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Quantum search by measurement
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We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of
measurements. The algorithm is similar to quantum computation by adiabatic evolution, in that the goal is to
remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two
algorithms are closely related. We also show how to achieve the quadratic speedup for Grover’s unstructured
search problem with only two measurements. Finally, we discuss some similarities and differences between the
adiabatic and measurement algorithms.
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[. INTRODUCTION tion: one can efficiently implement a universal set of quan-
tum gates using only measuremef@sd classical process-

In the conventional circuit model of quantum computa-ing) [4-7]. In this paper, we describe an algorithm for
tion, a program for a quantum computer consists of a discretgolving combinatorial search problems that consists only of a
sequence of unitary gates chosen from a fixed set. Theequence of measurements. Using a straightforward variant
memory of the quantum computer is a collection of qubitsOf the quantum Zeno effecsee, for example[8—10), we
initially prepared in some definite state. After a sequence ofhow how to keep the quantum computer in the ground state
unitary gates is applied, the qubits are measured in the con®f @ smoothly varying Hamiltoniaki(s). This process can
putational basis to give the result of the computation, a clasPe used to solve a computational problem by encoding the
sical bit string. solut!on to the prot_)lem_ln the ground state of t_he final

This description of a quantum computer has been used tg@miltonian just as in adiabatic quantum computation.
formulate quantum algorithms that outperform classical 1he organization of the paper is as follows. In Sec. II, we
methods, notably Shor’s factoring algorititi] and Grov-  Present the algorithm in detail and de_sqube how measure-
er's algorithm for unstructured searf]. Subsequent devel- ment ofH(s) can be performed on a digital quantum com-
opment of quantum algorithms has focused primarily onPUuter. In Sec. Ill, we estimate the running time of the algo-
variations of the techniques introduced by Shor and Grovefithm in terms of spectral properties bf(s). Then, in Sec.
One way to motivate new algorithmic ideas is to considerV, we discuss how the algorithm performs on Grover’s un-
alternative(but, in general, equivalentescriptions of the Structured search problem and show that, by a suitable modi-
way a quantum computer operates. For example, the tecfiication, Grover’s quadratic speedup can be achieved by the
nique of quantum computation by adiabatic evolutighis ~ Measurement algorithm. Finally, in Sec. V, we discuss the
most easily described by a quantum computer that evolveiglationship between the measurement algorithm and quan-
continuously according to a time-varying Hamiltonian. With tum computation by adiabatic evolution.
this approach, the state of the quantum computer remains
closg to _the ins'gantaneou_s ground state of the time-varying II. THE MEASUREMENT ALGORITHM
Hamiltonian, which is engineered so that the ground state of
the final Hamiltonian encodes the solution to a computa- Our algorithm is conceptually similar to quantum compu-
tional problem. tation by adiabatic evolutiof3], a general method for solv-

Another model of quantum computation allows measureing combinatorial search problems using a quantum com-
ment at intermediate stages. Indeed, recent work has shovputer. Both algorithms operate by remaining in the ground
that measurement alonis universal for quantum computa- state of a smoothly varying Hamiltonidt(s) whose initial

ground state is easy to construct and whose final ground state
encodes the solution to the problem. However, whereas adia-

*Electronic address: amchilds@mit.edu batic quantum computation uses Salirmer evolution un-
TElectronic address: deotto@mitins.mit.edu derH(s) to remain in the ground state, the present algorithm
*Electronic address: farhi@mit.edu usesonly measurement ofi(s).

SElectronic address: goldston@mit.edu In general, we are interested in searching for the mini-
IElectronic address: sgutm@neu.edu mum of a functionh(z) that mapsn-bit strings to non-
TElectronic address: alandahl@caltech.edu negative real numbers. Many computational problems can be
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cast as minimizations of such functions; for specific ex-position of the pointer—a fixed, easy-to-measure observable,
amples and their relationship to adiabatic quantum computandependent of (s)—effects a measurement bif(s).

tion, see[3,11]. We restrict our attention to the case where Von Neumann's measurement protocol makes use of a
the global minimum oh(z) is unique. Associated with this continuous variable, the position of the pointer. To turn it
function, we can define problem Hamiltonian K through into an algorithm that can be implemented on a fully digital

its action on computational basis states: guantum computer, we can approximate the evolutign
usingr quantum bits to represent the pointg¢2,13. The full
Hp|z)=h(2)|2). (1)  Hilbert space is thus a tensor product of &dimensional

space for the system and d-@mensional space for the

Finding the global minimum of(z) is equivalent to finding  pointer. We let the computational basis of the pointer, with
the ground state oHp. If the global minimum is unique, basis state¢|z)}, represent the basis of momentum eigen-
then this ground state is nondegenerate. states. The labais an integer between 0 and-21, and the

