. We denote the

probability of an error in the two-qubit CNOT gate by pCNOT; the error is a tensor

product of Pauli operators, and again we will always make maximally pessimistic

assumptions about which error occurs at a particular position in the circuit. If a

storage error and gate error occur in the same time step, we assume that the gate

error acts first, followed by the storage error. When a single qubit is measured in

the {|0〉, |1〉} basis, pm is the probability of obtaining the incorrect outcome. (If a

storage error occurs during a measurement step, we assume that the error precedes

the measurement.) And when a fresh qubit is acquired in the state |0〉, pp denotes

the probability that its preparation is faulty (it is |1〉 instead).
In a single cycle of syndrome measurement, each data qubit participates in the

measurement of four stabilizer operators: two site operators and two plaquette

operators. Each of these measurements requires four time steps (excluding the

preparation and measurement steps), as a single ancilla qubit is acted upon by

four sequential CNOT’s. But to cut down the likelihood of storage errors, we

can execute the four measurement circuits in parallel, so that every data qubit

participates in a CNOT gate in every step. For example, for each plaquette and

each site, we may execute CNOT gates that act on the four edges of the plaquette

or the four links meeting at the site in the counterclockwise order north-west-south-

east. The CNOT gates that act on a given data qubit, then, alternate between

CNOT’s with the data qubit as control and CNOT’s with the data qubit as target,

as indicated in Fig. 4.15.

For either a site check operator or a plaquette check operator, the probability

that the measurement is faulty is

qsingle = pp + 4pCNOT + 6ps + pm + h. o., (4.77)
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Figure 4.15: Gates acting on a given qubit in a complete round of syndrome

measurement. Data qubits on links with a north-south orientation participate

successively in measurements of check operators at the site to the south, the pla-

quette to the east, the site to the north, and the plaquette to the west. Qubits

on links with an east-west orientation participate successively in measurements of

check operators at the plaquette to the south, the site to the east, the plaquette

to the north, and the site to the west.

where “+ h. o.” denotes terms of higher than linear order in the fundamental error

probabilities. The measurement can fail if any one of the CNOT gates has an error,

if a storage error occurs during any of the six time steps needed to execute the

circuit (including the preparation and measurement step), or because of a fault

in the initial preparation or final measurement of the ancilla qubit. By omitting

the higher order terms we are actually overestimating q. For example, ps is the

probability that a storage error occurs in the first time step, disregarding whether

or not additional errors occur in the circuit.

I have used the notation qsingle in eq. (4.77) to emphasize that this is an es-

timate of the probability of an isolated error on a vertical (timelike) link. More

troublesome are syndrome measurement errors that are correlated with qubit er-

rors. These arise if, say, a qubit suffers a Z error that is duly recorded in the

syndrome measurement of one of the two adjoining sites but not the other. In our

spacetime picture, then, there is a timelike plaquette with an error on one of its

horizontal links and one of its vertical links. We will refer to this type of correlated

error as a “vertical hook”—hook because the two links with errors meet at a 90◦
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angle, and vertical because one of the links is vertical (and to contrast with the

case of a horizontal hook which will be discussed later).

We can estimate the probability of a vertical hook on a specified timelike pla-

quette by considering the circuits in Fig. 4.15. The qubit in question participates

in the measurement of two site check operators, through the two CNOT gates in

the circuit in which the data qubit is the target of the CNOT. A vertical hook

can arise due to a fault that occurs in either of these CNOT gates or at a time in

between the execution of these gates. Hence the probability of a vertical hook is

qhook = 3pCNOT + 2ps + h. o.; (4.78)

faults in any of three different CNOT gates, or storage errors in either of two time

steps, can generate the hook. Note that the hook on the specified plaquette has a

unique orientation; the first of the two site operator measurements that the data

qubit participated in is the one that fails to detect the error. Of course, the same

formula for qhook applies if we are considering the measurement of the plaquette

operators rather than the site operators.

A CNOT gate propagates X errors from control qubit to target qubit, and

Z errors from target to control. Thus we don’t have to worry about a vertical

hook that arises from an error in an ancilla bit that propagates to the data. For

example, if we are measuring a plaquette operator, then X errors in the ancilla

damage the syndrome bit while Z errors in the ancilla propagate to the data;

the result is a vertical error in the X-error syndrome that is correlated with a

horizontal Z-error in the data. This correlation is not problematic because we

deal with X errors and Z errors separately. However, propagation of error from

ancilla to data also generates correlated horizontal errors that we need to worry

about. In the measurement of, say, the plaquette operator ZP = Z⊗4, Z errors

(but not X errors) can feed back from the ancilla to the data. Feeding back four

Z’s means no error at all, because Z⊗4 is in the code stabilizer, and feeding back

three Z’s generates the error IZZZ, which is equivalent to the single Z error
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ZIII. Therefore, the only way to get a double qubit error from a single fault in

the circuit is through an error in the second or third CNOT, or through an ancilla

storage error in between the second and third CNOT. (The second CNOT might

apply Z to the ancilla but not to the data, and that Z error in the ancilla can then

feed back to two data qubits, or the third CNOT could apply Z to both ancilla

and data, and the Z error in the ancilla can then feed back to one other data

qubit.) Because of the order we have chosen for the execution of the CNOT’s,

this double error, when it occurs, afflicts the southeast corner of the plaquette (or

equivalently the northwest corner, which has the same boundary). We will refer

to this two-qubit error as a “horizontal hook,” because the two horizontal errors

meet at a 90◦ angle. Similarly, error propagation during the measurement of the

site operator Xs can produce X errors on the north and west links meeting at that

site. One should emphasize that the only correlated XX or ZZ errors that occur

with a probability linear in the fundamental error probabilities are these hooks.

This is a blessing—correlated errors affecting two collinear links would be more

damaging.

Feedback from the measurement of a plaquette operator can produce ZZ hooks

but not XX hooks, and feedback from the measurement of a site operator can pro-

duceXX hooks but not ZZ hooks. Thus, in each round of syndrome measurement,

the probability of a ZZ hook at a plaquette or an XX hook at a site is

phook = 2pCNOT + ps + h. o. (4.79)

(Remember that a “hook” means two Z’s or two X’s; in addition, an error in a

single CNOT gate could induce, say, an X error in the data and a Z error in the

ancilla that subsequently feeds back, but correlated X and Z errors will not cause

us any trouble.)

Now we need to count the ways in which a single error can occur in the data

during a round of syndrome measurement. First suppose that we measure a single

plaquette operator ZP , and consider the scenarios that lead to a single Z error in
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the data. The Z error can arise either because a gate or storage error damages

the data qubit directly, or because an error in the ancilla feeds back to the data.

Actually, single errors occur with slightly different probabilities for different data

qubits acted on by the circuit. The worst case occurs for the first and last qubit

acted on by the circuit; the probability that the circuit produces a single error that

acts on the first (or last) qubit is

pZP ,1
single,Z = pZP ,4

single,Z

= pCNOT + 6ps + pCNOT + ps + h. o. (4.80)

The first two terms arise from gate errors and storage errors that damage the data

qubit directly. For the first qubit, the last two terms arise from the case in which a

Z error in the ancilla is fed back to the data by each of the last three CNOT’s—the

resulting IZZZ error is equivalent to a ZIII error because ZZZZ is in the code

stabilizer. For the fourth qubit, the last two terms arise from an error fed back by

the last CNOT gate in the circuit. On the other hand, for the second and third

qubit acted on by the circuit, it isn’t possible for just a single error to feed back;

e.g., if the error feeds back to the third qubit, it will feed back to the fourth as

well, and the result will be a hook instead of a single error. Hence, the probability

of a single error acting on the second or third qubit is

pZP ,2
single,Z = pZP ,3

single,Z = pCNOT + 6ps + h. o.; (4.81)

there is no feedback term. If we are measuring a site operator Xs, then X errors

might feed back from the ancilla to the data, but Z errors will not. Therefore,

for each of the four qubits acted on by the circuit, the probability that a single Z

error results from the execution of the circuit, acting on that particular qubit, is

pXs

single,Z = pCNOT + 6ps + h. o.; (4.82)

again there is no feedback term.
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In a single round of syndrome measurement, each qubit participates in the

measurement of four check operators, two site operators and two plaquette op-

erators. For the plaquette operator measurements, depending on the orientation

of the link where the qubit resides, the qubit will be either the first qubit in one

measurement and the third in the other, or the second in one and the fourth in

the other. Either way, the total probability of a single Z error arising that afflicts

that qubit is

psingle = 4pCNOT + 6ps + pCNOT + ps + h. o.

= 5pCNOT + 7ps + h. o., (4.83)

with the 4pCNOT+6ps arising from direct damage to the qubit and the pCNOT+ps

from feedback due to one of the four check operator measurements. The same

equation applies to the probability of a single X error arising at a given qubit in

a single round of syndrome measurement.

4.7.3 Error-chain combinatorics

With both single errors and hooks to contend with, it is more complicated to

estimate the failure probability, but we can still obtain useful upper bounds. In

fact, the hooks don’t modify the estimate of the accuracy threshold as much as

might have been naively expected. Encoded information is damaged if E + Emin

contains a homologically nontrivial (relative) cycle, which can wrap around the

code block with either a north-south or east-west orientation. Either way, the cycle

contains at least L links all with the same orientation, where L is the linear size

of the lattice. A horizontal hook introduces two errors with different orientations,

which is not as bad as two errors with the same orientation. Similarly, a vertical

hook contains only one horizontal error.

There are two other reasons why the hooks do not badly compromise the ef-

fectiveness of error correction. While single errors can occur with any orientation,

horizontal hooks can appear only on the northwest corner of a plaquette (hooks
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on southeast corners are equivalent to hooks on northwest corners and should not

be counted separately), and vertical hooks on timelike plaquettes have a unique

orientation, too. Therefore, hooks have lower “orientational entropy” than the

single errors, which means that placing hooks on self-avoiding walks reduces the

number of walks of a specified length. And finally, phook is smaller than psingle, and

qhook is smaller than qsingle, which further reduces the incentive to include hooks

in E + Emin.

We will suppose that Emin is constructed by the same procedure as before, by

minimizing the weight

H log p−1single + V log q−1single. (4.84)

To simplify later expressions, we have replaced p/(1 − p) by p here, which will

weaken our upper bound on the failure probability by an insignificant amount.

Note that our procedure finds the most probable chain under the assumption that

only single errors occur (no hooks). If phook and qhook are assumed to be known,

then in principle we could retool our recovery procedure by taking these correlated

errors into account in the construction of Emin. To keep things simple we won’t

attempt to do that. Then, as before, for any connected subchain of E+Emin with

H horizontal links and V vertical links, the numbers He and Ve of horizontal and

vertical links of the subchain that are contained in E must satisfy

pHe

singleq
Ve

single ≤ p
H/2
singleq

V/2
single. (4.85)

To bound the failure probability, we wish to count the number of ways in which

a connected chain with a specified number of horizontal links can occur in E+Emin,

keeping in mind that the error chain E could contain hooks as well as single errors.

