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Quantum search by measurement
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We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of
measurements. The algorithm is similar to quantum computation by adiabatic evolution, in that the goal is to
remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two
algorithms are closely related. We also show how to achieve the quadratic speedup for Grover’s unstructured
search problem with only two measurements. Finally, we discuss some similarities and differences between the
adiabatic and measurement algorithms.
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I. INTRODUCTION

In the conventional circuit model of quantum compu
tion, a program for a quantum computer consists of a disc
sequence of unitary gates chosen from a fixed set.
memory of the quantum computer is a collection of qub
initially prepared in some definite state. After a sequence
unitary gates is applied, the qubits are measured in the c
putational basis to give the result of the computation, a c
sical bit string.

This description of a quantum computer has been use
formulate quantum algorithms that outperform classi
methods, notably Shor’s factoring algorithm@1# and Grov-
er’s algorithm for unstructured search@2#. Subsequent devel
opment of quantum algorithms has focused primarily
variations of the techniques introduced by Shor and Gro
One way to motivate new algorithmic ideas is to consid
alternative~but, in general, equivalent! descriptions of the
way a quantum computer operates. For example, the t
nique of quantum computation by adiabatic evolution@3# is
most easily described by a quantum computer that evo
continuously according to a time-varying Hamiltonian. Wi
this approach, the state of the quantum computer rem
close to the instantaneous ground state of the time-var
Hamiltonian, which is engineered so that the ground stat
the final Hamiltonian encodes the solution to a compu
tional problem.

Another model of quantum computation allows measu
ment at intermediate stages. Indeed, recent work has sh
that measurement aloneis universal for quantum computa
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tion: one can efficiently implement a universal set of qua
tum gates using only measurements~and classical process
ing! @4–7#. In this paper, we describe an algorithm f
solving combinatorial search problems that consists only o
sequence of measurements. Using a straightforward va
of the quantum Zeno effect~see, for example,@8–10#!, we
show how to keep the quantum computer in the ground s
of a smoothly varying HamiltonianH(s). This process can
be used to solve a computational problem by encoding
solution to the problem in the ground state of the fin
Hamiltonian just as in adiabatic quantum computation.

The organization of the paper is as follows. In Sec. II, w
present the algorithm in detail and describe how meas
ment ofH(s) can be performed on a digital quantum com
puter. In Sec. III, we estimate the running time of the alg
rithm in terms of spectral properties ofH(s). Then, in Sec.
IV, we discuss how the algorithm performs on Grover’s u
structured search problem and show that, by a suitable m
fication, Grover’s quadratic speedup can be achieved by
measurement algorithm. Finally, in Sec. V, we discuss
relationship between the measurement algorithm and qu
tum computation by adiabatic evolution.

II. THE MEASUREMENT ALGORITHM

Our algorithm is conceptually similar to quantum comp
tation by adiabatic evolution@3#, a general method for solv
ing combinatorial search problems using a quantum co
puter. Both algorithms operate by remaining in the grou
state of a smoothly varying HamiltonianH(s) whose initial
ground state is easy to construct and whose final ground s
encodes the solution to the problem. However, whereas a
batic quantum computation uses Schro¨dinger evolution un-
derH(s) to remain in the ground state, the present algorit
usesonly measurement ofH(s).

In general, we are interested in searching for the m
mum of a functionh(z) that mapsn-bit strings to non-
negative real numbers. Many computational problems can
©2002 The American Physical Society14-1
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cast as minimizations of such functions; for specific e
amples and their relationship to adiabatic quantum comp
tion, see@3,11#. We restrict our attention to the case whe
the global minimum ofh(z) is unique. Associated with this
function, we can define aproblem Hamiltonian HP through
its action on computational basis states:

HPuz&5h~z!uz&. ~1!

Finding the global minimum ofh(z) is equivalent to finding
the ground state ofHP . If the global minimum is unique
then this ground state is nondegenerate.