To reach the ground state Hif,, we begin with the quan- r bits of the binary representation afspecify the states of
tum computer prepared in the ground state of some othaher qubits. In this basis, the digital representatiorpds
HamiltonianHg, the beginning HamiltonianThen we con-
sider a one-parameter family of HamiltoniaHgs) that in- ' 1-g)
terpolates smoothly frong to Hp for se[0,1]. In other p=>, 27 5 )
words, H(0)=Hg and H(1)=Hp, and the intermediate 1=
H(s) is a smooth function of. One possible choice is linear
interpolation,

a sum of diagonal operators, each of which acts on only a
single qubit. Herer!) is the Pauliz operator on th¢th qubit.

As we will discuss in the next section, we have chosen to
H(s)=(1=s)Hg+sHp. @ normalizep so that

Now we divide the interval0,1] into M subintervals of .

width §=1/M. So long as the interpolating Hamiltonian plz2)==|2), (6)
H(s) is smoothly varying and is small, the ground state of 2
H(s) will be close to the ground state éf(s+ §). Thus, if
the system is in the ground state ld{s) and we measure
H(s+ 6), the postmeasurement state is very likely to be th
ground state oH(s+ ). If we begin in the ground state of
H(0) and successively measuk(5),H(26), ... H({(M
—1)6),H(1), then the final state will be the ground state of
H (1) with high probability, assuming is sufficiently small.

To complete our description of the quantum algorithm, we
must explain how to measure the operats). The tech- o
nique we use is motivated by von Neumann’s description of Ix=0)= i 12) @
the measurement procel8). In this description, measure- = '
ment is performed by coupling the system of interest to an

ancillary SyStem, which we call th:minter. Suppose that the The measurement is performed by evo|ving unHés)@ p
pointer is a one-dimensional free particle and that thegr 3 total timer. We discuss how to choosein the next
system-pointer interaction Hamiltoniank(s)® p, wherep  section. After this evolution, the position of the simulated
is the momentum of the particle. Furthermore, suppose th&iointer could be measured by measuring the qubits that rep-
the mass of the particle is sufficiently large that we can neresent it in thex basis, i.e., the Fourier transform of the
glect the kinetic term. Then the resulting evolution is computational basis. However, note that our algorithm only
makes use of the postmeasurement state of the system, not of
—itH(s)®p_ —itE,(s)p the measured value dfi(s). In other words, only the re-
€ za: [Ba(9))(Ea(s)|@e LG duced density matrix of the system is relevant. Thus it is not
actually necessary to perform a Fourier transform before
where|E,(s)) are the eigenstates &f(s) with eigenvalues measuring the pointer, or even to measure the pointer at all.
E.(s), and we have set=1. Suppose we prepare the When the system-pointer evolution is finished, one can either
pointer in the statéx=0), a narrow wave packet centered at reprepare the pointer in its initial stape=0) or discard it
x=0. Since the momentum operator generates translations end use a new pointer, and immediately begin the next mea-
position, the above evolution performs the transformation surement.
As an aside, note that the von Neumann measurement
|[Ea(s))®|x=0)—|EL(S))®|Xx=tE(S)). (4) procedure described above is identical to the well-known
phase estimation algorithm for measuring the eigenvalues of
If we can measure the position of the pointer with suffi-a unitary operatofl5,16], which can also be used to produce
ciently high precision that all relevant spacings,, eigenvalues and eigenvectors of a Hamiltonfdd]. This
=t|E.(s)— Ey(S)| can be resolved, then measurement of theconnection has been noted previouslyis], and it has been

which gives|p|~1. If H(s) is a sum of terms, each of
eyvhich acts on at most qubits, thenH(s)®p is a sum of
terms, each of which acts on at mést 1 qubits. As long as

k is a fixed constant independent of the problem sizeuch

a Hamiltonian can be simulated efficiently on a quantum
computer[14]. Expanded in the momentum eigenbasis, the
initial state of the pointer is
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pointed out that the measurement is a nondemolition mea- Ir
surement in[18]. In the phase estimation problem, we are
given an eigenvectdry) of a unitary operatot) and asked