Notice that a hook might contribute only a single link to E+Emin, if one of the links

contained in the hook is also in Emin. But since phook < psingle and qhook < qsingle,

we will obtain an upper bound on the failure probability if we pessimistically

assume that all of the errors in E +Emin are either two-link hooks occurring with

probabilities phook, qhook or single errors occurring with probabilities psingle, qsingle.
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If the He horizontal errors on a connected chain include Hhook horizontal hooks

and Vhook vertical hooks, then there are He−2Hhook−Vhook single horizontal errors
and Ve−Vhook single vertical errors; once the locations of the hooks and the single

errors are specified, the probability that errors occur at those locations is no larger

than

(psingle)
He−2Hhook−Vhook(phook)

Hhook

· (qsingle)Ve−Vhook(qhook)
Vhook

< p
H/2
single

(

phook
p2single

)Hhook

q
V/2
single

(

qhook
psingleqsingle

)Vhook

. (4.86)

Because a horizontal hook contains two errors with different orientations, it will

be convenient to distinguish between links oriented east-west and links oriented

north-south. We denote by H1 the number of horizontal links in the connected

chain with east-west orientation and by H2 the number of horizontal links with

north-south orientation; then clearly

Hhook ≤ H1, Hhook ≤ H2. (4.87)

To estimate the threshold, we will bound the probability that our connected chain

has H1 ≥ L; of course, the same expression bounds the probability that H2 ≥ L.
For a specified connected chain, suppose that altogether He of the horizontal

links and Ve of the vertical links have errors, and that there are Hhook horizon-

tal hooks and Vhook vertical hooks, so that there are He − 2Hhook − Vhook single

horizontal errors and Ve − Vhook single vertical errors. In how many ways can we

distribute the hooks and single errors along the path? Since each horizontal hook

contains a link with north-south orientation, there are no more than
(

H2

Hhook

)

ways

to choose the locations of the horizontal hooks; similarly there are no more than
(

V
Vhook

)

ways to choose the locations of the vertical hooks.3 Then there are no

3Actually, we have given short shrift here to a slight subtlety. Once we have decided that a

vertical hook will cover a particular vertical link, there may be two ways to place the hook—it
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more than 2H1+H2−2Hhook−Vhook ways to place the single horizontal errors among

the remaining horizontal links, and no more than 2V−Vhook ways to place the single

vertical errors among remaining V − Vhook vertical links on the chain. Now con-

sider counting the self-avoiding paths starting at a specified site, where the path is

constructed from hooks, single errors, and the links of Emin. Whenever we add a

horizontal hook to the path there are at most two choices for the orientation of the

hook, and whenever we add a vertical hook there are at most four choices; hence

there are no more than 2Hhook4Vhook ways to choose the orientations of the hooks.

For the remaining H1+H2−2Hhook+V −2Vhook links of the path, the orientation

can be chosen in no more than 5 ways. Hence, the total number of paths with a

specified number of horizontal links, horizontal hooks, vertical links, and vertical

hooks is no more than

(

H2

Hhook

) (

V

Vhook

)

· 2H1+H2−2Hhook−Vhook2V−Vhook

·2Hhook4Vhook · 5H1+H2−2Hhook+V−2Vhook . (4.88)

Combining this counting of paths with the bound eq. (4.86) on the probability of

each path, we conclude that the probability that E + Emin contains a connected

path with specified starting site, containing H1 links with east-west orientation,

H2 links with north-south orientation, V vertical links, Hhook horizontal hooks,

and Vhook vertical hooks is bounded above by

(

H2

Hhook

)

(

phook
50p2single

)Hhook

(100psingle)
(H1+H2)/2

·
(

V

Vhook

)(

qhook
25psingleqsingle

)Vhook

· (100qsingle)V/2. (4.89)

might cover either one of two adjacent horizontal links. However, for the hook to be free to occupy

either position, the orientation of the second horizontal link must be chosen in one of only two

possible ways. Thus the freedom to place the hook in two ways is more than compensated by the

reduction in the orientational freedom of the other horizontal link by a factor of 2/5, and can be

ignored. A similar remark applies to horizontal hooks.
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Here Hhook can take any value from zero to H2, and Vhook can take any value from

zero to V . We can sum over Hhook and Vhook, to obtain an upper bound on the

probability of a chain with an unspecified number of hooks:

(100psingle)
(H1+H2)/2

(

1 +
phook

50p2single

)H2

·(100qsingle)V/2
(

1 +
qhook

25psingleqsingle

)V

. (4.90)

Finally, since a path can begin at any of L2T sites, and since there are two types

of homologically nontrivial cycles, the probability of failure Probfail satisfies the

bound

Probfail < 2L2T
∑

H1≥L
(100psingle)

H1/2

·
∑

H2≥0



100psingle

(

1 +
phook

50p2single

)2




H2/2

·
∑

V≥0

[

100qsingle

(

1 +
qhook

25psingleqsingle

)2
]V/2

. (4.91)

This sum will be exponentially small for large L provided that

psingle <
1

100
, q <

1

100
,

phook < 5 p2single

(

1
√
psingle

− 10

)

,

qhook <
5

2
psingleqsingle

(

1
√
qsingle

− 10

)

. (4.92)

Of course, making psingle and qsingle smaller can only make things better. Our

conditions on phook and qhook in eq. (4.92) are not smart enough to know this—

for psingle sufficiently small, we find that making it still smaller gives us a more

stringent condition on phook, and similarly for qhook. Clearly, this behavior is an

artifact of our approximations. Thus, for a given psingle and qsingle, we are free

to choose any smaller values of psingle and qsingle in order to obtain more liberal
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conditions on phook and qhook from eq. (4.92). Our expression that bounds phook

achieves its maximum for psingle = (3/40)2, and for fixed psingle, our expression that

bounds qhook achieves its maximum for qsingle = (1/20)2. We therefore conclude

that for recovery to succeed with a probability that approaches one as the block

size increases, it suffices that

psingle <
9

1600
, qsingle <

1

400
,

phook <
3

32
· 9

1600
, qhook <

1

16
· 9

1600
. (4.93)

Comparing to our expressions for qsingle, psingle, and phook, we see that, unless

qsingle is dominated by preparation or measurement errors, these conditions are all

satisfied provided that

qhook = 3pCNOT + 2ps < 3.5× 10−4. (4.94)

If the probability of a CNOT error is negligible, then we obtain a lower bound on

the critical error probability for storage errors,

(ps)c > 1.7× 10−4. (4.95)

In view of the crudeness of our combinatorics, we believe that this estimate is

rather conservative, if one accepts the assumptions of our computational model.

4.8 Measurement and encoding

4.8.1 Measurement

At the conclusion of a quantum computation, we need to measure some qubits.

If the computation is being executed fault tolerantly, this means measuring an

encoded block. How can we perform this measurement fault tolerantly?

Suppose we want to measure the logical operator Z̄; that is, measure the en-

coded block in the basis {|0̄〉, |1̄〉}. If we are willing to destroy the encoded block,
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we first measure Z for each qubit in the block, projecting each onto the basis

{|0〉, |1〉}. Were there no errors in the code block at the time of the measurement,

and were all measurements of the individual qubits performed flawlessly, then we

could choose any homologically nontrivial path on the lattice and evaluate the

parity of the outcomes for the links along that path. Even parity indicates that

the encoded block is in the state |0̄〉, odd parity the state |1̄〉.
But the code block will contain some errors (not too many, we hope), and

some of the measurements of the individual qubits will be faulty. Since a single

bit flip along the path could alter the parity of the measurement outcomes, we

need to devise a fault-tolerant procedure for translating the observed values of the

individual qubits into a value of the encoded qubit.

One such procedure is to evaluate the parity Z⊗4 of the measurement outcomes

at each plaquette of the lattice, determining the locations of all plaquette defects.

These defects can arise either because defects were already present in the code

block before the measurement, or they could be introduced by the measurement

itself. It is useful and important to recognize that the defects introduced by the

measurement do not pose any grave difficulties. An isolated measurement error at

a single link will produce two neighboring defects on the plaquettes that contain

that link. Widely separated defects can arise from the measurement only if there

are many correlated measurement errors.

Therefore we can apply a suitable classical algorithm to remove the defects,

for example, by choosing a chain of minimal total length that is bounded by the

defect locations, which can be found in a polynomial-time classical computation.

Flipping the bits on this chain corrects the errors in the measurement outcomes, so

that we can then proceed to evaluate the parity along a nontrivial cycle. Assuming

sufficiently small rates for the qubit and measurement errors, the encoded qubit

will be evaluated correctly, with a probability of error that is exponentially small

for large block size.

We can measure X̄ by the same procedure, by measuring X for each qubit,

and evaluating all site operators X⊗4 from the outcomes. After removal of the site
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defects by flipping bits appropriately, X̄ is the parity along a nontrivial cycle of

the dual lattice.

To measure Z̄ of a code block without destroying the encoded state, we can

prepare an ancilla block in the encoded state |0̄〉, and perform a bitwise CNOT

from the block to be measured into the ancilla. Then we can measure the ancilla

by the destructive procedure just described. A nondestructive measurement of X̄

is executed similarly.

4.8.2 Encoding of known states

At the beginning of a quantum computation, we need to prepare encoded qubits

in eigenstates of the encoded operations, for example, the state |0̄〉 of the planar

code, a Z̄ = 1 eigenstate. If syndrome measurement were perfectly reliable, the

state |0̄〉 could be prepared quickly by the following method: Start with the state

|0〉⊗n where n is the block size of the code. This is the simultaneous eigenstate

with eigenvalue 1 of all plaquette stabilizer operators ZP = Z⊗4 and of the logical

operator Z̄, but not of the site stabilizer operators Xs = X⊗4. Then measure all

the site operators. Since the site operators commute with the plaquette operators

and the logical operators, this measurement does not disturb their values. About

half of the site measurements have outcome Xs = 1 and about half have outcome

Xs = −1; to obtain the state |0̄〉, we must remove all of the site defects (sites

where Xs = −1). Thus we select an arbitrary 1-chain whose boundary consists of

the positions of all site defects, and we apply Z to each link of this chain, thereby

imposing Xs = 1 at each site. In carrying out this procedure, we might apply Z̄

to the code block by applying Z to a homologically nontrivial path, but this has

no effect since the state is a Z̄ = 1 eigenstate.

Unfortunately, syndrome measurement is not perfectly reliable; therefore this

procedure could generate long open chains of Z errors in the code block. To keep

the open chains under control, we need to repeat the measurement of both the X

and Z syndromes of order L times (where L is the linear size of the lattice), and

use our global recovery method. Then the initial configuration of the defects will
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be “forgotten” and the error chains in the code block will relax to the equilibrium

configuration in which long open chains are highly unlikely. The probability of

an X̄ error that causes a flip of the encoded state will be exponentially small in

L. We can prepare the encoded state with X̄ = 1 by the dual procedure, starting

with the state [ 1√
2
(|0〉+ |1〉)]⊗n.

4.8.3 Encoding of unknown states

Quantum error-correcting codes can protect unknown coherent quantum states.

This feature is crucial in applications to quantum computation—the operator of

a quantum computer need not “monitor” the encoded quantum state to keep the

computation on track. But to operate a quantum computer, we don’t typically

need to encode unknown quantum states. It is sufficient to initialize the computer

by encoding known states, and then execute a known quantum circuit.

Still, a truly robust “quantum memory” should be able to receive an unknown

quantum state and store it indefinitely. But given any nonzero rate of decoherence,

to store an unknown state for an indefinitely long time we need to encode it using

a code of indefinitely long block size. How, then, can we expect to encode the state

before it decoheres?

The key is to encode the state quickly, providing some measure of protection,

while continuing to build up toward larger code blocks. Concatenated codes pro-

vide one means of achieving this. We can encode, perform error correction, then

encode again at the next level of concatenation. If the error rates are small enough,

encoding can outpace the errors so that we can store the unknown state in a large

code block with reasonable fidelity.

The surface codes, too, allow us to build larger codes from smaller codes and

so to protect unknown states effectively. The key to enlarging the code block is

that a code corresponding to one triangulation of a surface can be transformed

into a code corresponding to another triangulation.

For example, we can transform one surface code to another using local moves

shown in Fig. 4.16:
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Figure 4.16: Two basic moves that modify the triangulation of a surface by adding

a link: splitting a plaquette, and splitting a vertex.

Links can be added to (or removed from) the triangulation in either of two ways—

one way adds a new plaquette, the other adds a new site. Either way, the new

triangulation corresponds to a new code with an additional qubit in the code block

and an additional stabilizer generator.