To reach the ground state ofHP , we begin with the quan-
tum computer prepared in the ground state of some o
HamiltonianHB , thebeginning Hamiltonian. Then we con-
sider a one-parameter family of HamiltoniansH(s) that in-
terpolates smoothly fromHB to HP for sP@0,1#. In other
words, H(0)5HB and H(1)5HP , and the intermediate
H(s) is a smooth function ofs. One possible choice is linea
interpolation,

H~s!5~12s!HB1sHP . ~2!

Now we divide the interval@0,1# into M subintervals of
width d51/M . So long as the interpolating Hamiltonia
H(s) is smoothly varying andd is small, the ground state o
H(s) will be close to the ground state ofH(s1d). Thus, if
the system is in the ground state ofH(s) and we measure
H(s1d), the postmeasurement state is very likely to be
ground state ofH(s1d). If we begin in the ground state o
H(0) and successively measureH(d),H(2d), . . . ,H„(M
21)d…,H(1), then the final state will be the ground state
H(1) with high probability, assumingd is sufficiently small.

To complete our description of the quantum algorithm,
must explain how to measure the operatorH(s). The tech-
nique we use is motivated by von Neumann’s description
the measurement process@8#. In this description, measure
ment is performed by coupling the system of interest to
ancillary system, which we call thepointer. Suppose that the
pointer is a one-dimensional free particle and that
system-pointer interaction Hamiltonian isH(s) ^ p, wherep
is the momentum of the particle. Furthermore, suppose
the mass of the particle is sufficiently large that we can
glect the kinetic term. Then the resulting evolution is

e2 i tH (s) ^ p5(
a

@ uEa~s!&^Ea~s!u ^ e2 i tEa(s)p#, ~3!

whereuEa(s)& are the eigenstates ofH(s) with eigenvalues
Ea(s), and we have set\51. Suppose we prepare th
pointer in the stateux50&, a narrow wave packet centered
x50. Since the momentum operator generates translation
position, the above evolution performs the transformation

uEa~s!& ^ ux50&→uEa~s!& ^ ux5tEa~s!&. ~4!

If we can measure the position of the pointer with su
ciently high precision that all relevant spacingsxab
5tuEa(s)2Eb(s)u can be resolved, then measurement of
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position of the pointer—a fixed, easy-to-measure observa
independent ofH(s)—effects a measurement ofH(s).

Von Neumann’s measurement protocol makes use o
continuous variable, the position of the pointer. To turn
into an algorithm that can be implemented on a fully digi
quantum computer, we can approximate the evolution~3!
usingr quantum bits to represent the pointer@12,13#. The full
Hilbert space is thus a tensor product of a 2n-dimensional
space for the system and a 2r-dimensional space for the
pointer. We let the computational basis of the pointer, w
basis states$uz&}, represent the basis of momentum eige
states. The labelz is an integer between 0 and 2r21, and the
r bits of the binary representation ofz specify the states o
the r qubits. In this basis, the digital representation ofp is

p5(
j 51

r

22 j
12sz

( j )

2
, ~5!

a sum of diagonal operators, each of which acts on onl
single qubit. Heresz

( j ) is the Paulizoperator on thej th qubit.
As we will discuss in the next section, we have chosen
normalizep so that

puz&5
z

2r uz&, ~6!

which gives ipi;1. If H(s) is a sum of terms, each o
which acts on at mostk qubits, thenH(s) ^ p is a sum of
terms, each of which acts on at mostk11 qubits. As long as
k is a fixed constant independent of the problem sizen, such
a Hamiltonian can be simulated efficiently on a quantu
computer@14#. Expanded in the momentum eigenbasis,
initial state of the pointer is

ux50&5
1

2r /2 (
z50

2r21

uz&. ~7!

The measurement is performed by evolving underH(s) ^ p
for a total timet. We discuss how to chooset in the next
section. After this evolution, the position of the simulat
pointer could be measured by measuring the qubits that
resent it in thex basis, i.e., the Fourier transform of th
computational basis. However, note that our algorithm o
makes use of the postmeasurement state of the system, n
the measured value ofH(s). In other words, only the re-
duced density matrix of the system is relevant. Thus it is
actually necessary to perform a Fourier transform bef
measuring the pointer, or even to measure the pointer at
When the system-pointer evolution is finished, one can eit
reprepare the pointer in its initial stateux50& or discard it
and use a new pointer, and immediately begin the next m
surement.

