HIGHLIGHTS OF QUANTUM SEARCH BY MEASUREMENT
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We describe a quantum algorithm for solving combinatorial search problems that
uses only a sequence of measurements. The algorithm is similar in spirit to quan-
tum computation by adiabatic evolution, in that the goal is to remain in the ground
state of a time-varying Hamiltonian. Indeed, we show that the running times of
the two algorithms are closely related. We also show how to achieve the quadratic
speedup for Grover’s unstructured search problem with only two measurements.

A promising way to develop new quantum algorithmic ideas is to explore
alternative formulations of quantum computation. In a previous paper!, we
explored measurement back-action as a way to simulate adiabatic evolution.
In so doing, we developed a generic quantum measurement algorithm for
solving combinatorial optimization problems as well as a specific algorithm
for solving Grover’s search problem? with quadratic speedup using only two
measurements. In this article, we review these algorithms and highlight some
key points of their analysis.

An adiabatic algorithm finds the minimum of a function by applying a
slowly changing Hamiltonian to the ground state of the initial Hamiltonian
Hp. The final Hamiltonian Hp is chosen so that its ground state encodes the
minimum of the function. The adiabatic theorem states that if the evolution
is smooth, without level crossings, and applied over a total time T > T'/g?,
the final state will be the ground state of Hp with high probability, where

T2 = max (B (5)|(4)21Bo (5)) — (Bo(s)| L2 | Eo(s))’] 1)
g = min|Ei(5) - Fo(s)], )

and where E;(s) represents the it" largest energy eigenstate of the interpolat-
ing Hamiltonian H(s), with 0 < s < 1.

We define the corresponding M-measurement algorithm to be the se-
quence of M measurements of the interpolating Hamiltonian’s value at equally
spaced times. No Hamiltonian acts during the measurement algorithm; evo-
lution is generated solely by backaction. For projective measurements, the
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Zeno effect predicts that the system will remain in the (changing) ground
state with high probability when M is large, resulting in a final ground state
population of exp(—I'?/Mg?)+ O(M~2), and therefore a successful algorithm
when M > I'?/g%.

The running time of the M-measurement algorithm is the product of M
and the time 7 it takes to perform each measurement of H(s). We calculate
this time using von Neumann’s measurement model: a Hamiltonian inter-
action H(s) ® p with a pointer followed by a measurement of the pointer’s
momentum p. To implement this process as a quantum circuit, we digitize the
pointer to r qubits, identifying its momentum eigenbasis with the computa-
tional basis. We further normalize p as p|z) = 27"z |z) so as not to artificially
hide algorithmic strength in a growing system-pointer interaction. Finally, we
use standard techniques to simulate the interaction Hamiltonian H(s) ® p by
a quantum circuit®#. In our more detailed paper!, we show that this model
is equivalent to the quantum phase-estimation algorithm.

This quantum circuit approximates a projective measurement, generating
a state whose matrix elements are |(E,|p|Ep)|* - |s(z)|?, where z = (Ep —
E,)T/2 and

sin® z

|'9(37)|2 = W

3)
Fig. 1 depicts this function for z = 4. It has a sharp peak of unit height
and width of order 1 at the origin, and identical peaks at integer multiples of
27m. For this approximation to be sufficiently good, |k(z)[? must be bounded
below 1 by a constant for all relevant energy separations z, and in particular
for z = g7/2. Because the width of the central peak is of order 1, this condition
is satisfied when 7 > O(1)/g, and therefore the M-measurement algorithm
succeeds with high probability whenever its running time 7' = M7 > T'?/g5.
Finally, this approximation is space-efficient—we show in our more detailed
paper! that r need be no larger than O(logn).

One can use a variant of the M-measurement algorithm to solve Grover’s
unstructured search problem faster than the best possible classical algorithm.
The Grover problem? is to find a particular unknown n-bit string w using only
queries of the form “Is z the same as w?”. This is equivalent to the problem
of minimizing the oracle function

ha(2) = {(1) :Z . (4)

The best possible classical algorithm for solving this problem requires
©(2™) queries to h,,, whereas the best possible quantum algorithm requires
only ©(2"/?) queries for both the unitary (Uy|z) = (=1)"(?)|2)) and Hamil-
tonian (H, = 1 — |w){w|) formulations of the oracle®%"8. We propose an
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Figure 1. The function |x(z)|2 for r = 4.

analogous measurement oracle for this problem: the interaction Hamilto-
nian H,, ® p. This proposal is motivated by the fact that repeated alter-
nation of H, ® p and Hg ® p can generate any Hamiltonian of the form
[sHp + (1 —s)H,] ® p, which is our model for approximating projective mea-
surement of H(s).

For Hp = 3, (1- agj)) /2, and linear interpolation to H,, the mini-
mum gap g ~ 2'""?2 and the s = s* at which it occurs are known and
are independent of w.® Furthermore, up to terms of order 1/n, the H(s*)
eigenstates are equal superpositions of the beginning and final ground states,
[¥+) ~ [|Eo(0)) + |Eo(1))]/v2. Hence, a two-measurement algorithm will
solve this problem: prepare the system in the state |Eg(0)), measure H(s*),
then measure H(1). This algorithm finds w with probability 1, which can be
boosted as close to unity as desired by repetition. This is not a constant-time
algorithm, however. Because the H(1) measurement takes constant time and
the H(s*) measurement takes time 7 = O(1)/g, its complexity is ©(2"/?), the
most efficient possible quantum mechanically®.

We have shown that an adiabatic algorithm requiring time T >> T'/g?
can be simulated by a corresponding measurement algorithm requiring time
T > T'?/g3. Thus, the measurement algorithm is efficient whenever the adi-
abatic algorithm is efficient. Moreover, we have presented a measurement
algorithm that can achieve quadratic speedup for the Grover problem by us-
ing knowledge of the place where the gap g is smallest. Finally, we have
argued that it is important to use an explicit dynamical process to model the
measurement, of complicated observables when they are called for in quantum
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algorithms. Without a measurement model, the analysis of such algorithms
can give misleading results.
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