When a new plaquette is added, the new code stabilizer is obtained from the

old one by adding the new plaquette operator

Z1Z2Z0 (4.96)

and by modifying the site operators with the replacements

X1 → X1X0, X2 → X2X0. (4.97)

When a new site is added, the stabilizer is modified similarly, but with X’s and

Z’s interchanged:

X1X2X0, (4.98)

is a new stabilizer generator, and the existing plaquette operators are modified as

Z1 → Z1Z0, Z2 → Z2Z0. (4.99)
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To add a plaquette or a site to a stabilizer code, we prepare the additional

qubit in a Z0 = 1 or X0 = 1 eigenstate, and then execute the circuit shown in

Fig. 4.17. We recall that, acting by conjugation, a CNOT gate changes a tensor

product of Pauli operators acting on its control and target according to

IZ ↔ ZZ, XI ↔ XX; (4.100)

that is, the CNOT transforms an IZ eigenstate to a ZZ eigenstate and an XI

eigenstate to an XX eigenstate, while leaving ZI and IX eigenstates invariant.

The circuit in Fig. 4.17 with qubit 0 as target, then, transforms the site operators

as in eq. (4.97) while also implementing

Z0 → Z1Z2Z0. (4.101)

The initial Z0 = 1 eigenstate is transformed into a state that satisfies the plaquette

parity checks of the new triangulation. Similarly the circuit in Fig. 4.17 with qubit

0 as control implements eq. (4.99) as well as

X0 → X1X2X0; (4.102)

the circuit transforms the X0 = 1 eigenstate into a state that satisfies the new site

parity checks.

0

1

2

s
g

s

g 0

1

2

s
g

s

g

Figure 4.17: Circuits that implement the two basic moves of Fig. 4.16. The circuit

with qubit 0 as the target of the CNOT’s adds a plaquette; the circuit with qubit

0 as the control of the CNOT’s adds a site.

Of course, these circuits are reversible; they can be used to extricate qubits
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from a stabilizer code instead of adding them.

If planar codes are used, we can lay out the qubits in a planar array. Starting

with a small encoded planar block in the center, we can gradually add new qubits

to the boundary using the moves shown in Fig. 4.18:

2

1

s s s s
s c −→ s s

s
c

ss s
2

1

0

1

2

s s s sc −→
s s s sc

1

2 0

Figure 4.18: The same circuits as in Fig. 4.17 can also be used to build up a planar

code by adding a link at the boundary. Sites or plaquettes marked by open circles

do not correspond to stabilizer operators.

These moves add a new three-qubit plaquette or site operator, and can also be

implemented by the circuits of Fig. (4.17).

A procedure that transforms a distance-L planar code to a distance-(L + 1)

code is shown in Fig. 4.19. By adding a new row of plaquette operators, we

transform what was formerly a smooth edge into a rough edge, and by adding a

new row of site operators we transform a rough edge to a smooth edge. We start

the row of plaquettes by adding a two-qubit plaquette operator to the corner via

the transformations

Z0 → Z1Z0, X1 → X1X0, (4.103)

which can be implemented by a single CNOT; similarly, we start a row of sites by

adding a two-qubit site operator with

X0 → X1X0, Z1 → Z1Z0. (4.104)

Then a new row of boundary stabilizer operators can be “zipped” into place.
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Figure 4.19: Building a distance-(L+1) planar code by adding qubits to a distance-

L planar code. (Here, L = 5.) In the first step, new two-qubit stabilizer operators

are added in the corners with single CNOT’s; in subsequent steps, three-qubit

stabilizer operators are added with double CNOT’s. The last step promotes the

corner operators to three-qubit operators.

As is typical of encoding circuits, this procedure can propagate errors badly; a

single faulty CNOT can produce a long row of qubit errors (a widely separated pair

of defects) along the edge of the block. To ensure fault tolerance, we must measure

the boundary stabilizer operators frequently during the procedure. Examining the

syndrome record, we can periodically identify the persistent errors and remove

them before proceeding to add further qubits.

4.9 Fault-tolerant quantum computation

We will now consider how information protected by planar surface codes can be

processed fault-tolerantly. Our objective is to show that a universal set of fault-

tolerant encoded quantum gates can be realized using only local quantum gates
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among the fundamental qubits and with only polynomial overhead. We will de-

scribe one gate set with this property [60, 62]. This construction suffices to show

that there is an accuracy threshold for quantum computation using surface codes:

each gate in our set can be implemented acting on encoded states with arbitrarily

good fidelity, in the limit of a large code block. The calculation of the numerical

value of this computation threshold remains an open problem. Better implemen-

tations of fault-tolerant quantum computation can probably be found, requiring

less overhead and yielding a better threshold.

We choose the basis introduced by Shor [93], consisting of four gates. Three of

these generate the “symplectic” or “normalizer” group, the finite subgroup of the

unitary group that, acting by conjugation, takes tensor products of Pauli operators

to tensor products of Pauli operators. Of these three, two are single-qubit gates:

the Hadamard gate

H =
1√
2





1 1

1 −1



 , (4.105)

which acts by conjugation on Pauli operators according to

H : X ↔ Z, (4.106)

and the phase gate

P ≡ Λ(i) =





1 0

0 i



 , (4.107)

which acts by conjugation on Pauli operators according to

P : X → Y, Z → Z. (4.108)

The third generator of the normalizer group is the two-qubit CNOT = Λ(X) gates,

which acts by conjugation on Pauli operators according to

CNOT : XI → XX, IX → IX,

ZI → ZI, IZ → ZZ. (4.109)
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Quantum computation in the normalizer group is no more powerful than clas-

sical computation [49]. To realize the full power of quantum computing we need

to complete the basis with a gate outside the normalizer group. This gate can be

chosen to be the three-qubit Toffoli gate T ≡ Λ2(X), which acts on the standard

three-qubit orthonormal basis {|a, b, c〉} as

T : |a, b, c〉 → |a, b, c⊕ ab〉. (4.110)

4.9.1 Normalizer gates for surface codes

CNOT gate

Implementing normalizer computation on planar codes is relatively simple. First

of all, a planar surface code is a Calderbank-Shor-Steane [19, 95] (CSS) code,

and as for any CSS code with a single encoded qubit, an encoded CNOT can

be performed transversally—in other words, if simultaneous CNOT’s are executed

from each qubit in one block to the corresponding qubit in the other block, the

effect is to execute the encoded CNOT [50]. To see this, we first need to verify that

the transversal CNOT preserves the code space, i.e., that its action by conjugation

preserves the code’s stabilizer. This follows immediately from eq. (4.109), since

each stabilizer generator is either a tensor product of X’s or a tensor product of

Z’s. Next we need to check that CNOT⊗n acts on the encoded operations X̄ and

Z̄ as in eq. (4.109), which also follows immediately since Z̄ is a tensor product of

Z’s and X̄ is a tensor product of X’s.

Hadamard gate

What about the Hadamard gate? In fact, applying the bitwise operation H⊗n

does not preserve the code space; rather it maps the code space of one planar

code to that of another, different, planar code. If the stabilizer generators of the

initial code are site operators Xs and plaquette operators ZP , then the action of
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the bitwise Hadamard is

H⊗n : Xs → Zs, ZP → XP (4.111)

Compared to the initial code, the stabilizer of the new code has sites and plaquettes

interchanged. We may reinterpret the new code as a code with Xs and ZP check

operators, but defined on a lattice dual to the lattice of the original code. If

the original lattice has its “rough” edges at the north and south, then the new

lattice has its rough edges at the east and west. We will refer to the two codes

as the “north-south” (NS) code and the “east-west” (EW) code. As indicated in

Fig. 4.20, the action of H⊗n on the encoded operations X̄ and Z̄ of the NS code is

H⊗n : X̄NS → Z̄EW, Z̄NS → X̄EW. (4.112)

If we rigidly rotate the lattice by 90◦, the EW code is transformed back to the

NS code. Hence, the overall effect of a bitwise Hadamard and a 90◦ rotation is an

encoded Hadamard H̄.

Of course, a physical rotation of the lattice might be inconvenient in practice!

Instead, we will suppose that “peripheral” qubits are available at the edge of the

code block, and that we have the option of incorporating these qubits into the

block or ejecting them from the block using the method described in Sec. 4.8.3.

After applying the bitwise Hadamard, transforming the L×L NS code to the EW

code, we add L− 1 plaquettes to the northern edge and L− 1 sites to the western

edge, while removing L−1 plaquettes on the east and L−1 sites on the south. This

procedure transforms the block back to the NS code, but with the qubits shifted

by half a lattice spacing to the north and west—we’ll call this shifted code the

NS′ code. Furthermore, this modification of the boundary transforms the logical

operations Z̄EW and X̄EW of the EW code to the operations Z̄NS′ and X̄NS′ of

the NS′ code. The overall effect, then, of the bitwise Hadamard followed by the



Chapter 4: Topological quantum memory 147

Figure 4.20: Action of the bitwise Hadamard gate on the planar code. If Hadamard

gates are applied simultaneously to all the qubits in the block, an “NS code”

with rough edges at the north and south is transformed to an “EW code” with

rough edges at the east and west; the encoded operation Z̄NS of the NS code is

transformed to X̄EW of the EW code, and X̄NS is transformed to Z̄EW.

boundary modification is the operation

X̄NS → Z̄NS′ , Z̄NS → X̄NS′ . (4.113)

In principle, we could complete the encoded Hadamard gate by physically shifting

the qubits half a lattice spacing to the south and east, transforming the NS′ code

back to the NS code. One way to execute this shift might be to swap the qubits

of the NS′ with qubits located at the corresponding sites of the NS lattice. If we

prefer to avoid the additional quantum processing required by the swaps, then what

we can do instead is associate a classical flag bit with each code block, recording

whether the number of Hadamard gates that have been applied in our circuit to

that logical qubit is even or odd, and hence whether the logical qubit is encoded in

the NS code or the NS′ code. This classical bit is consulted whenever the circuit

calls for a Hadamard or CNOT acting on the block. If we perform a Hadamard

on a qubit that is initially encoded with the NS′ code, we add qubits on the south
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and east while removing them from the north and west, returning to the NS code.

The CNOT gates are performed transversally between blocks that are both in the

NS code or both in the NS′ code; that is, each qubit in one layer interacts with the

corresponding qubit directly below it in the next layer. But if one block is in the

NS code and the other is in the NS′ code, then each qubit in one layer interacts

with the qubit in the next layer that is half a lattice spacing to north and west.

Note that the modification of the boundary requires a number of computation

steps that is linear in L.

Phase gate

For implementation of the phase gate P , note that if we can execute CNOT and

H then we can also construct the “controlled-(iY )” gate

Λ(iY ) = Λ(ZX) = (IH) · Λ(X) · (IH) · Λ(X). (4.114)

Hence it suffices to be able to prepare an eigenstate |+〉 or |−〉 of Y ,

Y |±〉 = ±|±〉; (4.115)

if we prepare an ancilla in the state |+〉, and apply a CNOT with the data as its

control and the ancilla as its target, the effect on the data is the same as Λ(i) = P .

If the ancilla is the state |−〉, then we apply Λ(−i) = P−1 to the data instead.

Now, it is not obvious how to prepare a large toric block in an eigenstate of

the encoded Y with good fidelity. Fortunately, we can nevertheless use a CNOT

and an ancilla to implement P , thanks to a trick that works because P is the

only gate in our set that is not real. Consider a circuit that applies the unitary

transformation U to the data if the ancilla has actually been prepared in the state

|+〉. Then if |+〉 were replaced by |−〉, this same circuit would apply the complex

conjugate unitary U ∗, since each P in the circuit would be replaced by P ∗.