As an aside, note that the von Neumann measurem
procedure described above is identical to the well-kno
phase estimation algorithm for measuring the eigenvalue
a unitary operator@15,16#, which can also be used to produc
eigenvalues and eigenvectors of a Hamiltonian@17#. This
connection has been noted previously in@13#, and it has been
4-2
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pointed out that the measurement is a nondemolition m
surement in@18#. In the phase estimation problem, we a
given an eigenvectoruc& of a unitary operatorU and asked
to determine its eigenvaluee2 if. The algorithm uses two
registers, one that initially storesuc& and one that will store
an approximation of the phasef. The first and last steps o
the algorithm are Fourier transforms on the phase regis
The intervening step is to perform the transformation

uc& ^ uz&→Uzuc& ^ uz&, ~8!

whereuz& is a computational basis state. If we takeuz& to be
a momentum eigenstate with eigenvaluez @i.e., if we choose
a different normalization from that in Eq.~6!# and let U
5e2 iHt , this is exactly the transformation induced b
e2 i (H ^ p)t. Thus we see that the phase estimation algorit
for a unitary operatorU is exactly von Neumann’s prescrip
tion for measuringi ln U.

III. RUNNING TIME

The running time of the measurement algorithm is
product ofM, the number of measurements, andt, the time
per measurement. Even if we assume perfect projective m
surements, the algorithm is guaranteed to keep the comp
in the ground state ofH(s) only in the limit M→`, so that
d51/M→0. Given a finite running time, the probability o
finding the ground state ofHP with the last measuremen
will be less than 1. To understand the efficiency of the al
rithm, we need to determine how long we must run a
function of n, the number of bits on which the functionh is
defined, so that the probability of success is not too smal
general, if the time required to achieve a success probab
greater than some fixed constant~e.g., 1

2 ) is poly(n), we say
the algorithm is efficient, whereas if the running time gro
exponentially, we say it is not.

To determine the running time of the algorithm, we co
sider the effect of the measurement process on the red
density matrix of the system. Here, we simply motivate
main result; for a detailed analysis, see Appendix A.

Let r ( j ) denote the reduced density matrix of the syst
after thej th measurement; its matrix elements are

rab
( j )5^Ea~ j d!ur ( j )uEb~ j d!&. ~9!

The interaction with the digitized pointer effects the transf
mation

uEa~s!& ^ uz&→e2 iEa(s)zt/2r
uEa~s!& ^ uz&. ~10!

Starting with the pointer in the state~7!, evolving according
to ~10!, and tracing over the pointer, the quantum operat
induced on the system is

rab
( j 11)5kab

( j 11)(
c,d

Uac
( j )rcd

( j )Ubd
( j )* , ~11!

where the unitary transformation relating the energy eig
bases ats5 j d ands5( j 11)d is
03231
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Uab
( j )5^Ea~~ j 11!d!uEb~ j d!& ~12!

and

kab
( j )5

1

2r (
z50

2r21

ei [Eb( j d)2Ea( j d)]zt/2r
. ~13!

Summing this geometric series, we find

ukab
( j )u25uk„@Eb~ j d!2Ea~ j d!#t/2…u2, ~14!

where

uk~x!u25
sin2x

4rsin2~x/2r !
. ~15!

This function is shown in Fig. 1 for the caser 54. It has a
sharp peak of unit height and width of order 1 at the orig
and identical peaks at integer multiples of 2rp.

If the above procedure were a perfect projective meas
ment, then we would havekab50 wheneverEaÞEb . As-
suming~temporarily! that this is the case, we find

r00
( j 11)>uU00

( j )u2r00
( j ) ~16!

with the initial conditionr00
(0)51 andrab

(0)50 otherwise. Per-
turbation theory gives

uU00
( j )u2512d2(

aÞ0

z^Ea~s!u~dH/ds!uE0~s!& z2

@E0~s!2Ea~s!#2 U
s5 j d

1O~d3!

