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One of the most basic computational problems is the task of finding a desired item in an ordered list of N
items. While the best classical algorithm for this problem uses log2 N queries to the list, a quantum computer
can solve the problem using a constant factor fewer queries. However, the precise value of this constant is
unknown. By characterizing a class of quantum query algorithms for the ordered search problem in terms of a
semidefinite program, we find quantum algorithms for small instances of the ordered search problem. Extend-
ing these algorithms to arbitrarily large instances using recursion, we show that there is an exact quantum
ordered search algorithm using 4 log605 N�0.433 log2 N queries, which improves upon the previously best
known exact algorithm.
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I. INTRODUCTION

The ordered search problem �OSP� is the problem of find-
ing the first occurrence of a target item in an ordered list of N
items subject to the promise that the target item is some-
where in the list. Equivalently, we can remove the promise
by viewing the OSP as the problem of finding the earliest
insertion point for a target item in a sorted list of N−1 items.
The OSP is ubiquitous in computation, not only in its own
right, but also as a subroutine in algorithms for related prob-
lems, such as sorting.

To characterize the computational difficulty of the ordered
search problem, we are interested in knowing how many
times the list must be queried to find the location of the target
item. The minimal number of queries required to solve the
problem in the worst case is known as its query complexity.
Using information-theoretic arguments, one can prove that
any deterministic classical algorithm for the OSP requires
�log2 N� queries. This lower bound is achieved by the well-
known binary search algorithm �1�.

Quantum computers can solve the ordered search problem
using a number of queries that is smaller by a constant factor
than the number of queries used in the binary search algo-
rithm. The best known lower bound, proved by Høyer, Neer-
bek, and Shi, shows that any quantum algorithm for the OSP
that is exact �i.e., succeeds with unit probability after a fixed
number of queries� requires at least �ln N−1� /�
�0.221 log2 N queries �2�. In other words, at most a constant
factor speedup is possible. The best published exact quantum
OSP algorithm, obtained by Farhi et al., uses 3�log52 N�
�0.526 log2 N queries, showing that a constant-factor
speedup is indeed possible �3�. However, there remains a gap
between the constants in these lower and upper bounds.
Since the OSP is such a basic problem, it is desirable to
establish the precise value of the constant factor speedup for

the best possible quantum algorithm: this constant is a fun-
damental piece of information about the computational
power of quantum mechanics.

In this article, we study the query complexity of the or-
dered search problem by exploiting a connection between
quantum query problems and convex optimization. Specifi-
cally, we show that the existence of an algorithm for the OSP
that is translation invariant �in the sense of �3�� is equivalent
to the existence of a solution for a certain semidefinite pro-
gram �SDP�. By solving this semidefinite program numeri-
cally, we show that there is an exact quantum query algo-
rithm to search a list of size N=605 using four queries.

Since the size of the semidefinite program increases as we
increase N, we cannot directly perform a numerical search
for a quantum ordered search algorithm for arbitrarily large
problem instances. However, by applying the four-query al-
gorithm recursively, we see that there is an exact algorithm
for a list of size N using 4 log605 N�0.433 log2 N queries.
Thus, our result narrows the gap between the best known
algorithm and the lower bound of �2�. In particular, this
shows that the quantum query complexity of the OSP is
strictly less than log2

�N, which one might have naively
guessed was the query complexity of ordered search by anal-
ogy with the unordered search problem, whose quantum
query complexity is ���N� �4,5�.

In addition to providing a way of searching for algo-
rithms, the semidefinite programming approach has the ad-
vantage that a solution to the dual SDP provides a certificate
of the nonexistence of an algorithm. Thus we are able to
provide some evidence �although not a proof� that N=605 is
the largest size of a list that can be searched with k=4 que-
ries by showing that no algorithm exists for N=606.