Instead of a Y eigenstate, suppose we prepare the ancilla in any encoded state

we please, for example, |0̄〉. And then we use this same ancilla block, and a CNOT,
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every time a P is to be executed. The state of the ancilla can be expressed as a

linear combination a|+〉+ b|−〉 of the Y eigenstates, and our circuit, acting on the

initial state |ψ〉 of the data, yields

a|+〉 ⊗ U |ψ〉+ b|−〉 ⊗ U ∗|ψ〉. (4.116)

Now, at the very end of a quantum computation, we will need to make a measure-

ment to read out the final result. Let A denote the observable that we measure.

The expectation value of A will be

〈A〉 = |a|2〈ψ|U †AU |ψ〉+ |b|2〈ψ|U †ATU |ψ〉, (4.117)

where AT denotes the transpose of A. Without losing any computational power,

we may assume that the observable A is real (A = AT )—for example, it could be

1
2(I−Z) acting on one of our encoded blocks. Then we get the same answer for the

expectation value of A as if the ancilla had been prepared as |+〉 (or |−〉); hence
our fault-tolerant procedure successfully simulates the desired quantum circuit.

Since there is just one ancilla block that must be used each time the P gate

is executed, this block has to be swapped into the position where it is needed, a

slowdown that is linear in the width of the quantum circuit that is being simulated.

Thus we have described a way to perform fault-tolerant normalizer computation

for planar surface codes. We envision, then, a quantum computer consisting of a

stack of planar sheets, with a logical qubit residing in each sheet. Each logical

sheet has associated with it an adjacent sheet of ancilla qubits that are used to

measure the check operators of the surface code; after each measurement, these

ancilla qubits are refreshed in place and then reused. The quantum information in

one sheet can be swapped with that in the neighboring sheet through the action

of local gates. To perform a logical CNOT between two different logical qubits

in the stack, we first use swap gates to pass the qubits through the intervening

sheets of logical and ancilla qubits and bring them into contact, then execute the

transversal CNOT between the two layers, and then use swap gates to return the
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logical qubits to their original positions. By inserting a round of error correction

after each swap or logical operation, we can execute a normalizer circuit reliably.

4.9.2 State purification and universal quantum computation

Now we need to consider how to complete our universal gate set by adding the

Toffoli gate. As Shor observed [93], implementation of the gate can be reduced to

the problem of preparing a particular three-qubit state, which may be chosen to

be

|ψ〉anc = 2−3/2
∑

a,b,c∈{0,1}
(−1)abc|a〉1|b〉2|c〉3; (4.118)

this state is the simultaneous eigenstate of three commuting symplectic operators:

Λ(Z)1,2X3 and its two cyclic permutations, where Λ(Z) is the two-qubit conditional

phase gate

Λ(Z) : |a, b〉 → (−1)ab|a, b〉. (4.119)

Shor’s method for constructing this state involved the preparation and measure-

ment of an unprotected n-qubit cat state, where n is the block size of the code.

But this method cannot be used for a toric code on a large lattice, because the cat

state is too highly vulnerable to error.

Fortunately, there is an alternative procedure for constructing the needed en-

coded state with high fidelity—state purification. Suppose that we have a supply of

noisy copies of the state |ψ〉anc. We can carry out a purification protocol to distill

from our initial supply of noisy states a smaller number of states with much better

fidelity [58, 28]. In this protocol, normalizer gates are applied to a pair of noisy

copies, and then one member of the pair is measured. Based on the outcome of

the measurement, the other state is either kept or discarded. If the initial ensem-

ble of states approximates the |ψ〉anc with adequate fidelity, then as purification

proceeds, the fidelity of the remaining ensemble converges rapidly toward one.

For this procedure to work, it is important that our initial states are not

too noisy—there is a purification threshold. Therefore, to apply the purification

method to toric codes, we will need to build up the size of the toric block gradually,
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as in the procedure for encoding unknown states described in Sec. 4.8.3. We start

out by encoding |ψ〉anc on a small planar sheet of qubits, with a fidelity below the

purification threshold. Then we purify for a while to improve the fidelity, and build

on the lattice to increase the size of the code block. By building and purifying as

many times as necessary, we can construct a copy of the ancilla state that can be

used to execute the Toffoli gate with high fidelity.

The time needed to build up the encoded blocks is quadratic in L, and the

number of rounds of purification needed is linear in L, if we wish to reach a fidelity

that is exponentially small in L. Thus the overhead incurred in our implementation

of the Toffoli gate is polynomial in the block size.

We have now assembled all the elements of a fault-tolerant universal quantum

computer based on planar surface codes. The computer is a stack of logical qubits,

and it contains “software factories” where the ancilla states needed for execution

of the Toffoli gate are prepared. Once prepared, these states can be transported

through swapping to the position in the stack where the Toffoli gate is to be

performed.

4.10 A local algorithm in four dimensions

In our recovery procedure, we have distinguished between quantum and classical

computation. Measurements are performed to collect syndrome information about

errors that have accumulated in the code block, and then a fast and reliable clas-

sical computer processes the measured data to infer what recovery step is likely

to remove most of the errors. These procedures are fault tolerant because the

quantum computation needed to measure the syndrome is highly local. But the

classical computation not so local—the algorithm for constructing the chain of

minimal weight requires as input the syndrome history of the entire code block.

It would be preferable to replace this procedure by one in which measurements

and classical processing are eliminated, and all of the processing is local quantum

processing. Can we devise a stable quantum memory based on topological coding
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such that rapid measurements of the syndrome are not necessary?

Heuristically, errors create pairs of defects in the code block, and trouble may

arise if these defects diffuse apart and annihilate other defects, eventually generat-

ing homologically nontrivial defect world lines. In principle, we could protect the

encoded quantum information effectively if there is a strong attractive interaction

between defects that prevents them from wandering apart. A recovery procedure

that simulates such interactions was discussed in Ref. [28]. For that procedure, an

accuracy threshold can be established, but only if the interactions have arbitrarily

long range, in which case the order-disorder transition in the code block is analo-

gous to the Kosterlitz-Thouless transition in a two-dimensional Coulomb gas. But

to simulate these infinite-range interactions, nonlocal processing is still required.

A similar problem confronts the proposal [61, 83, 41] to encode quantum in-

formation in a configuration of widely separated nonabelian anyons. Errors create

anyons in pairs, and the encoded information is endangered if these “thermal

anyons” diffuse among the anyons that encode the protected quantum state. In

principle, a long-range attractive interaction among anyons might control the diffu-

sion, but this interaction might also interfere with the exchanges of anyons needed

to process the encoded state. In any case, a simulation of the long-range dynamics

involves nonlocal processing.

I will now describe a procedure for recovery that, at least mathematically,

requires no such nonlocal processing of quantum or classical information. With

this procedure, based on “locally available” quantum information, we can infer a

recovery step that is more likely to remove errors than add new ones. Because

the procedure is local we can dispense with measurement without degrading its

performance very much—measurements followed by quantum gates conditioned on

measurement outcomes can be replaced my unitary transformations acting on the

data qubits and on nearby ancilla qubits. But since we will still need a reservoir

where we can dispose the entropy introduced by random errors, we will continue

to assume as usual that the ancilla qubits can be regularly refreshed as needed.

Unfortunately, while our procedure is local in the mathematical sense that



Chapter 4: Topological quantum memory 153

recovery operations are conditioned on the state of a small number of “nearby”

qubits, we do not know how to make it physically local in a space of fewer than

four dimensions.

4.10.1 Repetition code in two dimensions

The principle underlying our local recovery procedure can be understood if we

first consider the simpler case of a repetition code. We can imagine that the code

block is a periodically identified one-dimensional lattice of binary spins, with two

codewords corresponding to the configurations with all spins up or all spins down.

To diagnose errors, we can perform a local syndrome measurement by detecting

whether each pair of neighboring spins is aligned or anti-aligned, thus finding the

locations of defects where the spin orientation flips.

To recover, we need to bring these defects together in pairs to annihilate. One

way to do this is to track the history of the defects for a while, assembling a record

S of the measured syndrome, and then find a minimum-weight chain E ′ with the

same boundary, in order to reconstruct hypothetical world lines of the defects. But

in that case the processing required to construct E ′ is nonlocal.

The way to attain a local recovery procedure is to increase the dimensionality

of the lattice. In two dimensions, errors will generate droplets of flipped spins (as

in Fig. 4.21), and the local syndrome measurement will detect the boundary of the

droplet. Thus the defects now form one-dimensional closed loops, and our recovery

step should be designed to reduce the total length of such defects. Local dynamical

rules can easily be devised that are more likely to shrink a loop than stretch it, just

as it is possible to endow strings with local dynamics (tension and dissipation) that

allow the strings to relax. Thus in equilibrium, very long loops will be quite rare.

If the error rate is small enough, then the droplets of flipped spins will typically

remain small, and the encoded information will be well protected.

That the two-dimensional version of the repetition code is more robust than

the one-dimensional version illustrates a central principle of statistical mechanics—

that order is more resistant to fluctuations in higher dimensions. The code block
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Figure 4.21: Droplets of flipped qubits in the two-dimensional quantum repeti-

tion code. Qubits reside on plaquettes, and the qubits that have been flipped are

shaded. Thick links are locations of “defects” where the error syndrome is non-

trivial because neighboring qubits are anti-aligned. The defects form closed loops

that enclose the droplets.

is described by an Ising spin model, and while the one-dimensional Ising model is

disordered at any nonzero temperature, the two-dimensional Ising model remains

ordered up to a nonvanishing critical temperature. From the perspective of coding

theory, the advantage of the two-dimensional version is that the syndrome is highly

redundant. If we check each pair of nearest-neighbor spins to see if they are aligned

or anti-aligned, we are collecting more information than is really needed to diagnose

all the errors in the block. Hence there is a constraint that must be satisfied by a

valid syndrome, namely that the boundary of a droplet can never end; therefore,

errors in the syndrome can be detected. Of course, physically, the stability of the

ordered state of the Ising model in more than one dimension is the reason that

magnetic memories are robust in Nature.

4.10.2 Toric code in four dimensions

The defects detected by the measurement of the stabilizer operators of a two-

dimensional toric code are also pointlike objects, and error recovery is achieved by
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bringing the defects together to annihilate. We can promote the annihilation by

introducing an effective long-range interaction between defects, but a more local

alternative procedure is to increase the dimensionality of the lattice.

So consider a four-dimensional toric code. Qubits are associated with each

plaquette. With each link is associated the six-qubit stabilizer operator X` = X⊗6

acting on the six plaquettes that contain the link, and with each cube is associated

the six-qubit stabilizer operator ZC = Z⊗6 acting on the six plaquettes contained

in the cube. Thus the four-dimensional code maintains the duality between phase

and flip errors that we saw in two dimensions. The encoded Z̄ or X̄ operation

is constructed from Z’s or X’s acting on a homologically nontrivial surface of

the lattice or dual lattice respectively. Z errors on a connected open surface

generate a closed loop of defects on the boundary of the surface, and X errors

on a connected open surface of the dual lattice generate defects on a set of cubes

that form a closed loop on the dual lattice. As in the two-dimensional case, there

is a “hyperplanar” version of the code that can be defined on a four-dimensional

region with a boundary.

Now we want to devise a recovery procedure that will encourage the defect loops

to shrink and disappear. Assuming that syndrome measurements are employed, a

possible procedure for controlling phase errors can be described as follows: First,

the stabilizer operator X` is measured at each link, and a record is stored of the

outcome. We say that each link with X` = −1 is occupied by a string, and each

link with X` = 1 is unoccupied. We choose a set of nonoverlapping plaquettes

(with no link shared by two plaquettes in the set), and based on the syndrome for

the links of that plaquette, decide whether or not to flip the plaquette (by applying

a Z). If three or four of the plaquette’s links are occupied by string, we always

flip the plaquette. If zero or one link is occupied, we never flip it. And if two

links are occupied, we flip the plaquette with probability 1/2. Then in the next

time step, we again measure the syndrome, and decide whether to flip another

nonoverlapping set of plaquettes. And so on.