~17!

>12
G~ j d!2d2

g~ j d!2 1O~d3!, ~18!

where

G~s!25^E0~s!u~dH/ds!2uE0~s!&

2^E0~s!u~dH/ds!uE0~s!&2 ~19!

and

FIG. 1. The functionuk(x)u2 for r 54.
4-3
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ANDREW M. CHILDS et al. PHYSICAL REVIEW A 66, 032314 ~2002!
g~s!5E1~s!2E0~s! ~20!

is the energy gap between the ground and first excited st
If we let

G5 max
sP[0,1]

G~s!, ~21!

g5 min
sP[0,1]

g~s!, ~22!

then according to Eq.~16! the probability of being in the
ground state after the last measurement is at least

r00
(M )>F12

G2

M2g2 1O~M 23!GM

~23!

5expS 2
G2

Mg2D1O~M 22!. ~24!

The probability of success is close to 1 provided

M@
G2

g2 . ~25!

WhenHB andHP are both sums of poly(n) terms, each of
which acts nontrivially on at most a constant number of q
bits, it is easy to choose an interpolation such as Eq.~2! so
that G is only poly(n). Thus we are mainly interested in th
behavior ofg, theminimum gapbetween the ground and firs
excited states. We see that, for the algorithm to be succes
the total number of measurements must be much larger
1/g2.

In fact, the simulated von Neumann procedure is no
perfect projective measurement. We must determine h
long the system and pointer should interact so that the m
surement is sufficiently good. The analysis in Appendix
shows thatuk01

( j )u2 should be bounded below 1 by a consta
for all j. In other words, to sufficiently resolve the differen
between the ground and first excited states, we must decr
the coherence between them by a fixed fraction per meas
ment. The width of the central peak in Fig. 1 is of order 1,
it is straightforward to show that to haveuk(x)u2 less than,
say, 1/2, we must havex>O(1). This places a lower bound
on the system-pointer interaction time of

t>
O~1!

g
~26!

independent ofr, the number of pointer qubits.~Note that the
same bound also holds in the case of a continuous po
with a fixed resolution length.!

Putting these results together, we find that the meas
ment algorithm is successful if the total running timeT
5Mt satisfies

T@
G2

g3 ~measurement!. ~27!
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This result can be compared to the corresponding expres
for quantum computation by adiabatic evolution,

T@
G

g2 ~adiabatic!. ~28!

Note that the same quantity appears in the numerator of b
expressions; in both cases,G accounts for the possibility o
transitions to all possible excited states.

The adiabatic and measurement algorithms have qua
tively similar behavior: if the gap is exponentially sma
neither algorithm is efficient, whereas if the gap is only po
nomially small, both algorithms are efficient. However, t
measurement algorithm is slightly slower: whereas adiab
evolution runs in a time that grows as 1/g2, the measuremen
algorithm runs in a time that grows as 1/g3. To see that
this comparison is fair, recall that we have defined t
momentum in Eq.~5! so thatipi;1, which givesiH(s)i
;iH(s) ^ pi . Alternatively, we can compare the numberh
of few-qubit unitary gates needed to simulate the two al
rithms on a conventional quantum computer. Using the
product formula

eA1B.~eA/meB/m!m, ~29!

which is valid provided m@iAi21iBi2, we find h
5O(1/g4) for adiabatic evolution andh5O(1/g6) for the
measurement algorithm, in agreement with the previo
comparison.

The argument we have used to motivate Eq.~27! is ex-
plained in greater detail in Appendix A. There, we also co
sider the number of qubitsr that must be used to represe
the pointer. We show that if the gap is only polynomial
small in n, it is always sufficient to taker 5O(logn). How-
ever, we argue that generally a single qubit will suffice.