The remainder of the article is organized as follows. In
Sec. II, we describe the class of translation-invariant algo-
rithms that we focus on and summarize known results about
such algorithms. In Sec. III, we show how these algorithms
can be characterized as the solutions of a semidefinite pro-
gram. Finally, in Sec. IV, we present the results obtained by
solving this semidefinite program and conclude with a brief
discussion.
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II. TRANSLATION-INVARIANT QUANTUM ALGORITHMS
FOR THE OSP

A. Query models for the OSP

In the standard query model for the ordered search prob-
lem, sometimes known as the comparison model, a query to
the xth position of the list indicates whether the target item
occurs before or after �or at� that position. If the target item
is at position j� �0,1 , . . . ,N−1�, then its location is encoded
in the function f j : �0,1 , . . . ,N−1�→ �±1� defined as

f j�x� ª 	− 1, x � j ,

+ 1, x � j .

 �1�

When searching an explicit list with no information about its
structure other than the fact that it is ordered, this function
captures essentially all the information that is available from
examining a given position in the list. The ordered search
problem is to determine j using as few queries to f j as pos-
sible.

The ordered search problem has a kind of symmetry: for
j� �0,1 , . . . ,N−2�, if we change the target item from j to
j+1, then we find

f j+1�x� = 	− 1, x = 0,

f j�x − 1� , 1 � x � N .

 �2�

Unfortunately, we must handle what happens at the boundary
�namely, at x=0� as a special case. However, as observed in
�3�, we can remedy the situation by extending f j to the func-
tion gj :Z /2N→ �±1� defined as

gj�x� ª 	 f j�x� , 0 � x � N ,

− f j�x − N� , N � x � 2N ,

 �3�

for j� �0,1 , . . . ,N−1�, and

gj�x� ª − gj−N�x� , �4�

for j� �N ,N+1, . . . ,2N−1�, where all arithmetic is done in
Z /2N—i.e., modulo 2N. The advantage of using this modi-
fied function is that the symmetry expressed in �2� now ap-
pears without special boundary conditions as a translation
equivariance in the group Z /2N: namely, as

gj+��x� = gj�x − ��, ∀ j,x,� � Z/2N . �5�

Although the functions gj are defined for all j�Z /2N, it
is sufficient to consider the problem of determining j with
the promise that j� �0,1 , . . . ,N−1�. �Indeed, with the quan-
tum phase oracle for gj that we define in the next section, it
will turn out that j is indistinguishable from j+N.� For this
problem, the functions f j and gj are equivalent, in the sense
that any algorithm using one type of query can be mapped
onto an algorithm using the same number of the other type of
query. A single query to f j can be simulated by simply que-
rying gj on the original value of x� �0,1 , . . . ,N−1�. On the
other hand, one query to gj can be simulated by a query to f j
pre- and post-processed according to �3�. Thus, there is no
loss of generality in using the modified function gj instead of
the original function f j: the query complexity of the OSP is
the same using either type of query.

B. Quantum query algorithms

In the quantum mechanical version of the query model,
access to the query function is provided by a unitary trans-
formation. Specifically, we will use the phase oracle for gj, a
linear operator Gj defined by the following action on the
computational basis states ��x� :x�Z /2N�:

Gj�x� ª gj�x��x� . �6�

A k-query quantum algorithm is specified by an initial quan-
tum state ��0� and a sequence of �j-independent� unitary op-
erators U1 ,U2 , . . . ,Uk. The algorithm begins with the quan-
tum computer in the state ��0�, and query transformations
and the operations Ut are applied alternately, giving the final
quantum state

�� j� ª UkGjUk−1 ¯ U1Gj��0� . �7�

We say the algorithm is exact if � j �� j��=� j,j� for all j , j�
� �0,1 , . . . ,N−1�, since in this case there is some measure-
ment that can determine the result j mod N with certainty.
�Note that the final unitary Uk has no effect on whether the
algorithm is exact, but it is convenient to include for the
purposes of the following discussion.� For each value of N,
our goal is to find choices of ��0� and U1 ,U2 , . . . ,Uk for k as
small as possible so that the resulting quantum algorithm is
exact.