Naturally, we also measure the bit-flip syndrome—ZC on every cube—in each
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time step. The procedure for correcting the bit-flip errors is identical, with the

lattice replaced by the dual lattice, and X replaced by Z.

Of course the measurement is not essential. A simple reversible computation

can imprint the number of string bits bounding a plaquette on ancilla qubits, and

subsequent unitary gates controlled by the ancilla can “decide” whether to flip the

plaquette. Note that a CNOT that is applied with probability 1/2, needed in the

event that the plaquette has two string bits on its boundary, can be realized by a

Toffoli gate, where one of the control qubits is a member of a Bell pair so that the

control takes the value 1 with probability 1/2.

This recovery procedure has the property that, if it is perfectly executed and

no further errors occur during its execution, it will never increase the total length

of string on the lattice, but it will sometimes reduce the length. Indeed, if it is

applied repeatedly while no further errors occur, it will eventually eliminate every

string. We have chosen to make the procedure nondeterministic in the case where

there are two string bits on a plaquette, because otherwise the procedure would

have closed orbits—some string configurations would oscillate indefinitely rather

than continuing to shrink and annihilate. With the nondeterministic procedure, a

steady state can be attained only when all the strings have disappeared.

Actually, following the ideas of Toom [98], it is possible to devise anisotropic

deterministic procedures that also are guaranteed to remove all strings. These

procedures, in fact, remove the strings more efficiently than our nondeterministic

one, but are a little more difficult to analyze.

Of course, the recovery procedure will not really be executed flawlessly, and

further errors will continue to accumulate. Still, as error recovery is performed

many times, an equilibrium will eventually be attained in which string length is

being removed by recovery as often as it is being created by new errors. If the

error rates are small enough, the equilibrium population of long string loops will be

highly suppressed, so that the encoded quantum information will be well protected.

Eventually, say at the conclusion of a computation, we will want to measure

encoded qubits. This measurement procedure does have a nonlocal component (as
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the encoded information is topological), and for this purpose only we will assume

that a reliable classical computer is available to help with the interpretation of the

measured data. To measure the logical operator Z̄, say, we first measure every

qubit in the code block. Then we apply a classical parity check, evaluating ZC for

each cube of the lattice, thereby generating a configuration of closed defect loops

on the dual lattice. To complete the measurement, we first eliminate the defects by

applying flips to a set of plaquettes bounded by each loop. Then we can evaluate

the product of Z’s associated with a homologically nontrivial surface to find the

value of Z̄.

Of course, when we eliminate the defects, we need to make sure that we choose

correctly among the homologically inequivalent surfaces bounded by the observed

strings. One way to do so, which is unlikely to fail when qubit and measurement

error probabilities are small, is to invoke the relaxation algorithm formulated above

to the classical measurement outcome. Since our classical computer is reliable, the

algorithm eventually removes all strings, and then the value of Z̄ can be deter-

mined.

4.10.3 Accuracy threshold

To evaluate the efficacy of the local recovery method, we need to find the equi-

librium distribution of defects. This equilibrium configuration is not so easily

characterized, but it will suffice to analyze a less effective algorithm that does at-

tain a simple steady state—the heat bath algorithm. To formulate the heat bath

algorithm, suppose that strings carry an energy per lattice unit length that we may

normalize to one, and suppose that each plaquette is in contact with a thermal

reservoir at inverse temperature β. In each time step, plaquettes are updated, with

the change in the string length bounding a plaquette governed by the Boltzmann

probability distribution. Thus survival or creation of a length-4 loop is suppressed

by the factor
Prob(0→ 4)

Prob(0→ 0)
=

Prob(4→ 4)

Prob(4→ 0)
= e−4β . (4.120)
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Similarly, the probability of a plaquette flip when the length of bounding string is

3 or 1 satisfies
Prob(1→ 3)

Prob(1→ 1)
=

Prob(3→ 3)

Prob(3→ 1)
= e−2β . (4.121)

In the case of a plaquette with two occupied links, we again perform the flip with

probability 1/2. As before, this ensures ergodicity—any initial configuration has

some nonvanishing probability of reaching any final configuration.

Damage to encoded information arises from string “world sheets” that are

homologically nontrivial. At low temperature, string loops are dilute and failure

is unlikely, but at a critical temperature the strings “condense,” and the encoded

data are no longer well protected. The critical temperature is determined by a

balance between Boltzmann factor e−β` suppressing a string of length ` and the

string entropy. The abundance of self-avoiding closed loops of length ` behaves

like [74]

n
(4)
SAW(`) ∼ P4(`)(µ4)`, µ4 ≈ 6.77, (4.122)

in d = 4 dimensions, where P4(`) is a polynomial. Thus, large loops are rare when

the sum
∑

`

n
(4)
SAW(`)e−β` ∼

∑

`

P4(`)
(

µ4e
−β
)`

(4.123)

converges, and the system is surely ordered for e−β < µ−14 . Thus the critical

inverse temperature βc satisfies

e−βc ≥ (µ4)
−1. (4.124)

Now, our local recovery procedure will not be precisely a heat bath algorithm.

But like the heat bath algorithm it is more likely to destroy string than create it,

and we can bound its performance by assigning to it an effective temperature. For

example, if no new errors arise and the algorithm is perfectly executed, it will with

probability one remove a length-4 string loop bounding a plaquette. In practice,

though, the plaquette may not flip when the recovery computation is performed,

either because of a fault during its execution, or because other neighboring pla-
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quettes have flipped in the meantime. Let us denote by q4 the probability that a

plaquette, occupied by four string bits at the end of the last recovery step, does not

in fact flip during the current step. Similarly, let q3 denote the probability that a

plaquette with three string bits fails to flip, and let q1, q0 denote the probabilities

that plaquettes containing one or zero string bits do flip. These quantities can all

be calculated, given the quantum circuit for recovery and a stochastic error model.

Now we can find a positive quantity q such that

q0, q4 ≤ q/(1 + q),

q1, q3 ≤
√
q/(1 +

√
q). (4.125)

Comparing to eqs. (4.120,4.121), we see that our recovery algorithm is at least as

effective as a heat bath algorithm with the equivalent temperature

e−4β = q; (4.126)

in equilibrium strings of length ` are therefore suppressed by a factor no larger

than e−β` = q`/4. From our estimate of the critical temperature eq. (4.124), we

then obtain a lower bound on the critical value of q:

qc ≥ (µ4)
−4 ≈ 4.8× 10−4. (4.127)

This quantum system with local interactions has an accuracy threshold.

A local procedure that controls the errors in a quantum memory is welcome, but

it is disheartening that four spatial dimensions are required. Of course, the four-

dimensional code block can be projected to d < 4 dimensions, but then interactions

among four-dimensional neighbors become interactions between qubits that are

distance L(4−d)/d apart, where L is the linear size of the lattice. In a three-

dimensional version of the toric code, we can place qubits on plaquettes, and

associate check operators with links and cubes. Thus, phase error defects are

strings and bit-flip error defects are point particles, or vice versa. Then we can
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recover locally (without measurement or classical computation) from either the

phase errors or the bit-flip errors, but not both.

In fewer than four spatial dimensions, how might we devise an intrinsically sta-

ble quantum memory, analogous to a magnetic domain with long-range order that

encodes a robust classical bit? Perhaps we can build a two-dimensional material

with a topologically degenerate ground state, such that errors create point defects

that have infinite-range attractive interactions. That system’s quasi-long-range

order at nonzero temperature could stabilize an arbitrary coherent superposition

of ground states.

4.11 Conclusions

In foreseeable quantum computers, the quantum gates that can be executed with

good fidelity are likely to be local gates—only interactions between qubits that are

close to one another will be accurately controllable. Therefore, it is important to

contemplate the capabilities of large-scale quantum computers in which all gates

are local in three-dimensional space. It is also reasonable to imagine that future

quantum computers will include some kind of integrated classical processors, and

that the classical processors will be much more accurate and much faster than the

quantum processors.

Such considerations have led to this chapter’s investigation of the efficacy of

quantum error correction in a computational model in which all quantum gates

are local, classical computations of polynomial size can be done instantaneously

and with perfect accuracy, and measurement of a qubit can be done as quickly as

the execution of a quantum gate.

These conditions are ideally suited for the use of topological quantum error-

correcting codes, such that all quantum computations needed to extract an error

syndrome have excellent locality properties. Indeed, I have shown that if the

two-dimensional surface codes introduced in [60, 61] are used, then an accuracy

threshold for quantum storage can be established, and its numerical value can
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be estimated. This accuracy threshold can be interpreted as a critical point of

a three-dimensional lattice gauge theory with quenched randomness, where the

third dimension represents time. There is also an accuracy threshold for universal

quantum computation, but it has not been calculated carefully.

Topological codes provide a compelling framework for controlling errors in a

quantum system via local quantum processing; for this reason, these codes should

figure prominently in the future evolution of quantum technologies. In any case, the

analysis in this chapter amply illustrates that principles from statistical physics and

topology can be fruitfully applied to the daunting task of accurately manipulating

intricate quantum states.
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Chapter 5

Quantum measurement

algorithms

Abstract

In this chapter, I will describe a new class of quantum algorithms for solving

combinatorial search problems. These algorithms, called quantum measurement

algorithms, use only a sequence of measurements to achieve their goal. Quantum

measurement algorithms are similar in spirit to quantum adiabatic algorithms, in

that both are designed to keep quantum information in an eigenstate of a time-

varying operator. Indeed, I will show that one may view a quantum measurement

algorithm as a polynomial simulation of a quantum adiabatic algorithm. I will

also show how to achieve a quadratic speedup for Grover’s unstructured search

problem with a quantum search algorithm that uses only two measurements.

The work presented in this chapter is the result of a collaboration with Childs,

Deotto, Farhi, Gutmann, and Goldstone [22].

5.1 Introduction

In the conventional circuit model of quantum computation, a program for a quan-

tum computer consists of a discrete sequence of unitary gates chosen from a fixed
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set. The memory of the quantum computer is a collection of qubits initially pre-

pared in some definite state. After a sequence of unitary gates is applied, the qubits

are measured in the computational basis to give the result of the computation, a

classical bit string.

This description of a quantum computer has been used to formulate quantum

algorithms that outperform classical methods, notably Shor’s factoring algorithm

[91] and Grover’s algorithm for unstructured search [53]. Subsequent development

of quantum algorithms has focused primarily on variations of the techniques in-

troduced by Shor and Grover. One way to motivate new algorithmic ideas is to

consider alternative (but in general, equivalent) descriptions of the way a quantum

computer operates. For example, the technique of quantum computation by adia-

batic evolution [38] is most easily described by a quantum computer that evolves

continuously according to a time-varying Hamiltonian.

Another model of quantum computation allows measurement at intermediate

stages. Indeed, recent work has shown that measurement alone is universal for

quantum computation: one can efficiently implement a universal set of quantum

gates using only measurements (and classical processing) [79, 40, 70, 88]. In this

chapter, we describe an algorithm for solving combinatorial search problems that

consists only of a sequence of measurements. Using a straightforward variant of the

quantum Zeno effect (see, for example, [4, 90]), we show how to keep the quantum

computer in the ground state of a smoothly varying Hamiltonian H(s). This

process can be used to solve a computational problem by encoding the solution to

the problem in the ground state of the final Hamiltonian.

The organization of the chapter is as follows. In Section 5.2, we present the

algorithm in detail and describe how measurement of H(s) can be performed on

a digital quantum computer. In Section 5.3, we estimate the running time of the

algorithm in terms of spectral properties of H(s). Then, in Section 5.4, we dis-

cuss how the algorithm performs on Grover’s unstructured search problem and

show that by a suitable modification, Grover’s quadratic speedup can be achieved

by the measurement algorithm. Finally, in Section 5.5, we discuss the relation-
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ship between the measurement algorithm and quantum computation by adiabatic

evolution.