IV. THE GROVER PROBLEM

The unstructured search problem considered by Grove
to find a particular unknownn-bit stringw ~the marked state
or thewinner! using only queries of the form ‘‘Isz the same
as w?’’ @2#. In other words, one is trying to minimize
function

hw~z!5H 0, z5w,

1, zÞw.
~30!

Since there are 2n possible values forw, the best possible
classical algorithm usesQ(2n) queries. However, Grover’s
algorithm requires onlyQ(2n/2) queries, providing a~prov-
ably optimal@19#! quadratic speedup. In Grover’s algorithm
the winner is specified by anoracle Uw with

Uwuz&5~21!hw(z)uz&. ~31!

This oracle is treated as a black box that one can use du
the computation. One call to this black box is considered
be a single query of the oracle.

In addition to Grover’s original algorithm, quadrati
speedup can also be achieved in a time-independent Ha
4-4
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QUANTUM SEARCH BY MEASUREMENT PHYSICAL REVIEW A66, 032314 ~2002!
tonian formulation@20# or by adiabatic quantum computatio
@21,22#. In either of these formulations, the winner is spe
fied by an ‘‘oracle Hamiltonian’’

Hw512uw&^wu ~32!

whose ground state isuw& and that treats all orthogonal stat
~the nonwinners! equivalently. One is provided with a blac
box that implementsHw , wherew is unknown, and is asked
to find w. Instead of counting queries, the efficiency of t
algorithm is quantified in terms of the total time for whic
one applies the oracle Hamiltonian.

Here, we show that if we are given a slightly differe
black box, we can achieve quadratic speedup using the m
surement algorithm. We let the problem Hamiltonian beHP
5Hw and we consider a one-parameter family of Hamil
nians H(s) given by Eq. ~2! for some HB . Because we
would like tomeasurethis Hamiltonian, it is not sufficient to
be given a black box that allows one to evolve the syst
according toHw . Instead, we will use a black box tha
evolves the system and a pointer according toHw^ p, where
p is the momentum of the pointer. This oracle is compared
the previous two in Fig. 2. By repeatedly alternating betwe
applying this black box and evolving according toHB^ p,
each for small time, we can produce an overall evolut
according to the Hamiltonian@sHB1(12s)HP# ^ p, and
thus measure the operatorH(s) for any s.

Now consider the beginning Hamiltonian

HB5(
j

12sx
( j )

2
, ~33!

where sx
( j ) is the Paulix operator acting on thej th qubit.

This beginning Hamiltonian is a sum of local terms, and h
the easy-to-prepare ground stateuE0(0)&522n/2(zuz&, the
uniform superposition of all possible bit strings in the co
putational basis. If we consider the interpolation~2!, then
one can show@3# that the minimum gap occurs at

FIG. 2. Oracles for the Grover problem.~a! Top: Grover’s origi-
nal oracle.~b! Center: An oracle that performs evolution accordi
to Hw . The double line indicates a classical control parameter,
time for which the Hamiltonian is applied.~c! Bottom: An oracle
that allows one to measureHw .
03231
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1O~n22!, ~34!

where the gap takes the value

g~s* !5212n/2@11O~n21!#. ~35!

Naively applying Eq. ~27! gives a running time
T5O(23n/2), which is even worse than the classic
algorithm.

However, since we know the value ofs* independent of
w, we can improve on this approach by making fewer m
surements. We observe that in the limit of largen, the ground
state ofH(s) is close to the ground stateuE0(0)& of HB for
s&s* and is close to the ground stateuE0(1)&5uw& of HP
for s*s* , switching rapidly from one state to the other
the vicinity of s5s* . In Appendix B, we show that up to
terms of order 1/n, the ground stateuc1& and the first ex-
cited stateuc2& of H(s* ) are the equal superpositions

uc6&.
1

A2
@ uE0~0!&6uE0~1!&] ~36!

of the initial and final ground states~which are nearly or-
thogonal for largen). If we prepare the system in the sta
uE0(0)& and make a perfect measurement ofH(s* ) followed
by a perfect measurement ofH(1), we find theresultw with
probability 1

2 . The same effect can be achieved with an i
perfect measurement, even if the pointer consists of ju
single qubit. First consider the measurement ofH(s* ) in the
stateuE0(0)&. After the system and pointer have interact
for a time t according to Eq.~10! with r 51, the reduced
density matrix of the system in theuc1&,uc2& basis is ap-
proximately

1

2 S 1 eig(s* )t/4cos@g~s* !t/4#

e2 ig(s* )t/4cos@g~s* !t/4# 1
D .

