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Abstract. We present a class of spin networks that act as perfect quantum wires—quantum states transfer across these
networks with unit fidelity in a time proportional to the network’s size. No couplings need to be switched on and off during this
process. We prove thatN-spin hypercube networks with equal-strength nearest-neighbor Heisenberg andXY couplings have
a maximal perfect communication distance of 2 log3N. We show how to engineer coupling strengths in linear Heisenberg and
XY spin chains to efficiently achieve perfect state transfer over arbitrarily long distances. Finally, we show how to augment
these linear spin chain networks with more complex, but static, interactions to achieve universal quantum computation.

Quantum circuits are built from quantum wires and quantum gates. How these components are technologically
realized depends very much on the application. For example, wires might take the form of “flying qubit” photons
for long-distance quantum communication whereas they might take the form of “bucket brigade” optical lattice
modulations for quantum memory. For applications in which qubits are packed at high density, it is worthwhile to
investigate the extent to which direct qubit-qubit interactions can be harnessed to technologically realize quantum
wires and quantum gates.

A useful model to consider in this context is a spin network—a collection ofN qubits with nearest-neighbor
interactions describable by a graph. Recently, equal-strength Heisenberg andXY linear spin chain networks have
been shown to act as quantum wires with high, but non-unit fidelity [1]. In this paper, we examine spin networks that
can serve asperfect, i.e., unit fidelity, quantum wires. We also show that these perfect quantum wires can be augmented
to perform perfect quantum gates.

A spin network is described by a graphG with verticesV(G) representing spins and edgesE(G) representing
interactions between them. Theadjacency matrixcorresponding to this graph is

Ai j (G) :=

{
1 if (i, j) ∈ E(G)
0 otherwise.

(1)

We label the two vertices inV(G) between which we wish to consider perfect state transferA andB.
Consider spin networks whose interactions are time-independent Hamiltonians. In the subsequent, we consider

specifically anXY coupling
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whereσx
i ,σy

i andσ
z
i are the Pauli matrices acting on thei th qubit; later we consider other interactions. Using the

(nonstandard) identification between spin states and qubits|0〉 ≡ |↓〉 and|1〉 ≡ |↑〉, we denote the ground state of an
XY spin network by|0〉= |0A00· · ·00B〉.

Although the Hilbert spaceHG of theN-spin network has dimension 2N, state transfer dynamics occurs completely
within the N-dimensional subspaceSG spanned by the basis vectors|n〉 with n = 1, . . . ,N, corresponding to spin
configurations in which all spins are ‘down’ apart from just one spin at the vertexn which is ‘up’. This is because
HG commutes with the total spin operator in thez-direction, forcing total spin in thez-direction to be conserved.



When restricted to this subspace,HG|SG is represented by anN×N matrix that isidentical to the adjacency matrix
A(G), Eq. (1), of the underlying graphG. Because of this, the time evolution of the network in theSG subspace is a
continuous-time quantum walk onG [2].

The question we are interested in is: When will the quantum walk propagate fromA to B with unit fidelity? To
answer this, we need to compute the probability amplitude

F(t) = 〈N |e−itHG |1〉 . (3)

Perfect state transfer is obtained for timest for which |F(t)|= 1.

For theXY linear spin chain, one can computeF(t) explicitly by diagonalizing the Hamiltonian or the corresponding
adjacency matrix. The eigenstates and the corresponding eigenvalues are
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, (4)

(5)

with k = 1, . . . ,N. Thus
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)
e−iEkt . (6)

Perfect state transfer from one end of the chain to another is possibleonly for N = 2 andN = 3, with F(t) =−i sint
andF(t) = −sin2(t/

√
2) respectively. For perfect state transfer in a graphG, it is necessary that the ratios of the

differences of eigenvalues of the related adjacency matrixA(G) are rational numbers. The absence of perfect state
transfer forN ≥ 4 can be proved by showing explicitly that the above condition is not satisfied.

A chain of two or three qubits can serve as basic building blocks for networks that can perfectly transfer a quantum
state over longer distances. This can be achieved by building networks which are multiple Cartesian products of either
of the two simple chains.

In general the Cartesian product of two graphsG := {V(G),E(G)} andH := {V(H),E(H)} is a graphG×H whose
vertex set isV(G)×V(H) and two of its vertices(g,h) and(g′,h′) are adjacent if and only if one of the following
hold: (i) g = g′ and{h,h′} ∈ E(H); (ii) h = h′ and{g,g′} ∈ E(G). If ˜|k〉 is an eigenvector ofA(G) corresponding
to eigenvalueEk and ˜| l〉 is an eigenvector ofA(H) corresponding to eigenvalueEl then ˜|k〉⊗ ˜| l〉 is an eigenvector of
A(G×H) corresponding to eigenvalueEk +El . This is because

A(G×H) = A(G)⊗11V(H) +11V(G)⊗A(H), (7)

where11V(H) is the|V(H)|× |V(H)| identity matrix (see e.g. [3]).
Now, consider a graphGd which is ad-fold Cartesian product of graphG. The propagator between the two antipodal

vertices inGd, namelyA = (1, . . . ,1) andB = (N, . . . ,N), is simply

FGd(t) = [FG(t)]d . (8)

Thed-fold Cartesian product of a one-link chain (two qubits) and a two-link chain (three qubits) lead to one-link and
two-link hypercubes with|F(t)| given, respectively, by

sind t and sin2d
(

t/
√

2
)

. (9)

Any quantum state can be perfectly transferred between the two antipodes of the one-link and two-link hypercubes of
any dimensions in constant timet = π/2 andt = π/

√
2 respectively.