to determine its eigenvalue '¢. The algorithm uses two
registers, one that initially storég)) and one that will store

an approximation of the phask The first and last steps of
the algorithm are Fourier transforms on the phase register.
The intervening step is to perform the transformation

| ()2

0.4r

[ e|2)—U )|z, ®

where|z) is a computational basis state. If we tdk to be 0.2
a momentum eigenstate with eigenvafije.e., if we choose

a different normalization from that in Ed6)] and letU \/\,\ ) A/\J \I\,\ A/\J \,\,
=e M this is exactly the transformation induced by —16m —8m
e '(H®P Thys we see that the phase estimation algorithm

for a unitary operatol is exactly von Neumann'’s prescrip- FIG. 1. The function x(x)|? for r=4.
tion for measuring In U.

(1] 8w 167
T

U =(E.((j+1)8)|En(j ) (12)
I1l. RUNNING TIME

and
The running time of the measurement algorithm is the

product ofM, the number of measurements, andhe time o ¥t

per measurement. Even if we assume perfect projective mea- k== > gilEolid)—Ea(ja)zv2’ (13
surements, the algorithm is guaranteed to keep the computer 2" =0

in the ground state dfi(s) only in the limit M —o, so that
6=1/M—0. Given a finite running time, the probability of
finding the ground state dfi, with the last measurement |k8)2= |k (Ep(j 8) — Ealj 5)1t/2)|2, (14)
will be less than 1. To understand the efficiency of the algo-

rithm, we need to determine how long we must run as avhere

function of n, the number of bits on which the functidnis

Summing this geometric series, we find

defined, so that the probability of success is not too small. In P sir’x (15)
general, if the time required to achieve a success probability K T 4silA(x/2')

greater than some fixed constdetg.,3) is poly(n), we say
the algorithm is efficient, whereas if the running time growsThis function is shown in Fig. 1 for the case=4. It has a
exponentially, we say it is not. sharp peak of unit height and width of order 1 at the origin,
To determine the running time of the algorithm, we con-and identical peaks at integer multiples 62
sider the effect of the measurement process on the reduced If the above procedure were a perfect projective measure-
density matrix of the system. Here, we simply motivate thement, then we would have,,=0 wheneverE,#Ey. As-
main re(s_l)JIt; for a detailed analysis, see Appendix A. suming(temporarily that this is the case, we find
Let p'Y denote the reduced density matrix of the system ‘ A A
after thejth measurement; its matrix elements are plo V=[URI%p (8 (16)

with the initial conditionp{y)=1 andp })=0 otherwise. Per-

() = i () i
pap=(Ea(i9)[p"|Ep(j ). © rbation theory gives
The interaction with the digitized pointer effects the transfor-
ation gfeetp Do o KEa(9)|(dHIds)[Eg(s) .
URlP=1-8"> > +0(5°%)
- o [Eo(s9)-Eu97 |,
[Ea(9))®|2)—e B E () ®]2). (10) 17
Starting with the pointer in the stat@), evolving according I'(j6)26° 5
to (10), and tracing over the pointer, the quantum operation T g(jo)? +0(5%), (18)
induced on the system is
where
pQJ”HQJ”% URplJui, (1D I'(5)2=(Eq(s)|(dH/ds)?Eqg(s))
—(Eq(8)[(dH/ds)|Eq(s))? (19

where the unitary transformation relating the energy eigen-
bases as=j§ ands=(j+1)J is and
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g(s)=E;(s)—Ey(s) (20 This result can be compared to the corresponding expression
for quantum computation by adiabatic evolution,
is the energy gap between the ground and first excited states.