~37!

If we then measureH(1) ~i.e., measure in the computation
basis!, the probability of findingw is approximately

1

2
sin2@g~s* !t/4#. ~38!

To get an appreciable probability of findingw, we chooset
5Q(2n/2).

This approach is similar to the way one can achieve q
dratic speedup with the adiabatic algorithm. Schro¨dinger
time evolution governed by Eq.~2! does not yield quadratic
speedup. However, becauses* is independent ofw, we can
change the Hamiltonian quickly when the gap is big a
more slowly when the gap is small. Since the gap is only
size ;22n/2 for a region of width;22n/2, the total oracle
time with this modified schedule need only beO(2n/2). This
has been demonstrated explicitly by solving for the optim
schedule using a different beginning HamiltonianHB8 that is
not a sum of local terms@21,22#, but it also holds using the
beginning Hamiltonian~33!.

e

4-5
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ANDREW M. CHILDS et al. PHYSICAL REVIEW A 66, 032314 ~2002!
Note that measuringH(s* ) is not the only way to solve
the Grover problem by measurement. More generally, we
start in somew-independent state, measure the operator

H̃5Hw1K, ~39!

whereK is also independent ofw, and then measure in th
computational basis. For example, suppose we choose

K512uc&^cu, ~40!

where uc& is a w-independent state with the proper
u^wuc&u;22n/2 for all w. ~If we are only interested in the
time for which we use the black box shown in Fig. 2~c!, i.e.,
if we are only interested in the oracle query complexity, th
we need not restrictK to be a sum of local terms.! In Eq.
~40!, the coefficient of21 in front of uc&^cu has been fine
tuned so thatuc&1uw& is the ground state ofH̃ ~choosing the
phase ofuw& so that̂ wuc& is real and positive!. If the initial
state has a large overlap withuc&, then the measuremen
procedure solves the Grover problem. However, the exc
state uc&2uw& is also an eigenstate ofH̃, with an energy
higher by of order 22n/2. Thus the time to perform the mea
surement must beV(2n/2).

The measurement procedures described above satura
well-known lower bound on the time required to solve t
Grover problem. Using an oracle like the one shown in F
2~a!, Bennettet al. showed that the Grover problem cann
be solved on a quantum computer using fewer than of o
2n/2 oracle queries@19#. By a straightforward modification o
their argument, an equivalent result applies using the or
shown in Fig. 2~c!. Thus every possibleH̃ as in Eq.~39! that
can be measured to findw must have a gap between th
energies of the relevant eigenstates of order 22n/2 or smaller.

V. DISCUSSION

We have described a way to solve combinatorial sea
problems on a quantum computer using only a sequenc
measurements to keep the computer near the ground sta
a smoothly varying Hamiltonian. The basic principle of th
algorithm is similar to quantum computation by adiaba
evolution, and the running times of the two methods
closely related. Because of this close connection, many
sults on adiabatic quantum computation can be directly
ported to the measurement algorithm—for example, its si
larities and differences with classical simulated annea
@23#. We have also shown that the measurement algori
can achieve quadratic speedup for the Grover problem u
knowledge of the place where the gap is smallest, as in a
batic quantum computation.

One of the advantages of adiabatic quantum computa
is its inherent robustness against error@24#. In adiabatic com-
putation, the particular path fromHB to HP is unimportant as
long as the initial and final Hamiltonians are correct, the p
is smoothly varying, and the minimum gap along the path
not too small. Exactly the same considerations apply to
measurement algorithm. However, the adiabatic algorit
also enjoys robustness against thermal transitions out o
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ground state: if the temperature of the environment is m
smaller than the gap, then such transitions are suppres
The measurement algorithm might not possess this kind
robustness, since the Hamiltonian of the quantum comp
during the measurement procedure is not simplyH(s).