5.2 The measurement algorithm

5.2.1 Adiabatic algorithms by the Zeno effect

Our algorithm is conceptually similar to quantum computation by adiabatic evo-

lution [38], a general method for solving combinatorial search problems using a

quantum computer. Both algorithms operate by remaining in the ground state of

a smoothly varying Hamiltonian H(s) whose initial ground state is easy to con-

struct and whose final ground state encodes the solution to the problem. However,

whereas adiabatic quantum computation uses Schrödinger evolution under H(s)

to remain in the ground state, the present algorithm uses only measurement of

H(s).

In general, we are interested in searching for the minimum of a function h(z)

that maps n-bit strings to positive real numbers. Many computational problems

can be cast as minimization of such a function; for specific examples and their

relationship to adiabatic quantum computation, see [38, 23]. Typically, we can

restrict our attention to the case where the global minimum of h(z) is unique.

Associated with this function, we can define a problem Hamiltonian HP through

its action on computational basis states:

HP |z〉 = h(z)|z〉 . (5.1)

Finding the global minimum of h(z) is equivalent to finding the ground state of

HP . If the global minimum is unique, then this ground state is nondegenerate.

To reach the ground state of HP , we begin with the quantum computer pre-

pared in the ground state of some other Hamiltonian HB, the beginning Hamilto-

nian. Then we consider a one-parameter family of Hamiltonians H(s) that inter-

polates smoothly from HB to HP for s ∈ [0, 1]. In other words, H(0) = HB and
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H(1) = HP , and the intermediate H(s) is a smooth function of s. One possible

choice is linear interpolation,

H(s) = (1− s)HB + sHP . (5.2)

Now we divide the interval [0, 1] into M subintervals of width δ = 1/M . So

long as the interpolating Hamiltonian H(s) is smoothly varying and δ is small, the

ground state of H(s) will be close to the ground state of H(s+δ). Thus, if the sys-

tem is in the ground state of H(s) and we measure H(s+δ), the post-measurement

state is very likely to be the ground state of H(s + δ). If we begin in the ground

state of H(0) and successively measure H(δ), H(2δ), . . . , H((M − 1)δ), H(1), then

the final state will be the ground state of H(1) with high probability, assuming δ

is sufficiently small.

5.2.2 The system-meter model

To complete our description of the quantum algorithm, we must explain how to

measure the operator H(s). The technique we use is motivated by von Neumann’s

description of the measurement process [103]. In this description, measurement is

performed by coupling the system of interest to an ancillary system, which we call

the pointer. Suppose that the pointer is a one-dimensional free particle and that

the system-pointer interaction Hamiltonian is H(s)⊗p, where p is the momentum

of the particle. Furthermore, suppose that the mass of the particle is sufficiently

large that we can neglect the kinetic term. Then the resulting evolution is

e−itH(s)⊗p =
∑

a

[

|Ea(s)〉〈Ea(s)| ⊗ e−itEa(s)p
]

, (5.3)

where |Ea(s)〉 are the eigenstates of H(s) with eigenvalues Ea(s), and we have

set ~ = 1. Suppose we prepare the pointer in the state |x = 0〉, a narrow wave

packet centered at x = 0. Since the momentum operator generates translations in
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position, the above evolution performs the transformation

|Ea(s)〉 ⊗ |x = 0〉 → |Ea(s)〉 ⊗ |x = tEa(s)〉. (5.4)

If we can measure the position of the pointer with sufficiently high precision that

all relevant spacings xab = t|Ea(s)− Eb(s)| can be resolved, then measurement of

the position of the pointer—a fixed, easy-to-measure observable, independent of

H(s)—effects a measurement of H(s).

5.2.3 Digitizing the algorithm

Von Neumann’s measurement protocol makes use of a continuous variable, the

position of the pointer. To turn it into an algorithm that can be implemented on

a fully digital quantum computer, we can approximate the evolution (5.3) using

r quantum bits to represent the pointer [109, 114]. The full Hilbert space is thus

a tensor product of a 2n-dimensional space for the system and a 2r-dimensional

space for the pointer. We let the computational basis of the pointer, with basis

states {|z〉}, represent the basis of momentum eigenstates. The label z is an integer

between 0 and 2r − 1, and the r bits of the binary representation of z specify the

states of the r qubits. In this basis, the digital representation of p is

p =
r
∑

j=1

2−j
1− σ(j)z

2
, (5.5)

a sum of diagonal operators, each of which acts on only a single qubit. Here σ
(j)
z

is the Pauli z operator on the jth qubit. As we will discuss in the next section, we

have chosen to normalize p so that

p|z〉 = z

2r
|z〉 , (5.6)

which gives ‖p‖ ∼ 1. If H(s) is a sum of terms, each of which acts on at most

k qubits, then H(s) ⊗ p is a sum of terms, each of which acts on at most k + 1
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qubits. As long as k is a fixed constant independent of the problem size n, such

a Hamiltonian can be simulated efficiently on a quantum computer [71]. In the

momentum eigenbasis, the initial state of the pointer is

|x = 0〉 = 1

2r/2

2r−1
∑

z=0

|z〉 . (5.7)

The measurement is performed by evolving under H(s)⊗ p for a total time τ . We

discuss how to choose τ in the next section. After this evolution, the position of the

simulated pointer could be measured by measuring the qubits that represent it in

the x basis, i.e., the Fourier transform of the computational basis. However, note

that our algorithm only makes use of the post-measurement state of the system,

not of the measured value of H(s). In other words, only the reduced density

matrix of the system is relevant. Thus it is not actually necessary to perform a

Fourier transform before measuring the pointer, or even to measure the pointer at

all. When the system-pointer evolution is finished, one can immediately re-prepare

the pointer in its initial state |x = 0〉 and begin the next measurement.

As an aside, note that the von Neumann measurement procedure described

above is identical to the well-known phase estimation algorithm for measuring the

eigenvalues of a unitary operator [59, 26], which can also be used to produce

eigenvalues and eigenvectors of a Hamiltonian [1]. This connection has been noted

previously in [114], and it has been pointed out that the measurement is a non-

demolition measurement in [99]. In the phase estimation problem, we are given an

eigenvector |ψ〉 of a unitary operator U and asked to determine its eigenvalue e−iφ.

The algorithm uses two registers, one that initially stores |ψ〉 and one that will

store an approximation of the phase φ. The first and last steps of the algorithm

are Fourier transforms on the phase register. The intervening step is to perform

the transformation

|ψ〉 ⊗ |z〉 → U z|ψ〉 ⊗ |z〉 , (5.8)

where |z〉 is a computational basis state. If we take |z〉 to be a momentum eigen-

state with eigenvalue z (i.e., if we choose a different normalization than in (5.6))
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and let U = e−iHt, this is exactly the transformation induced by e−i(H⊗p)t. Thus

we see that the phase estimation algorithm for a unitary operator U is exactly von

Neumann’s prescription for measuring i lnU .

5.3 Running time

The running time of the measurement algorithm is the product of M , the number

of measurements, and τ , the time per measurement. Even if we assume perfect

projective measurements, the algorithm is guaranteed to keep the computer in the

ground state of H(s) only in the limit M → ∞, so that δ = 1/M → 0. Given a

finite running time, the probability of finding the ground state of HP with the last

measurement will be less than 1. To understand the efficiency of the algorithm, we

need to determine how long we must run as a function of n, the number of bits on

which the function h is defined, so that the probability of success is not too small.

In general, if the time required to achieve a success probability greater than some

fixed constant (e.g., 1
2) is poly(n), we say the algorithm is efficient, whereas if the

running time grows exponentially, we say it is not.

To determine the running time of the algorithm, we consider the effect of the

measurement process on the reduced density matrix of the system. Here, we simply

motivate the main result; for a detailed analysis, see Section 5.6.

Let ρ(j) denote the reduced density matrix of the system after the jth mea-

surement; its matrix elements are

ρ
(j)
ab = 〈Ea(jδ)|ρ(j)|Eb(jδ)〉 . (5.9)

The interaction with the digitized pointer effects the transformation

|Ea(s)〉 ⊗ |z〉 → e−iEa(s)zt/2r |Ea(s)〉 ⊗ |z〉 . (5.10)

Starting with the pointer in the state (5.7), evolving according to (5.10), and
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tracing over the pointer, the quantum operation induced on the system is

ρ
(j+1)
ab = κ

(j)
ab

∑

c,d

U (j)
ac ρ

(j)
cd U

(j)∗
bd , (5.11)

where the unitary transformation relating the energy eigenbases at s = jδ and

s = (j + 1)δ is

U
(j)
ab = 〈Eb((j + 1)δ)|Ea(jδ)〉 (5.12)

and

κ
(j)
ab =

1

2r

2r−1
∑

z=0

ei[Eb(jδ)−Ea(jδ)]zt/2r

. (5.13)

Summing this geometric series, we find

∣

∣

∣
κ
(j)
ab

∣

∣

∣

2
= |κ([Eb(jδ)− Ea(jδ)]t/2)|2 , (5.14)

where

|κ(x)|2 = sin2 x

4r sin2(x/2r)
. (5.15)

This function is shown in Fig. 5.1 for the case r = 4. It has a sharp peak of unit

height and width of order 1 at the origin, and identical peaks at integer multiples

of 2rπ.

If the above procedure were a perfect projective measurement, then we would

have κab = 0 whenever Ea 6= Eb. Assuming (temporarily) that this is the case, we

find

ρ
(j+1)
00 ≥

∣

∣

∣
U

(j)
00

∣

∣

∣

2
ρ
(j)
00 (5.16)

with the initial condition ρ
(0)
00 = 1 and ρ

(0)
ab = 0 otherwise. Perturbation theory

gives

∣

∣

∣U
(j)
00

∣

∣

∣

2
= 1− δ2

∑

a6=0

|〈Ea(s)|dHds |E0(s)〉|2
(E0(s)− Ea(s))2

∣

∣

∣

∣

∣

s=jδ

+O(δ3) (5.17)

≥ 1− Γ(jδ)2 δ2

g(jδ)2
+O(δ3) , (5.18)
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Figure 5.1: The function |κ(x)|2 for r = 4.

where

Γ(s)2 = 〈E0(s)|(dHds )
2|E0(s)〉 − 〈E0(s)|dHds |E0(s)〉2 (5.19)

and

g(s) = E1(s)− E0(s) (5.20)

is the energy gap between the ground and first excited states. If we let

Γ = max
s∈[0,1]

Γ(s) (5.21)

g = min
s∈[0,1]

g(s) , (5.22)

then according to (5.16), the probability of being in the ground state after the last

measurement is at least

ρ
(M)
00 ≥

[

1− Γ2

M2g2
+O(M−3)

]M

(5.23)

= exp

(

− Γ2

Mg2

)

+O(M−2) . (5.24)
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The probability of success is close to 1 provided

M À Γ2

g2
. (5.25)

When HB and HP are both sums of poly(n) terms, each of which acts nontrivially

on at most a constant number of qubits, it is easy to choose an interpolation such

as (5.2) so that Γ is only poly(n). Thus we are mainly interested in the behavior of

g, the minimum gap between the ground and first excited states. We see that for

the algorithm to be successful, the total number of measurements must be much

larger than 1/g2.