I we let T>§z (adiabati¢. 28)
I'= maxI'(s), (21)
se[0,1] Note that the same quantity appears in the numerator of both
expressions; in both casds,accounts for the possibility of
g= min g(s), (22)  transitions to all possible excited states.
se[0,1] The adiabatic and measurement algorithms have qualita-

tively similar behavior: if the gap is exponentially small,
then according to Eq(16) the probability of being in the neither algorithm is efficient, whereas if the gap is only poly-
ground state after the last measurement is at least nomially small, both algorithms are efficient. However, the
measurement algorithm is slightly slower: whereas adiabatic

Ir2 M evolution runs in a time that grows agy#/ the measurement
M
péO)Z 1= |\/|292+O('vI ?) (23 algorithm runs in a time that grows asgi/ To see that
this comparison is fair, recall that we have defined the
Ir2 momentum in Eq(5) so that|p|[~1, which gives|H(s)||
=exp( ~Mg? +0(M™2). (249  ~|H(s)®p|. Alternatively, we can compare the numbgr

of few-qubit unitary gates needed to simulate the two algo-
The probability of success is close to 1 provided rithms on a conventional quantum computer. Using the Lie
product formula
2
M> % (25) eA+B=(eA/meB/m)m, (29)

which is valid provided m>|A|?+|B|? we find 7

WhenHg andHp are both sums of poly() terms, each of =O(1/g*) for adiabatic evolution andy=0(1/g°) for the
which acts nontrivially on at most a constant number of qu-measurement algorithm, in agreement with the previous
bits, it is easy to choose an interpolation such as(Bgso  comparison.
thatI" is only poly(n). Thus we are mainly interested in the ~ The argument we have used to motivate EZy) is ex-
behavior ofg, theminimum gagbetween the ground and first plained in greater detail in Appendix A. There, we also con-
excited states. We see that, for the algorithm to be successfidider the number of qubits that must be used to represent
the total number of measurements must be much larger thahe pointer. We show that if the gap is only polynomially
1/92. small inn, it is always sufficient to take=O(logn). How-

In fact, the simulated von Neumann procedure is not &ver, we argue that generally a single qubit will suffice.
perfect projective measurement. We must determine how
long the system and pointer should interact so that the mea- IV. THE GROVER PROBLEM
surement is sufficiently good. The analysis in Appendix A
shows thai «{}|? should be bounded below 1 by a constant
for all j. In other words, to sufficiently resolve the difference X ; . “
between the ground and first excited states, we must decrea%the},'v'nne') using only queries Of_ the f_orm % the_se_lme
the coherence between them by a fixed fraction per measur -SW? [2]. In other words, one is trying to minimize a
ment. The width of the central peak in Fig. 1 is of order 1, so'“nction
it is straightforward to show that to haye(x)|? less than,

The unstructured search problem considered by Grover is
to find a particular unknown-bit stringw (the marked state,

0, z=w,

say, 1/2, we must hawe=0(1). This places a lower bound hy(2)= (30)
on the system-pointer interaction time of 1, z#w.
o(1) Since there are 2possible values fow, the best possible
T?T (26) classical algorithm use®(2") queries. However, Grover’s

algorithm requires onl\® (2"?) queries, providing &prov-

. . . ably optimal[19]) quadratic speedup. In Grover’s algorithm,
independent of, the number of pointer qubit§Note that the the winner is specified by aoracle U, with

same bound also holds in the case of a continuous pointer
with a fixed resolution length. U |Z>:(_1)hw(z)|z>_ (31)
Putting these results together, we find that the measure- "
ment algorithm is successful if the total running tifie  Thjs oracle is treated as a black box that one can use during
=M satisfies the computation. One call to this black box is considered to
be a single query of the oracle.
In addition to Grover’s original algorithm, quadratic
speedup can also be achieved in a time-independent Hamil-

1"2
T> ? (measurement (27)
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2
|2) — Uw [— (—1)"(|2) $*=1-—+0(n"?), (34)
" where the gap takes the value
H g(s*)=2"""11+0(n"1)]. (35)

|9) —Huw [— e~ vt |)

Naively applying Eq. (27) gives a running time
T=0(2%"?), which is even worse than the classical
t algorithm.

H However, since we know the value sf independent of

w, we can improve on this approach by making fewer mea-
%) — B ) surements. We observe that in the limit of largehe ground
Hy®p e (Pt y)) @ |a) state ofH(s) is close to the ground stat&y(0)) of Hg for
|z) — — s=s* and is close to the ground std,(1))=|w) of Hp

for s=s*, switching rapidly from one state to the other in
FIG. 2. Oracles for the Grover probleit@) Top: Grover’s origi-  the vicinity of s=s*. In Appendix B, we show that up to
nal oracle.(b) Center: An oracle that performs evolution according terms of order I, the ground stat¢¢+> and the first ex-

to H,,. The double line indicates a classical control parameter, thgijted stat _) of H(s*) are the equal superpositions
time for which the Hamiltonian is appliedc) Bottom: An oracle