The search for a good quantum algorithm for the OSP can
be considerably simplified by exploiting the translation equi-
variance �5� of the function gj �3�. This equivariance mani-
fests itself as a symmetry of the query operators. In terms of
the translation operator T defined by

T�x� ª �x + 1� ∀ x � Z/2N , �8�

where addition is again performed in Z /2N, we have

TGjT
−1 = Gj+1 ∀ j � Z/2N . �9�

Thus, it is natural to choose the quantum algorithm to have
the translation-invariant initial state

��0� =
1

�2N
�
x=0

2N−1

�x� , �10�

satisfying T��0�= ��0�, and translation-invariant unitary op-
erations Ut—i.e., unitary operators satisfying

TUtT
−1 = Ut �11�

for t� �1,2 , . . . ,k�. Of course, while �9� holds for all
j�Z /2N, we are promised that j� �0,1 , . . . ,N−1�. Corre-
spondingly, we can require the N possible orthogonal final
states to label the location of the marked item as follows:

�� j� ª �
1
�2

��j� + �j + N�� , k even,

1
�2

��j� − �j + N�� , k odd, � �12�

where the separation into k even and odd is done for reasons
explained in �3�. Overall, we refer to an algorithm with the
initial state �10�, unitary operations satisfying �11�, and the
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final states �12� as an exact, translation-invariant algorithm
�in the sense of �3��.

An advantage of a translation-invariant algorithm for the
OSP is that, if it can find the target item when
j=0, then it can find the target item for all values of j. Using
�9�, we have T−jGjT

j =G0. Thus

�� j� = �TjUkT
−j�Gj ¯ �TjU1T−j�Gj�Tj��0�� �13�

=TjUk�T−jGjT
j�Uk−1 ¯ U1�T−jGjT

j���0� �14�

=TjUkG0Uk−1 ¯ U1G0��0� �15�

=Tj��0� . �16�

In other words, if we find an algorithm whose final state in
the case j=0 is given by �12�, then the final state will also be
given by �12� for j� �1,2 , . . . ,N−1�.

C. Characterizing algorithms by polynomials

Another advantage of translation-invariant quantum algo-
rithms for the OSP is that they have a convenient character-
ization in terms of Laurent polynomials. A Laurent polyno-
mial is a function Q :C→C that can be written as

Q�z� = �
i=−D

D

qiz
i �17�

for some non-negative integer D, where each qi�C. We call
D the degree of Q�z�. We say Q�z� is non-negative if, on the
unit circle �z�=1, Q�z� is real-valued and satisfies Q�z��0.
Note that for �z�=1, z*=z−1, so Q�z� is real valued on the unit
circle if and only if qi=q−i

* for all i� �0,1 , . . . ,D�. If Q�z�
=Q�z−1� for all z�C—i.e., if qi=q−i for all
i� �1,2 , . . . ,D�—we say Q�z� is symmetric. Thus, Q�z� is
non-negative and symmetric if and only if qi=q−i�R for all
z� �0,1 , . . . ,D�. An example of a non-negative, symmetric
Laurent polynomial that is relevant to the ordered search
problem is the Hermite kernel of degree N−1,

HN�z� ª �
i=−�N−1�

N−1 �1 −
�i�
N
�zi �18�

=
1

N
� z−N − 1

z−1 − 1
�� zN − 1

z − 1
� . �19�

The following result of Farhi et al. characterizes exact
translation-invariant algorithms for the ordered search prob-
lem in terms of Laurent polynomials.

Theorem 1 ��3��. There exists an exact, translation-
invariant, k-query quantum algorithm for the N-element OSP
if and only if there exist non-negative, symmetric Laurent
polynomials Q0�z� , . . . ,Qk�z� of degree N−1 such that

Q0�z� = HN�z� , �20�

Qt�z� = Qt−1�z� at zN = �− 1�t,∀t � �1,2, . . . ,k� , �21�

Qk�z� = 1, �22�

1

2�
�

0

2�

Qt�ei	�d	 = 1, ∀ t � �0,1, . . . ,k� . �23�

Each polynomial Qt�z� in this theorem represents the
quantum state of the algorithm after t queries. Indeed, if we
write

Qt�z� = �
i=−�N−1�

N−1

qi
�t�zi, �24�

then

qi
�t� = 2�

m=1

N−i

�t�N − m�N − m − i��t� , �25�

where

��t� ª UtG0Ut−1 . . . U1G0��0� �26�

is the state of the quantum computer after t queries when the
target item is j=0 �3�. Given polynomials satisfying
�20�–�23�, one can reconstruct all of the unitary operators Ut
for the algorithm using �25�.