However, the simulated von Neumann procedure is not a perfect projective

measurement. Thus, we must determine how long the system and pointer should

interact so that the measurement is sufficiently good. The analysis in Section 5.6

shows it is necessary that |κ(j)01 |2 be bounded below 1 by a constant for all j. In

other words, to sufficiently resolve the difference between the ground and first

excited states, we must decrease the coherence between them by a fixed fraction

per measurement. The width of the central peak in Fig. 5.1 is of order 1, so it

is straightforward to show that to have |κ(x)|2 less than, say, 1/2, we must have

x ≥ O(1). This places a lower bound on the system-pointer interaction time of

τ ≥ O(1)

g
(5.26)

independent of r, the number of pointer qubits. (Note that the same bound also

holds in the case of a continuous pointer with a fixed resolution length.)

Putting these results together, we find that the measurement algorithm is suc-

cessful if the total running time, T =Mτ , satisfies

T À Γ2

g3
(measurement) . (5.27)

This result can be compared to the corresponding expression for quantum compu-
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tation by adiabatic evolution1,

T À Γ

g2
(adiabatic) . (5.28)

Note that the same quantity appears in the numerator of both expressions; in both

cases, Γ accounts for the possibility of transitions to all possible excited states.

The adiabatic and measurement algorithms have qualitatively similar behavior:

if the gap is exponentially small, neither algorithm is efficient, whereas if the gap is

only polynomially small, both algorithms are efficient. However, the measurement

algorithm is slightly slower: whereas adiabatic evolution runs in a time that grows

like 1/g2, the measurement algorithm runs in a time that grows like 1/g3. To see

that this comparison is fair, recall that we have defined the momentum in (5.5) so

that ||p|| ∼ 1, which gives ||H(s)|| ∼ ||H(s) ⊗ p||. Alternatively, we can compare

the number η of few-qubit unitary gates needed to simulate the two algorithms on

a conventional quantum computer. Using the Lie product formula

eA+B ' (eA/meB/m)m , (5.29)

which is valid provided m À ‖A‖2 + ‖B‖2, we find η = O(1/g4) for adiabatic

evolution and η = O(1/g6) for the measurement algorithm, in agreement with the

previous comparison.

The argument we have used to motivate (5.27) is explained in greater detail in

Section 5.6. There, we also consider the number of qubits, r, that must be used

to represent the pointer. We show that if the gap is only polynomially small in n,

it is always sufficient to take r = O(logn). However, we argue that generally, a

single qubit will suffice.

1The adiabatic bound is actually somewhat weaker than this in the numerator; the gap-

dependence is what is significant for most situations.
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5.4 The Grover problem

5.4.1 Oracle formulation

The unstructured search problem considered by Grover is to find a particular

unknown n-bit string w (the marked state, or the winner) using only queries of

the form “is z the same as w?” [53]. In other words, one is trying to minimize a

function

hw(z) =











0 z = w

1 z 6= w.

(5.30)

Since there are 2n possible values for w, the best possible classical algorithm

uses Θ(2n) queries. However, Grover’s algorithm requires only Θ(2n/2) queries,

providing a (provably optimal [14]) quadratic speedup. In Grover’s algorithm, the

winner is specified by an oracle Uw with

Uw|z〉 = (−1)hw(z)|z〉 . (5.31)

This oracle is treated as a black box that one can use during the computation.

One call to this black box is considered to be a single query of the oracle.

In addition to Grover’s original algorithm, quadratic speedup can also be

achieved in a time-independent Hamiltonian formulation [39] or by adiabatic quan-

tum computation [89, 100]. In either of these formulations, the winner is specified

by an “oracle Hamiltonian”

Hw = 1− |w〉〈w|, (5.32)

whose ground state is |w〉 and that treats all orthogonal states (the non-winners)

equivalently. One is provided with a black box that implements Hw, where w is

unknown, and is asked to find w. Instead of counting queries, the efficiency of the

algorithm is quantified in terms of the total time for which one applies the oracle

Hamiltonian.
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Figure 5.2: Oracles for the Grover problem. (a) Top: Grover’s original oracle.

(b) Center: An oracle that performs evolution according to Hw. The double

line indicates a classical control parameter, the time for which the Hamiltonian is

applied. (c) Bottom: An oracle that allows one to measure Hw.

Here, we show that if we are given a slightly different black box, we can achieve

quadratic speedup using the measurement algorithm. We let the problem Hamil-

tonian be HP = Hw and we consider a one-parameter family of Hamiltonians H(s)

given by (5.2) for some HB. Because we would like to measure this Hamiltonian,

it is not sufficient to be given a black box that allows one to evolve the system

according to Hw. Instead, we will use a black box that evolves the system and a

pointer according to Hw⊗ p, where p is the momentum of the pointer. This oracle

is compared to the previous two in Fig. 5.2. By repeatedly alternating between ap-

plying this black box and evolving according to HB⊗p, each for small time, we can

produce an overall evolution according to the Hamiltonian [sHB +(1− s)HP ]⊗ p,
and thus measure the operator H(s) for any s.
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5.4.2 A two-measurement algorithm

Now consider the beginning Hamiltonian

HB =
∑

j

1− σ(j)x

2
, (5.33)

where σ
(j)
x is the Pauli x operator acting on the jth qubit. This beginning

Hamiltonian is a sum of local terms, and has the easy-to-prepare ground state

|E0(0)〉 = 2−n/2
∑

z |z〉, the uniform superposition of all possible bit strings in the

computational basis. If we consider the interpolation (5.2), then one can show [38]

that the minimum gap occurs at

s∗ = 1− 2

n
+O(n−2) , (5.34)

where the gap takes the value

g(s∗) = 21−n/2[1 +O(n−1)] . (5.35)

Naively applying (5.27) gives a running time T = O(23n/2), which is even worse

than the classical algorithm.

However, since we know the value of s∗ independent of w, we can improve on

this approach by making fewer measurements. We observe that in the limit of

large n, the ground state of H(s) is close to the ground state |E0(0)〉 of HB for

s . s∗ and is close to the ground state |E0(1)〉 = |w〉 of HP for s & s∗, switching

rapidly from one state to the other in the vicinity of s = s∗. In Section 5.7, we

show that up to terms of order 1/n, the ground state |ψ+〉 and the first excited

state |ψ−〉 of H(s∗) are the equal superpositions

|ψ±〉 '
1√
2
(|E0(0)〉 ± |E0(1)〉) (5.36)

of the initial and final ground states (which are nearly orthogonal for large n).



Chapter 5: Quantum measurement algorithms 176

If we prepare the system in the state |E0(0)〉 and make a perfect measurement

of H(s∗) followed by a perfect measurement of H(1), we find the result w with

probability 1
2 . The same effect can be achieved with an imperfect measurement,

even if the pointer consists of just a single qubit. First consider the measurement

of H(s∗) in the state |E0(0)〉. After the system and pointer have interacted for a

time t according to (5.10) with r = 1, the reduced density matrix of the system in

the {|ψ+〉, |ψ−〉} basis is approximately

1

2





1 eig(s
∗)t/4 cos[g(s∗)t/4]

e−ig(s
∗)t/4 cos[g(s∗)t/4] 1



 . (5.37)

If we then measure H(1) (i.e., measure in the computational basis), the probability

of finding w is approximately

1

2
sin2[g(s∗)t/4] . (5.38)

To get an appreciable probability of finding w, we choose t = Θ(2n/2).

This approach is similar to the way one can achieve quadratic speedup with

the adiabatic algorithm. Schrödinger time evolution governed by (5.2) does not

yield quadratic speedup. However, because s∗ is independent of w, we can change

the Hamiltonian quickly when the gap is big and more slowly when the gap is

small. Since the gap is only of size ∼ 2−n/2 for a region of width ∼ 2−n/2, the

total oracle time with this modified schedule need only be O(2n/2). This has

been demonstrated explicitly by solving for the optimal schedule using a different

beginning Hamiltonian H ′
B that is not a sum of local terms [89, 100], but it also

holds using the beginning Hamiltonian (5.33).

5.4.3 Other two-measurement algorithms

Note that measuring H(s∗) is not the only way to solve the Grover problem by

measurement. More generally, we can start in some w-independent state, measure
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the operator

H̃ = Hw +K (5.39)

where K is also independent of w, and then measure in the computational basis.

For example, suppose we choose

K = 1− |ψ〉〈ψ| , (5.40)

where |ψ〉 is a w-independent state with the property |〈w|ψ〉| ∼ 2−n/2 for all w.

(If we are only interested in the time for which we use the black box shown in

Fig. 5.2(c), i.e., if we are only interested in the oracle query complexity, then we

need not restrict K to be a sum of local terms.) In (5.40), the coefficient of −1 in

front of |ψ〉〈ψ| has been fine-tuned so that (|ψ〉 + |w〉)/
√
2 is the ground state of

H̃ for large n, up to terms of order 2−n/2. If the initial state has a large overlap

with |ψ〉, then the measurement procedure solves the Grover problem. However,

the excited state (|ψ〉 − |w〉)/
√
2 is also an eigenstate of H̃ up to terms of order

2−n/2, and it is degenerate with the ground state to this order, so there is a gap

in the spectrum of order 2−n/2. Thus the time to perform the measurement must

be Ω(2n/2).

The measurement procedures described above saturate the well-known lower

bound on the time required to solve the Grover problem. Using an oracle like the

one shown in Fig. 5.2(a), Bennett et al. showed that the Grover problem cannot

be solved on a quantum computer using fewer than of order 2n/2 oracle queries

[14]. By a straightforward modification of their argument, the same result applies

using the oracle shown in Fig. 5.2(c). Thus every possible H̃ as in (5.39) that

can be measured to find w must have a gap between the energies of the relevant

eigenstates of order 2−n/2 or smaller.
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5.5 Discussion

We have described a way to solve combinatorial search problems on a quantum

computer using only a sequence of measurements to keep the computer near the

ground state of a smoothly varying Hamiltonian. The basic principle of this algo-

rithm is similar to quantum computation by adiabatic evolution, and the running

times of the two methods are closely related. Because of this close connection,

many results on adiabatic quantum computation can be directly imported to the

measurement algorithm — for example, its similarities and differences with classi-

cal simulated annealing [37]. We have also shown that the measurement algorithm

can achieve quadratic speedup for the Grover problem using knowledge of the place

where the gap is smallest, as in adiabatic quantum computation.

One of the advantages of adiabatic quantum computation is its inherent robust-

ness against error [24]. In adiabatic computation, the particular path from HB to

HP is unimportant as long as the initial and final Hamiltonians are correct, the

path is smoothly varying, and the minimum gap along the path is not too small.

Exactly the same considerations apply to the measurement algorithm. However,

the adiabatic algorithm also enjoys robustness against thermal transitions out of

the ground state: if the temperature of the environment is much smaller than the

gap, then such transitions are suppressed. The measurement algorithm might not

possess this kind of robustness, since the Hamiltonian of the quantum computer

during the measurement procedure is not simply H(s).

Although it does not provide a computational advantage over quantum com-

putation by adiabatic evolution, the measurement algorithm is an alternative way

to solve general combinatorial search problems on a quantum computer. The al-

gorithm can be simply understood in terms of measurements of a set of operators,

without reference to unitary time evolution. Nevertheless, we have seen that to

understand the running time of the algorithm, it is important to understand the

dynamical process by which these measurements are realized.
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5.6 Details: The measurement process

In Section 5.3, we discussed the running time of the measurement algorithm by

examining the measurement process. In this Section, we present the analysis in

greater detail. First, we derive the bound on the running time by demonstrating

(5.25) and (5.26). We show rigorously that these bounds are sufficient as long as

the number of qubits used to represent the pointer is r = O(log n). Finally, we

argue that r = 1 qubit should be sufficient in general.