that allows one to measutg,, . 1
|'r/fr>=T[|Eo(0)>i|Eo(1)>] (36)

tonian formulatior] 20] or by adiabatic quantum computation 2

[21,22. In either of these formulations, the winner is speci-

fied by an “oracle Hamiltonian” of the initial and final ground statesvhich are nearly or-

thogonal for largen). If we prepare the system in the state
Hy=1—|w)(w| (32 |Eo(0)) and make a perfect measurementdt*) followed
by a perfect measurementdi{1), we find theresultw with
whose ground state |sv) and that treats all orthogonal states probability 3. The same effect can be achieved with an im-
(the nonwinnersequivalently. One is provided with a black perfect measurement, even if the pointer consists of just a
box that implementsi,,, wherew is unknown, and is asked single qubit. First consider the measuremeniti¢$*) in the
to find w. Instead of counting queries, the efficiency of thestate|Ey(0)). After the system and pointer have interacted
algorithm is quantified in terms of the total time for which for a timet according to Eq(10) with r=1, the reduced
one applies the oracle Hamiltonian. density matrix of the system in tHes, ), ) basis is ap-
Here, we show that if we are given a slightly different proximately
black box, we can achieve quadratic speedup using the mea-
surement algorithm. We let the problem HamiltonianHhe 1 1 9" 4cog g(s* )t/4]
=H,, and we consider a one-parameter family of Hamilto- 5| _.
nians H(s) given by Eq.(2) for someHg. Because we 2\ e 19 M o0q g(s*)t/4] 1 3
would like tomeasurehis Hamiltonian, it is not sufficient to (37

be given a black box that allows one to evolve the systen we then measurei(1) (i.e., measure in the computational

according toH,,. Instead, we will use a black box that pasig, the probability of findingw is approximately
evolves the system and a pointer accordingl{gp p, where

p is the momentum of the pointer. This oracle is compared to 1. .

the previous two in Fig. 2. By repeatedly alternating between Esmz[g(s 4. (38)

applying this black box and evolving according kg ® p,

each for small time, we can produce an overall evolutionTo get an appreciable probability of finding we chooset

according to the HamiltoniaisHg+(1—s)Hp]®p, and =0(2"?).

thus measure the operatid(s) for anys. This approach is similar to the way one can achieve qua-
Now consider the beginning Hamiltonian dratic speedup with the adiabatic algorithm. Sclimger

time evolution governed by E@2) does not yield quadratic

speedup. However, becaust is independent ofv, we can

change the Hamiltonian quickly when the gap is big and

more slowly when the gap is small. Since the gap is only of

where ¢{) is the Paulix operator acting on th¢th qubit. ~ size ~27"2 for a region of width~2""2, the total oracle

This beginning Hamiltonian is a sum of local terms, and hagime with this modified schedule need only ©¢2"2). This

the easy-to-prepare ground staf,(0))=2""23,|z), the has been demonstrated explicitly by solving for the optimal

uniform superposition of all possible bit strings in the com-schedule using a different beginning Hamiltonid§ that is

putational basis. If we consider the interpolati(®), then not a sum of local termg21,22, but it also holds using the

one can show3] that the minimum gap occurs at beginning Hamiltonian(33).

1— o)
HBZE 2X )
]

(33
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Note that measuringf(s*) is not the only way to solve ground state: if the temperature of the environment is much
the Grover problem by measurement. More generally, we casmaller than the gap, then such transitions are suppressed.
start in somen-independent state, measure the operator The measurement algorithm might not possess this kind of

robustness, since the Hamiltonian of the quantum computer
H=H,+K, (390  during the measurement procedure is not sint(g).

Although it does not provide a computational advantage
whereK is also independent of, and then measure in the over quantum computation by adiabatic evolution, the mea-
computational basis. For example, suppose we choose  surement algorithm is an alternative way to solve general

combinatorial search problems on a quantum computer. The

K=1—[)(yl, (40 algorithm can be simply understood in terms of measure-

) ) ) ments of a set of operators, without reference to unitary time

where |) s a w-independent state with the property ojytion. Nevertheless, we have seen that to understand the
|[(wly)| ~27"= for all w. (If we are only interested in the nning time of the algorithm, it is important to understand

time for which we use the black box shown in FigcRi.e.,  the dynamical process by which these measurements are
if we are only interested in the oracle query complexity, thenggjized.