Although it does not provide a computational advanta
over quantum computation by adiabatic evolution, the m
surement algorithm is an alternative way to solve gene
combinatorial search problems on a quantum computer.
algorithm can be simply understood in terms of measu
ments of a set of operators, without reference to unitary ti
evolution. Nevertheless, we have seen that to understand
running time of the algorithm, it is important to understa
the dynamical process by which these measurements
realized.
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APPENDIX A: THE MEASUREMENT PROCESS

In Sec. III, we discussed the running time of the measu
ment algorithm by examining the measurement process
this appendix, we present the analysis in greater detail. F
we derive the bound on the running time by demonstrat
Eqs.~25! and~26!. We show rigorously that these bounds a
sufficient as long as the gap is only polynomially small a
the number of qubits used to represent the pointer ir
5O(logn). Finally, we argue thatr 51 qubit should be suf-
ficient in general.

Our goal is to find a bound on the final success probabi
of the measurement algorithm. We consider the effect of
measurements on the reduced density matrix of the sys
which can be written as the block matrix

r5S m n†

n x
D , ~A1!

where m5r00, na5ra0 for aÞ0, and xab5rab for a,b
Þ0. Since trr51, m512trx. For ease of notation, we sup
pressj, the index of the iteration, except where necessa
The unitary transformation~12! may also be written as a
block matrix. Definee5Gd/g. Using perturbation theory
and the unitarity constraint, we can write

U5S u 2w†V1O~e3!

w V1O~e2!
D , ~A2!
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where uuu2>12e21O(e3), iwi2<e21O(e3), and V is a
unitary matrix. We leti•i denote thel 2 vector or matrix
norm as appropriate. Furthermore, let

k5S 1 k†

k J D . ~A3!

From Eq.~11!, the effect of a single measurement may
written

r85~UrU†!+k, ~A4!

where+ denotes the elementwise~Hadamard! product. If we
assumeini5O(e), we find

m85uuu2m2w†Vn2n†V†w1O~e3!, ~A5!

n85@Vn1mw2VxV†w1O~e2!#+k. ~A6!

Now we use induction to show that our assumption alw
remains valid. Initially,n (0)50. Using the triangle inequality
in Eq. ~A6!, we find

in8i<@ ini1e1O~e2!# k̃, ~A7!

where

k̃5max
j ,a

uka
( j )u. ~A8!

So long ask̃,1, we can sum a geometric series, extend
the limits to go from 0 tò , to find

in ( j )i<
e

12 k̃
1O~e2! ~A9!

for all j. In other words,ini5O(e) so long ask̃ is bounded
below 1 by a constant.

Finally, we put a bound on the final success probabi
m (M ). Using the Cauchy-Schwartz inequality in Eq.~A5!
gives

m8>~12e2!m2
2e2

12 k̃
1O~e3!. ~A10!

Iterating this boundM times with the initial conditionm (0)

51, we find

m (M )>12
G2

Mg2 S 11
2

12 k̃
D 1O~Me3!. ~A11!

If k̃ is bounded below 1 by a constant~independent ofn), we
find the condition~25! as claimed in Sec. III.

The requirement onk̃ gives the bound~26! on the mea-
surement timet, and also gives a condition on the number
pointer qubitsr. To see this, we must investigate propert
of the function uk(x)u2 defined in Eq.~15! and shown in
Fig. 1. It is straightforward to show thatuk(x)u2<1/2 for
03231
s
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f

p/2<x<p(2r21/2). Thus, if we wantk̃ to be bounded be-
low 1 by a constant, we require

p/2<@Ea~s!2E0~s!#t/2<p~2r21/2! ~A12!

for all s and for all aÞ0. The left hand bound witha51
gives t>p/g, which is Eq.~26!. Requiring the right hand
bound to hold for the largest energy difference gives
additional condition 2r*(E2n212E0)/g. Since we only
consider HamiltoniansH(s) that are sums of poly(n) terms
of bounded size, the largest possible energy difference m
be bounded by a polynomial inn. If we further suppose tha
g is only polynomially small, this condition is satisfied b
taking

r 5O~ logn!, ~A13!

as claimed at the end of Sec. III. Thus we see that the sto
requirements for the pointer are rather modest.