Figure 1 shows the �unique� solution to �20�–�23� for k
=2 and N=6 �3�. In general, the polynomial Q0�z� �the Her-
mite kernel� characterizes complete ignorance of the target
location at the beginning of the algorithm, and subsequent
polynomials become flatter and flatter until the final polyno-
mial Qk�z�=1 is reached, corresponding to exact knowledge
of the target location. Because each query can only change
the quantum state in a restricted way, successive polynomials
must agree at certain roots of ±1. Also, each polynomial
must be non-negative and suitably normalized.

With k=2, there is a unique choice for the polynomial
Q1�z�, which might or might not be non-negative depending
upon the value of N. For N�6, this polynomial is non-
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FIG. 1. Qt�ei	� as a function of 	 for k=2 and N=6. The solid,
long-dashed, and short-dashed lines represent t=0, 1, and 2, respec-
tively. The intersections at roots of 1 and −1 are indicated by circles
and squares, respectively.
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negative �showing that an ordered list of size N�6 can be
searched in two quantum queries�, whereas for N�7, it is
not �3�.

The best ordered search algorithm discovered by Farhi et
al. was found by considering k=3 queries. For fixed values
of the degree N−1, they numerically searched for polynomi-
als Q1�z� and Q2�z� satisfying the constraints �20�–�23� of
theorem 1. The largest value of N for which they found a
solution was N=52. Applying this 52-item ordered search
algorithm recursively gives an algorithm for instances with N
arbitrarily large. Specifically, one divides the list into 52 sub-
lists and applies the algorithm to the largest �rightmost� item
of each sublist, finding the sublist that contains the target in
3 queries. This process repeats, with every 3 queries dividing
the problem size by 52, leading to a query complexity of
3�log52 N�. �Note that although the base algorithm in this re-
cursion is translation-invariant, the scalable algorithm gener-
ated in this way is not.�

In general, recursion can be used to turn small base cases
into scalable algorithms, so improved quantum algorithms
for the OSP can be found by discovering improved base
cases. Subsequent work by Brookes, Jacokes, and Landahl
sought such algorithms using a conjugate gradient descent
search for the polynomials Qt�z� �6�. This method is guaran-
teed to work �for a small enough step size� because the space
of polynomials satisfying �20�–�23� is convex. The best so-
lutions found by this method were N=56 for k=3 and N
=550 for k=4, implying a �4 log550 N�0.439 log2 N�-query
recursive algorithm. Unfortunately, conjugate gradient de-
scent �or any approach based on local optimization� can
never prove that finite-instance algorithms do not exist for a
given number of queries, k. It could always be the case that
lack of progress by a solver is indicative of inadequacies of
the solver �e.g., the step size is too large, etc.�. In the next
section, we recharacterize exact translation-invariant quan-
tum OSP algorithms in a way that allows either their exis-
tence or nonexistence �whichever the case may be� to be
proved efficiently.

III. SEMIDEFINITE PROGRAM FOR TRANSLATION-
INVARIANT QUANTUM ALGORITHMS FOR THE OSP

A. Formulation of the SDP

In this section, we show that the problem of finding Lau-
rent polynomials satisfying the conditions of theorem 1 can
be viewed as an instance of a particular kind of convex op-
timization problem: namely, a semidefinite program �7�. The
basic idea is to use the spectral factorization of non-negative
Laurent polynomials to rewrite Eqs. �20�–�23� as linear con-
straints on positive semidefinite matrices.

The spectral factorization of non-negative Laurent poly-
nomials follows from the Fejér-Riesz theorem.

Theorem 2 ��8,9��. Let Q�z� be a Laurent polynomial of
degree D. Then Q�z� is non-negative if and only if there
exists a polynomial P�z�=�i=0

D piz
i of degree D such that

Q�z�= P�z�P�1/z*�*.
Let Tri denote the trace along the ith superdiagonal

�or �−i�th subdiagonal, for i�0�—i.e., for an N
N matrix
X,

TriX = ��
�=1

N−i

X�,�+i, i � 0,

�
�ª1

N+i

X�−i,�, i � 0.� �27�

The Fejér-Riesz theorem can be used to express non-negative
Laurent polynomials in terms of positive semidefinite matri-
ces, as shown by the following lemma.