we need not restrick to be a sum of local termsin Eq.
(40), the coefficient of-1 in front of |){y| has been fine

tuned so thalty) + |w) is the ground state df (choosing the ACKNOWLEDGMENTS
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2(a), Bennettet al. showed that the Grover problem cannot
be solved on a quantum computer using fewer than of order
2"2 oracle querie§19]. By a straightforward modification of APPENDIX A: THE MEASUREMENT PROCESS

their argument, an equivalent result applies using the oracle In Sec. Ill, we discussed the running time of the measure-

shown in Fig. Zc). Thus every possiblel as in Eq.(39) that  ment algorithm by examining the measurement process. In
can be measured to find must have a gap between the ihis appendix, we present the analysis in greater detail. First,
energies of the relevant eigenstates of ordet2or smaller. we derive the bound on the running time by demonstrating
Egs.(25) and(26). We show rigorously that these bounds are
V. DISCUSSION sufficient as long as the gap is only polynomially small and
the number of qubits used to represent the pointer is

We have described a way to solve combinatorial search O(logn). Finally, we argue that=1 qubit should be suf-

problems on a quantum computer using only a sequence (ﬁf%jent in general

measurshrrents to ke:p thlte C.Omp_l“llfr Bea.r the. grpllmd fs';ﬁte Your goal is to find a bound on the final success probability
a smootnly varying Framiitonian. 1he basic principle ot this ¢ yne measyrement algorithm. We consider the effect of the

algorit_hm is similar to quantum computation by adi‘"]‘baticmeasurements on the reduced density matrix of the system
evolution, and the running times of the two methods ar€ hich can be written as the block matrix '

closely related. Because of this close connection, many re-

sults on adiabatic quantum computation can be directly im-

ported to the measurement algorithm—for example, its simi-

larities and differences with classical simulated annealing p

[23]. We have also shown that the measurement algorithm

can achieve quadratic speedup for the Grover problem using

knowledge of the place where the gap is smallest, as in adiavhere = pgy, va=pao for a#0, and xy,,=pap for a,b

batic quantum computation. #0. Since tp=1, u=1—try. For ease of notation, we sup-
One of the advantages of adiabatic quantum computatiopressj, the index of the iteration, except where necessary.

is its inherent robustness against efi>f]. In adiabatic com- The unitary transformatiorf12) may also be written as a

putation, the particular path frofg to Hp is unimportant as  block matrix. Definee=1"6/g. Using perturbation theory

long as the initial and final Hamiltonians are correct, the pathand the unitarity constraint, we can write

is smoothly varying, and the minimum gap along the path is

not too small. Exactly the same considerations apply to the T 3

measurement algorithm. However, the adiabatic algorithm U= u —wiV+0O(e)

also enjoys robustness against thermal transitions out of the w  V+0O(€?) '

(A1)

(A2)
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where|u|>=1—€’+0(€%), |w|’=e®+0(e%), andVis a  z/2<x=<m(2'—1/2). Thus, if we wank to be bounded be-
unitary matrix. We let|-| denote thel, vector or matrix  |ow 1 by a constant, we require
norm as appropriate. Furthermore, let

TI2<[EL(s)—Eq(s)t2<m(2—1/2)  (Al2)

1 k'
":(k ] ) (A3)  for all s and for alla#0. The left hand bound witla=1
givest= /g, which is Eq.(26). Requiring the right hand
From Eq.(11), the effect of a single measurement may bePound to hold for the largest energy difference gives the
written additional condition 2=(E,n_,—Eg)/g. Since we only
consider Hamiltoniansi(s) that are sums of poly() terms
p'=(UpUTh)ok, (A4) of bounded size, the largest possible energy difference must

be bounded by a polynomial m If we further suppose that
wheree denotes the elementwigeladamardl product. If we g is only polynomially small, this condition is satisfied by

assumd|v||=0(e), we find taking
w' =|u2u—w'Vrv—v"'Vw+0(e), (A5) r=0(logn), (A13)
v =[Vr+ puw—VyViw+O(e?)]ok. (A6)  asclaimed at the end of Sec. lll. Thus we see that the storage