However, the pointer need not comprise even this ma
qubits. Since the goal of the measurement algorithm is
keep the system close to its ground state, it would be surp
ing if the energies of highly excited states were releva
Suppose we taker 51; then uk(x)u25cos2(x/2). As before,
Eq. ~26! suffices to makeuk01u2 sufficiently small. However,
we must also consider terms involvinguk0au2 for a.1. The
algorithm will fail if the termmw+k in Eq. ~A6! accumulates
to be O(1) over M iterations. This will only happen if, for
O(M ) iterations, most ofiwi comes from componentswa
with (Ea2E0)t close to an integer multiple of 2p. In such a
special case, changingt will avoid the problem. An alterna-
tive strategy would be to chooset from a random distribution
independently at each iteration.

APPENDIX B: EIGENSTATES IN THE GROVER
PROBLEM

Here, we show that the ground state ofH(s* ) for the
Grover problem is close to Eq.~36!. Our analysis follows
Sec. 4.2 of@3#.

Since the Grover problem is invariant under the choice
w, we consider the casew50 without loss of generality. In
this case, the problem can be analyzed in terms of the t
spin operators

Sa5
1

2 (
j 51

n

sa
( j ) , ~B1!

wherea5x,y,z andsa
( j ) is the Paulia operator acting on the

j th qubit. The Hamiltonian commutes withSW 25Sx
21Sy

2

1Sz
2 , and the initial state hasSW 25(n/2)„(n/2)11…, so we

can restrict our attention to the (n11)-dimensional subspac
of states with this value ofSW 2. In this subspace, the eigen
states of the total spin operators satisfy

Sauma5m&5muma5m& ~B2!

for m52n/2,2n/211, . . . ,n/2. Written in terms of the to-
tal spin operators and eigenstates, the Hamiltonian is
4-7
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H~s!5~12s!S n

2
2SxD1sS 12Umz5

n

2L K mz5
n

2U D .

~B3!

The initial and final ground states are given byuE0(0)&
5umx5n/2& and uE0(1)&5umz5n/2&, respectively.

Projecting the equationH(s)uc&5Euc& onto the eigenba-
sis of Sx , we find

K mx5
n

2
2rUc L 5

s

12s
A Pr

r 2l K mz5
n

2 Uc L , ~B4!

where we have definedl5(E2s)/(12s) and Pr

522n( r
n). Now focus on the ground stateuc1& and the first

excited stateuc2& of H(s* ). By Eq. ~4.39! of @3#, these
states havel657(n/2)22n/2@11O(1/n)#. Putting r 50 in
Eq. ~B4! and takings5s* from Eq. ~34!, we find

K mx5
n

2 Uc6L 56 K mz5
n

2 Uc6L @11O~1/n!#. ~B5!

For rÞ0, we have

K mx5
n

2
2rUc6L 5

n

2
APr

r K mz5
n

2Uc6L @11O~1/n!#.

~B6!
on
r

rin

3.
-

an

03231
Requiring thatuc6& be normalized, we find

15(
r 50

n U K mx5
n

2
2rUc6L U2

~B7!

5U K mz5
n

2 Uc6L U2S 11
n2

4 (
r 51

n
Pr

r 2 D @11O~1/n!#

~B8!

5U K mz5
n

2 Uc6L U2

@21O~1/n!#, ~B9!

which implies z^mz5(n/2)uc6& z25 1
2 1O(1/n). From Eq.

~B5!, we also havez^mx5(n/2)uc6& z25 1
2 1O(1/n). Thus

we find

uc6&.
1

A2
S Umx5

n

2L 6Umz5
n

2L D ~B10!

up to terms of order 1/n, which is Eq.~36!.
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