Lemma 1. Let Q�z�=�i=−�N−1�
N−1 qiz

i be a Laurent polynomial
of degree N−1. Then Q�z� is non-negative if and only if
there exists an N
N Hermitian, positive semidefinite matrix
Q such that qi=Tri Q.

Proof. The “if” direction follows from the representation

Q�z� = �1 ¯ z−�N−1��Q� 1

]

zN−1 � . �28�

This Q�z� is real on �z�=1 since Q=Q†; it is non-negative
there because Q is positive semidefinite.

The converse follows from the spectral factorization of
Q�z�. Let Q�z�= P�z�P�1/z*�*, let pª �p0¯pN−1�T, and let
zª �1¯zN−1�T. Then P�z�=pTz and Q�z�=z†p*pTz on �z�
=1. We choose Qªp*pT, which by construction is Hermit-
ian and positive semidefinite. Furthermore, since Q�z� on
�z�=1 determines the coefficients qi, we have qi=Tri Q. �

Because the Laurent polynomials in theorem 1 are not
only non-negative but also symmetric, we can restrict the
associated matrices to be real symmetric, as the following
lemma shows.

Lemma 2. If Q�z� is a non-negative, symmetric Laurent
polynomial, then the matrix Q in lemma 1 can be chosen to
be real and symmetric without loss of generality.

Proof. Let Q be a Hermitian, positive semidefinite matrix
such that Q�z�=z†Qz on �z�=1, where z is defined as in the
proof of lemma 1. Then the symmetry Q�z�=Q�z−1� implies
that Q�z�=z†QTz on �z�=1, and by averaging these two ex-

pressions, we have Q�z�=z†Q̃z on �z�=1, where

Q̃ª �Q+QT� /2 is real and symmetric. �

Using lemma 2, we can recast the conditions �20�–�23� of
theorem 1 as the following semidefinite program.

Semidefinite program �S�k ,N��. Find real symmetric posi-
tive semidefinite N
N matrices Q0 ,Q1 , . . . ,Qk satisfying

Q0 = E/N , �29�

TtQt = TtQt−1, ∀ t � �1,2, . . . ,k� , �30�

Qk = I/N , �31�

TrQt = 1, ∀ t � �0,1, . . . ,k� , �32�

where E is the N
N matrix in which every element is 1 and
Tt :SN→RN−1 is a linear operator �on the space SN of real
symmetric N
N matrices� that computes signed traces along
the �off-� diagonals: namely,
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�TtX�i ª TriX + �− 1�tTri−NX �33�

for i� �1,2 , . . . ,N−1�.
The existence of an exact, translation-invariant quantum

algorithm for the OSP is equivalent to the existence of a
solution to this semidefinite program, which can be seen as
follows.

Theorem 3. There exists an exact, translation invariant,
k-query quantum algorithm for the N-element OSP if and
only if S�k ,N� has a solution.

Proof. Given Q0 ,Q1 , . . . ,Qk satisfying S�k ,N�, let Qj�z�
ª �1¯z−�N−1��Qj�1¯zN−1�T. Then the symmetry of each
matrix Qj implies that each Qj�z� is a non-negative, symmet-
ric Laurent polynomial and conditions �29�–�32� imply con-
ditions �20�–�23�, respectively.

Conversely, suppose Q0�z� ,Q1�z� , . . . ,Qk�z� are non-
negative, symmetric Laurent polynomials of degree N−1 sat-
isfying �20�–�23�. Let Q0ªE /N, let Qkª I /N, and let
Q1 ,Q2 , . . . ,Qk−1 be positive semidefinite matrices obtained
from Q1�z� ,Q2�z� , . . . ,Qk−1�z� according to lemma 2. Then
Eqs. �21� and �23� imply Eqs. �30� and �32�, respectively.�

This reformulation of the problem has the advantage that
semidefinite programs are a well-studied class of convex op-
timization problems. In fact, semidefinite programming fea-
sibility problems can be solved �modulo some minor techni-
calities� in polynomial time �7,10�. Furthermore, there are
several widely available software packages for solving
semidefinite programs �11–13�.