requirements for the pointer are rather modest.
Now we use induction to show that our assumption always However, the pointer need not comprise even this many
remains valid. Initially,/(>)=0. Using the triangle inequality qubits. Since the goal of the measurement algorithm is to
in Eq. (A6), we find keep the system close to its ground state, it would be surpris-
5 ing if the energies of highly excited states were relevant.
Iv'[|<[||v]+ e+ O(e?)k, (A7)  Suppose we take=1; then|x(x)|?>=cog(x/2). As before,
Eq. (26) suffices to makex,,|? sufficiently small. However,
where we must also consider terms involvingg,|? for a>1. The
- _ algorithm will fail if the termuwek in Eq. (A6) accumulates
k=ma>4 k. (A8)  to beO(1) overM iterations. This will only happen if, for
Ia O(M) iterations, most ofjw|| comes from components,
~ ) ) . with (E;— Eg)t close to an integer multiple of2 In such a
So long ask<1, we can sum a geometric series, extendingsnecia| case, changirtgwill avoid the problem. An alterna-
the limits to go from 0 to=, to find tive strategy would be to choosérom a random distribution
independently at each iteration.
[v<—=+0(e) (A9)
1-k APPENDIX B: EIGENSTATES IN THE GROVER
PROBLEM
for all j. In other words||v||=0(e€) so long ak is bounded
below 1 by a constant.
Finally, we put a bound on the final success probability
u™)_ Using the Cauchy-Schwartz inequality in EGAS5)

Here, we show that the ground state lé{s*) for the
Grover problem is close to Ed36). Our analysis follows
Sec. 4.2 of 3].

Since the Grover problem is invariant under the choice of

gives w, we consider the casg=0 without loss of generality. In
22 this case, the problem can be analyzed in terms of the total
w'=(1-e)u— 3t O(ed). (A10)  SPin operators
n
lterating this boundM times with the initial conditionu(® Sa=5 21 o, (BY)
=1, we find =

wherea=x,y,z andol)) is the Paulia operator acting on the
+O(Mée®). (All) ith qubit. The Hamiltonian commutes wit?=S;+S;
+S§, and the initial state haS?= (n/2)((n/2)+ 1), so we
can restrict our attention to the ¢ 1)-dimensional subspace

of states with this value of?. In this subspace, the eigen-
states of the total spin operators satisfy

2

r
M=1_
) 1 Mg?

1+ ——=
1-k

If k is bounded below 1 by a constgintdependent of), we
find the condition(25) as claimed in Sec. lll.

The requirement ok gives the bound26) on the mea-

surement timer, and also gives a condition on the number of S, m,=m)=m|m,=m) (B2)
pointer qubitsr. To see this, we must investigate properties
of the function|«(x)|?> defined in Eq.(15) and shown in for m=—n/2,—n/2+1, ... n/2. Written in terms of the to-

Fig. 1. It is straightforward to show thaik(x)|?2<1/2 for  tal spin operators and eigenstates, the Hamiltonian is

032314-7
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Requiring thaf..) be normalized, we find

n n
+s(l—’mz=—> m,==

He=(1-9)[3 -5, 2 me=

(B3) n n 2
The initial and final ground states are given Hy(0)) 122’0 <mX=§—r dji> ®7)
=|m,=n/2) and|Ey(1))=|m,=n/2), respectively.
Projecting the equatioH (s)|¢)=E| ) onto the eigenba- .
sis of S, we find n 2 n? & P,
=|{m=5|v: )| |1+ 7 > —z|[1+0(1n)]
on s P, on - =t (B8)
me=5-rl¥) =7V M=5|¥/), (B4
where we have defined\=(E—s)/(1—s) and P, n 2
=2""("). Now focus on the ground stale, ) and the first =\ m=5 ¢ )| [2+0(1n)], (B9)
excited statdy_) of H(s*). By Eq. (4.39 of [3], these
states have . = ¥ (n/2)2- "9 1+ 0O(1/n)]. Puttingr=0 in
Eq. (B4) and takings=s* from Eq.(34), we find which implies [(m,=(n/2)|y-.)|*=%+0O(1/n). From Eq.
(B5), we also have(m,=(n/2)|¢-)[?=3+0O(1/n). Thus
n n we find
mxzz pe)=% mz=§ Y+ |[1+0O(1n)]. (BY)
Forr+0, we have )= 1 (’m_n>+m_n>) (810
/)= T = X_E — Z_E
~n n P, ~n i \/E
My=5 I ) =5\ 7\ M=5|¢= | [1+0(1n)].

(B6) up to terms of order &, which is Eq.(36).
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