Thus we have shown that for a two-link hypercube ofN sites, the maximum distance of perfect quantum communi-
cation is 2 log3N.

An improvement to perfect quantum communication distance is possible if one allows different, but fixed, couplings.
To see this, relabel the basis vectors of anN-spin chain as|m〉, wherem= −1

2(N−1)+n−1 and let the interaction
Hamiltonian be a modified version of (2),

HG = ∑
(n,n+1)∈E(G)
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FIGURE 1. CouplingsJn that admit perfect state transfer fromA to B in a 6-qubit chain. Eigenvaluesm of the equivalent spin-52
particle are also shown.

When restricted to the subspaceSG, the HamiltonianHG takes the form
0 J1 0 · · · 0
J1 0 J2 · · · 0
0 J2 0 · · · 0
...

...
...

... JN−1
0 0 0 JN−1 0

 , (11)

which is identical to the HamiltonianH of a fictitious spin(N−1)/2 particle when the couplings are engineered to
the values

Jn =
λ

2

√
n(N−n); (12)

an example forN = 6 is depicted in Fig. 1. In this case,H = λSx, whereSx is the fictitious spin’s angular momentum
operator andλ is some constant. The evolutionU(t) = exp(−iλ t Sx) of the network represents a rotation of this
fictitious particle. The matrix elements〈n′ |U(t) |n〉 of this rotation matrix are well-known and in particular the
probability amplitude for state transfer is

F(t) = 〈N |U(t) |1〉= sinN−1 (λ t/2) . (13)

Thus perfect transfer of a quantum state between the two antipodesA andB is obtained in a constant timet = π/λ , or
when the amount of energy available is bounded so that the interaction strength in the center of the chain is constant,
λ ∼ 1/N and state transfer takes a timet ∼ N to occur.

Each such engineered qubit chain can be viewed as a projection from a graph having identical qubit couplings. In
fact, there is an entire family of such graphsG that project to this chain. Motivated by the ‘column method’ of [4], we
defineG as the set of graphs whose vertices can be partitioned intoN columnsGn of size|Gn|=

(N−1
n−1

)
that satisfy the

following two conditions forn = 1, . . . ,N: (i) each vertex in columnn is connected toN−n vertices in columnn+1,
and (ii ) each vertex in columnn+1 is connected ton vertices in columnn. An important example of a graph inG is
the one-link hypercube, where columns are defined as the set of vertices reachable inn links. The evolution of a state
atA (the first column) underHG (eq. (2)) remains in the column spaceHcol ⊆HG, spanned by

|col n〉=
1√
|Gn|

|Gn|

∑
m=1

|Gn,m〉 (14)

whereGn,m labels the vertices inGn. Hence, we restrict our attention toHcol in which the matrix elements ofHG are
given by

Jn = 〈col n|HG |col n+1〉=
√

n(N−n), (15)

the same as in the engineered chain.
In our analysis we have focused on qubits coupled with theXY interaction. The choice of this interaction was

dictated by its simple connection with the adjacency matrix. We should add, however, that our considerations remain
valid if we choose the Heisenberg interaction and compensate for the diagonal elements in theSG subspace. For
example, the Heisenberg model with local magnetic fields,

1
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N−1

∑
j=1

Jj σ j ·σ j+1 +
N

∑
j=1

B jσ
(z)
j , (16)



with Bn = 1
2(Jn−1 +Jn)− 1

2(N−2) ∑N−1
k=1 Jk, gives exactly the same state transfer dynamics as theXY model.

Our analysis is not restricted to pure states; the method presented here works equally well for mixed states. It can
also be used to transfer or to distribute quantum entanglement.

Given the preceding construction for a perfect quantum wire, one may similarly implement a perfect quantum gate,
and indeed a perfect quantum computation using spin networks. Given anN-qubit quantum circuitU = UT · · ·U1,
consider the following time-independent Hamiltonian:

H =
T

∑
t=1

Jt

(
Ut ⊗| t〉〈t−1|+U†

t | t−1〉〈t |
)

(17)

Feynman proved [5] that whenJt = 1, the spectrum ofH is the same as that of the hopping Hamiltonian one obtains
when eachUt = 11. Indeed,〈ψt |H |ψt+1〉 = 1 between the states|ψt〉 = Ut · · ·U1 |01 . . .0N〉 | t〉, indicating thatH is
nothing more than the discretized version of a free particle in one dimension. If this system were left to freely evolve
and were measured at timeT/2, the probability that the computation succeeds is∣∣∣〈ψT |e−iHT/2 |ψ0〉

∣∣∣2 = O(T−2/3). (18)

Rather than repeatO(T2/3) times so that the probability of success is close to one, Feynman suggested preparing a
wavepacket to ballistically propagate through the network so that the computation succeeds with high probability in
a single shot. Using our perfect wire construction, we can do even better. If we choose theJt of Eq. (17) to vary as
Eq. (12), then the computation will coherently evolve to its final configuration with unit fidelity in a time proportional
to T.

In conclusion, we have proven that perfect quantum state transfer between antipodal points of one-link and two-link
N-spin hypercube networks is possible in a time proportional toN and that perfect quantum state transfer between
antipodal points ofk-link hypercubes fork ≥ 3 is impossible. In addition, we have shown that a quantum state can
be transferred perfectly over a chain ofany length as long as one can pre-engineer inter-qubit interactions. This
construction can be combined with Feynman’s spin-network Hamiltonian (17) to generate any quantum computation
with unit fidelity entirely within a spin network. These networks are especially appealing as they require no dynamical
control, unlike many other quantum information processing proposals.
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