Note that by “solving” a semidefinite program, we mean
not only finding a solution if one exists, but also generating
an infeasibility certificate �namely, a solution to the dual
semidefinite program� if no solution exists. Thus, by solving
S�k ,N� for various values of k and N, not only can we extract
algorithms from feasible solutions, but we can also generate
lower bounds for the quantum query complexity of the OSP
�assuming we restrict our attention to exact, translation in-
variant algorithms�. In other words, this approach unifies al-
gorithm design and lower bound analysis into a single
method.

B. Improved formulation by symmetry reduction

In moving from the polynomial to the semidefinite pro-
gramming formulation, we have increased the number of real
parameters specifying an exact, translation-invariant quan-
tum OSP algorithm from �N−1��k−1� to N�N+1��k−1� /2.
As benefits, we have put the problem in a numerically trac-
table form and we are now able to prove the nonexistence as
well as existence of algorithms. But the increase in param-
eters is nevertheless undesirable.

Fortunately, in our case we can reduce the size of the
parameter set roughly by half by exploiting symmetry. In
particular, in terms of the N
N counterdiagonal matrix �the
counteridentity matrix�

J ª �
0 0 ¯ 1

] ] � ]

0 1 ¯ 0

1 0 ¯ 0
� , �34�

we have the following lemma.

Lemma 3. If Q0 ,Q1 , . . . ,Qk is a solution to S�k ,N�, then
so is JQ0J ,JQ1J , . . . ,JQkJ.

Proof. The matrices JQtJ are positive semidefinite since J
is unitary. Clearly, JQ0J=Q0 and JQkJ=Qk, so Eqs. �29� and
�31� are satisfied. Since TriJQtJ=Tr−iQt by the definition of J
and since Tr−iQt=TriQt because each Qt is a symmetric ma-
trix, Eq. �31� is satisfied. Finally, �32� is satisfied since
J2= I. �

Thus, by convexity, if Q0 ,Q1 , . . . ,Qk is a solution to
S�k ,N�, then so is 1

2 �Q0+JQ0J� , 1
2 �Q1+JQ1J� , . . . , 1

2 �Qk

+JQkJ�. In other words, we can assume that the matrices Qt

commute with J without loss of generality.
We can use group representation theory to harness this

symmetry. Note that �I ,J� is an N-dimensional �reducible�
representation of the group Z /2. Since J has �N /2� eigenval-
ues equal to −1 and the rest equal to +1, this representation
can be diagonalized into �N /2� copies of the sign representa-
tion and �N /2� copies of the trivial representation by some
unitary matrix U. The set of matrices that commute with all
matrices in this representation �the representation of the com-
mutant subalgebra of Z /2� are therefore block diagonaliz-
able �by the same matrix U� into two blocks, with one block
having size �N /2� and the other having size �N /2�. When N is
even,

U =
1
�2
� I I

J − J
� , �35�

and when N is odd,

U =
1
�2� I 0 I

0 �2 0

J 0 − J
� , �36�

where I and J are the �N /2� by �N /2� identity and counteri-
dentity matrices, respectively.

Now, since we can choose the matrices Qt to commute
with J without loss of generality, we can block diagonalize
them into twice as many matrices, each of which has about
one quarter the number of elements. For example, for N
even, Q=JQJ implies that Q has the form

Q = � A B

JBJ JAJ
� , �37�

where A=AT and B=JBTJ. Thus we have

U†QU =
1

2
� I I

J − J
�T� A B

JBJ JAJ
�� I I

J − J
� �38�

=�A + BJ 0

0 A − BJ
� , �39�

so that Q is positive semidefinite if and only if A±BJ are
both positive semidefinite. The net effect of this symmetry
reduction is to cut the number of real parameters in S�k ,N� to
N�N /2+1��k−1� /2 �for N even� or �N+1�2�k−1� /4 �for N
odd�—i.e., roughly by half.
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IV. RESULTS AND DISCUSSION

We solved the semidefinite program S�k ,N� for various
values of k and N using the numerical solvers SEDUMI �11�,
SDPT3 �12�, and SDPA �13�. These solvers use general-purpose
primal-dual interior-point methods that eventually become
limited by machine memory. �Although there are algorithms
for solving SDP’s that are not based on interior-point meth-
ods, we did not attempt to use such algorithms.�

The time required to solve S�k ,N� was substantially re-
duced by exploiting the symmetry described in Sec. III B. In
addition, it is helpful that the constraints are fairly sparse.
Nevertheless, we are ultimately limited by the fact that the
maximum size of a list that can be searched increases expo-
nentially with the number of queries, so that we can only
consider fairly small values of k.