Our goal is to find a bound on the final success probability of the measurement

algorithm. We consider the effect of the measurements on the reduced density

matrix of the system, which can be written as the block matrix

ρ =





µ ν†

ν χ



 (5.41)

where µ = ρ00, νa = ρa0 for a 6= 0, and χab = ρab for a, b 6= 0. Since tr ρ = 1,

µ = 1 − tr χ. For ease of notation, we suppress the index of the iteration except

where necessary. The unitary transformation (5.12) may also be written as a block

matrix. Define ε = Γδ/g. Using perturbation theory and the unitarity constraint,

we can write

U =





u −w†V +O(ε3)

w V +O(ε2)



 , (5.42)

where |u|2 ≥ 1− ε2 +O(ε3), ‖w‖2 ≤ ε2 +O(ε3), and V is a unitary matrix. We let

‖·‖ denote the l2 vector or matrix norm as appropriate. Furthermore, let

κ =





1 k†

k J



 . (5.43)

From (5.11), the effect of a single measurement may be written

ρ′ = (UρU †) ◦ κ , (5.44)
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where ◦ denotes the element-wise (Hadamard) product. If we assume ‖ν‖ = O(ε),

we find

µ′ = |u|2µ− w†V ν − ν†V †w +O(ε3) (5.45)

ν ′ = [V ν + µw − V χV †w +O(ε2)] ◦ k . (5.46)

Now we use induction to show that our assumption always remains valid. Ini-

tially, ν(0) = 0. Using the triangle inequality in (5.46), we find

∥

∥ν ′
∥

∥ ≤ [‖ν‖+ ε+O(ε2)]k̃ , (5.47)

where

k̃ = max
j,a

∣

∣

∣
k(j)a

∣

∣

∣
. (5.48)

So long as k̃ < 1, we can sum a geometric series, extending the limits to go from

0 to ∞, to find
∥

∥

∥
ν(j)
∥

∥

∥
≤ ε

1− k̃
+O(ε2) (5.49)

for all j. In other words, ‖ν‖ = O(ε) so long as k̃ is bounded below 1 by a constant.

Finally, we put a bound on the final success probability µ(M). Using the

Cauchy-Schwartz inequality in (5.45) gives

µ′ ≥ (1− ε2)µ− 2ε2

1− k̃
+O(ε3) . (5.50)

Iterating this bound M times with the initial condition µ(0) = 1, we find

µ(M) ≥ 1− Γ2

Mg2

(

1 +
2

1− k̃

)

+O(Mε3) . (5.51)

If k̃ is bounded below 1 by a constant (independent of n), we find the condition

(5.25) as claimed in Section 5.3.

The requirement on k̃ gives the bound (5.26) on the measurement time τ ,

and also gives a condition on the number of pointer qubits r. To see this, we
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must investigate properties of the function |κ(x)|2 defined in (5.15) and shown in

Fig. 5.1. It is straightforward to show that |κ(x)|2 ≤ 1/2 for π/2 ≤ x ≤ π(2r−1/2).
Thus, if we want k̃ to be bounded below 1 by a constant, we require

π/2 ≤ [Ea(s)− E0(s)]t/2 ≤ π(2r − 1/2) (5.52)

for all s and for all a 6= 0. The left hand bound with a = 1 gives t ≥ π/g, which

is (5.26). Requiring the right-hand bound to hold for the largest energy difference

gives the additional condition 2r & (E2n−1−E0)/g. In general, the largest possible

energy difference must be bounded by a polynomial in n. If we further suppose

that g is only polynomially small, this condition is satisfied by taking

r = O(logn) , (5.53)

as claimed at the end of Section 5.3. Thus we see that the storage requirements

for the pointer are rather modest.

However, the pointer need not comprise even this many qubits. Since the goal

of the measurement algorithm is to keep the system close to its ground state, it

would be surprising if the energies of highly excited states were relevant. Suppose

we take r = 1; then |κ(x)|2 = cos2(x/2). As before, (5.26) suffices to make |κ01|2

sufficiently small. However, we must also consider terms involving |κ0a|2 for a > 1.

The algorithm will fail if the term µw ◦ k in (5.46) accumulates to be O(1) over

M iterations. This will only happen if, for O(M) iterations, most of ‖w‖ comes

from components wa with (Ea −E0)t close to an integer multiple of 2π. In such a

special case, changing t will avoid the problem. An alternative strategy would be

to choose t from a random distribution independently at each iteration.

5.7 Details: Eigenstates in the Grover problem

Here, we show that the ground state of H(s∗) for the Grover problem is close to

(5.36). Our analysis follows Section 4.2 of [38].
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Since the Grover problem is invariant under the choice of w, we consider the

case w = 0 without loss of generality. In this case, the problem can be analyzed

in terms of the total spin operators

Sa =
1

2

n
∑

j=1

σ(j)a , (5.54)

where a = x, y, z and σ
(j)
a is the Pauli a operator acting on the jth qubit. The

Hamiltonian commutes with ~S2 = S2
x + S2

y + S2
z , and the initial state has ~S2 =

n
2 (

n
2 + 1), so we can restrict our attention to the (n+ 1)-dimensional subspace of

states with this value of ~S2. In this subspace, the eigenstates of the total spin

operators satisfy

Sa|ma = m〉 = m|ma = m〉 (5.55)

for m = −n
2 ,−n

2 + 1, . . . , n2 . Written in terms of the total spin operators and

eigenstates, the Hamiltonian is

H(s) = (1− s)
(n

2
− Sx

)

+s
(

1−
∣

∣

∣
mz =

n

2

〉〈

mz =
n

2

∣

∣

∣

)

. (5.56)

The initial and final ground states are given by |E0(0)〉 = |mx = n
2 〉 and |E0(1)〉 =

|mz =
n
2 〉, respectively.

Projecting the equation H(s)|ψ〉 = E|ψ〉 onto the eigenbasis of Sx, we find

〈

mx =
n

2
− r
∣

∣

∣
ψ
〉

=
s

1− s

√
Pr

r − λ
〈

mz =
n

2

∣

∣

∣
ψ
〉

, (5.57)

where we have defined λ = (E − s)/(1 − s) and Pr = 2−n
(

n
r

)

. Now focus on the

ground state |ψ+〉 and the first excited state |ψ−〉 of H(s∗). By equation (4.39) of

[38], these states have λ± = ∓n
2 2
−n/2(1 + O(1/n)). Putting r = 0 in (5.57) and

taking s = s∗ from (5.34), we find

〈

mx =
n

2

∣

∣

∣
ψ±
〉

= ±
〈

mz =
n

2

∣

∣

∣
ψ±
〉

(1 +O(1/n)) . (5.58)
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For r 6= 0, we have

〈

mx =
n

2
− r
∣

∣

∣
ψ±
〉

=
n

2

√
Pr
r

〈

mz =
n

2

∣

∣

∣
ψ±
〉

×(1 +O(1/n)) . (5.59)

Requiring that |ψ±〉 be normalized, we find

1 =
n
∑

r=0

∣

∣

∣

〈

mx =
n

2
− r
∣

∣

∣
ψ±
〉∣

∣

∣

2
(5.60)

=
∣

∣

∣

〈

mz =
n

2

∣

∣

∣ψ±
〉∣

∣

∣

2
(

1 +
n2

4

n
∑

r=1

Pr
r2

)

×(1 +O(1/n)) (5.61)

=
∣

∣

∣

〈

mz =
n

2

∣

∣

∣ψ±
〉∣

∣

∣

2
(2 +O(1/n)) , (5.62)

which implies |〈mz = n
2 |ψ±〉|2 = 1

2 + O(1/n). From (5.58), we also have |〈mx =

n
2 |ψ±〉|2 = 1

2 +O(1/n). Thus we find

|ψ±〉 '
1√
2

(∣

∣

∣
mx =

n

2

〉

±
∣

∣

∣
mz =

n

2

〉)

(5.63)

up to terms of order 1/n, which is (5.36).
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[44] P. Gaćs. Reliable computation with cellular automata. J. Comp. Sys. Sci.,

32:15, 1986.

[45] C. W. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, 1985.

[46] P. Goetsch, P. Tombesi, and D. Vitali. Effect of feedback on the decoherence

of a Schrödinger cat state: A quantum trajectory description. Phys. Rev. A,

54(5):4519–4527, November 1996.

[47] D. Gottesman. A class of quantum error-correcting codes saturating the

quantum Hamming bound. Phys. Rev. A, 54:1862, 1996. quant-ph/9604038.

[48] D. Gottesman. Stabilizer codes and quantum error correction. Ph.D. thesis,

Caltech, 1997. quant-ph/9705052.

[49] D. Gottesman. The Heisenberg representation of quantum computers, 1998.

quant-ph/9807006.

[50] D. Gottesman. A theory of fault-tolerant quantum computation.

Phys. Rev. A, 57:127, 1998. quant-ph/9702029.

[51] D. Gottesman. Fault-tolerant quantum computation with local gates, 1999.

quant-ph/9903099.

[52] D. Gottesman and J. Preskill. unpublished.

[53] L. K. Grover. Quantum mechanics helps in searching for a needle in a

haystack. Phys. Rev. Lett., 79:325, 1997.

[54] I. A. Gruzberg, N. Read, and A. W. W. Ludwig. Random-bond Ising model

in two dimensions, the Nishimori line, and supersymmetry. Phys. Rev. B,

63:104422, 2001. cond-mat/0007254.



189

[55] A. Honecker, M. Picco, and P. Pujol. Nishimori point in the 2D ±j random-

bond Ising model, 2000. cond-mat/00010143.

[56] O. L. R. Jacobs. Introduction to Control Theory. Oxford, New York, NY,

1993.

[57] N. Kawashima and T. Aoki. Zero-temperature critical phenomena in two-

dimensional spin glasses, 1999. cond-mat/9911120.

[58] A. Yu. Kitaev. unpublished.

[59] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem,

1995. quant-ph/9511026.

[60] A. Yu. Kitaev. Quantum error correction with imperfect gates. In O. Hirota,

A. S. Holevo, and C. M. Caves, editors, Proceedings of the Third Interna-

tional Conference on Quantum Communication, Computing and Measure-

ment, New York, NY, 1996. Plenum Press.

[61] A. Yu. Kitaev. Fault-tolerant quantum computation by anyons, 1997. quant-

ph/9707021.

[62] A. Yu. Kitaev. Quantum computations: algorithms and error correction.

Russian Math. Surveys, 52:1191–1249, 1997.

[63] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Com-

putation, volume 47 of Graduate Studies in Mathematics. American Mathe-

matical Society, Providence, RI, 2002.

[64] H. Kitatani. The verticality of the ferromagnetic-spin glass phase boundary

of the ±j Ising model in the p–t plane. J. Phys. Soc. Japan, 61:4049–4055,

1992.

[65] P. L. Kloeden, E. Platen, and H. Schurz. Numerical solution of SDE through

computer experiments. Springer-Verlag, Berlin, 1994.



190

[66] E. Knill and R. Laflamme. A theory of quantum error-correcting codes.

Phys. Rev. A, 55:900–911, 1997. quant-ph/9604034.

[67] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation:

error models and thresholds. Proc. Roy. Soc. London A, 454:365–384, 1998.

quant-ph/9702058.

[68] A. N. Korotkov. Selective evolution of a qubit state due to continuous mea-

surement. Phys. Rev. B, 63:115403, 2001. cond-mat/0008461.

[69] K. Kraus. States, Effects, and Operations: Fundamental Notions of Quantum

Theory, volume 190 of Lecture Notes in Physics. Springer-Verlag, Berlin,

1983.

[70] D. W. Leung. Two-qubit projective measurements are universal for quantum

computation, 2001. quant-ph/0111122.

[71] S. Lloyd. Universal quantum simulators. Science, 273:1073, 1996.

[72] S. Lloyd and J.-J. E. Slotine. Quantum feedback with weak measurements.

Phys. Rev. A, 62:012307, 2000. quant-ph/9905064.

[73] H. Mabuchi and P. Zoller. Inversion of quantum jumps in quantum optical

systems under continuous observation. Phys. Rev. Lett., 76(17):3108–3111,

April 1996.

[74] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, 1996.
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