For each k�4, we found the smallest value N* such that
S�k ,N*� has a solution but S�k ,N*+1� does not. On a dual
2.2-GHz Pentium 4 computer with 4 GB of memory, solving
the SDP for a single value of N near N* took a few seconds
with k=3 and about 20 min with k=4. Although we were
able to find solutions to S�5,N� for some values of N �taking
a few weeks for values of N in the thousands�, we ran out of
machine memory before we could find an infeasibility cer-
tificate for any value of N. A summary of the values N* we
obtained is presented in Table I.

By recursion, the k=4, N*=605 query algorithm yields a
scalable algorithm whose query complexity is

4 log605 N � 0.433 log2 N . �40�

This result also implies improvements to other algorithms;
for example, it implies a quantum sorting algorithm whose
query complexity is 4N log605 N.

As mentioned in the Introduction, infeasibility of S�k ,N*

+1� does not necessarily imply that N* is the largest size of a
list that can be searched with a k-query exact, translation
invariant algorithm. However, it seems reasonable to conjec-
ture that this might be the case. Indeed, for k=2 and 3, we
know that the values of N* in Table I are optimal. For those
smaller problems, we were able to numerically solve the
larger SDP developed by Barnum, Saks, and Szegedy to
characterize general quantum query algorithms �14�. �To
solve large enough instances of that SDP, it was also crucial
for us to exploit the symmetry of the problem.� Those results
show that N=6 and N=56 are the largest sizes of lists that

can be searched with k=2 and k=3 queries, respectively,
even when the assumption of translation invariance is re-
moved.

Whether the 1
� ln N lower bound on the query complexity

of the OSP can be saturated remains open. However, the
structure of the algorithms we obtained suggests the possi-
bility of a well-behaved analytic solution, and it would be
interesting to understand the behavior of the solution in the
limit of large N. Figure 2 shows the coefficients of the poly-
nomials Qt�z� associated with the optimal feasible solutions
Qt for k=2,3 ,4. Note the similarity of the coefficients for
different values of N.

Not only have we found a particular quantum algorithm
for the ordered search problem, but we have also demon-
strated the usefulness of semidefinite programming as a

TABLE I. Ordered list sizes N* that are searchable by a k-query
exact, translation-invariant quantum algorithm such that no such
algorithm exists for a list of size N*+1.

k N*

2 6

3 56

4 605

5 �5000

i

q(t
)

i

−6 −4 −2 0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

i
q(t

)
i

−54 −36 −18 0 18 36 54
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

i

q(t
)

i

−600 −400 −200 0 200 400 600
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

(b)

(c)

FIG. 2. Laurent polynomial coefficients qi
�t� as a function of i for

exact, translation-invariant OSP algorithms. �a�, �b�, and �c� show
k=2, 3, and 4, with N=6, 56, and 605, respectively. The coefficients
for t=0,1 ,2 ,3 ,4 are indicated by solid, dashed, dashed-dotted,
dotted, and dashed-dotted-dotted lines respectively.
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numerical technique for discovering quantum query algo-
rithms. Indeed, the connection between quantum query com-
plexity and convex optimization is not unique to the ordered
search problem: as mentioned above, arbitrary quantum
query problems can be characterized in terms of semidefinite
programs �14�. Thus, semidefinite programming appears to
be a powerful tool for studying quantum query complexity.

After this work was completed, we learned that Ben-Or
and Hassidim have developed an approach to quantum algo-
rithms for ordered search based on adaptive learning �15�.
Their resulting algorithm is not exact, but rather is zero error,
with a stochastic running time �sometimes referred to as a
Las Vegas algorithm�. The expected running time of their
algorithm is 0.32 log2 N.
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