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Abstract

A feedback loop consists of three dynamical systems:
an observer, a controller, and the system to be ma-
nipulated. Because of back-action in quantum sys-
tems, quantum controllers can act as quantum ob-
servers and vice-versa. We demonstrate that under
very general conditions, a single quantum bit can
serve as both a full controller and full observer of
a quantum system for a feedback loop. By similar
techniques, we show that a qubit can be harnessed
to serve as a quantum communication channel be-
tween two systems, and that multiple systems can
be connected together to create an efficient universal
quantum computer. We propose experimental real-
izations of our approach, and explore the implica-
tions for controllability, observability, and quantum
information processing.

A practical problem in quantum control and quan-
tum computation is understanding when a given
complex behavior of a quantum system can be con-
structed out of simpler operations. Geometric con-
trol theory has been used to show the universality
of simple quantum operations for performing coher-
ent control [1, 2]. In particular, almost any pair of
Hamiltonians that can be applied to a closed, finite-
dimensional quantum system render it controllable

[3]. Geometric control has also been used to show
that almost any quantum logic gate is universal [3].
Dual to the problem of controlling a complex sys-
tem is observing it: to perform quantum feedback
control, both controllers and observers are necessary
[2, 4]. Although less attention has been paid to the
problem of observability, it is known that coherent
controllability of a quantum system combined with
the ability to perform simple measurements on it ren-
ders the system observable [5].

Quantum controllers and observers can be com-
bined to perform tasks such as engineering open-
systems dynamics [5], and quantum error-correction
and noise suppression [6, 7]. All such tasks are fun-
damentally based on getting and processing infor-
mation [8]. We present a simple quantum device—a
universal quantum interface, or UQI—that is able to
perform all these tasks simply and efficiently. The
universal quantum interface consists of a single two-
state quantum system, or quantum bit, that couples
to a Hamiltonian system to be controlled or observed
via a fixed Hamiltonian interaction. The primary
purpose of this article is to show that by controlling
and observing the quantum bit on its own, one can
fully control and observe the system to which it is
coupled.



Consider a d-dimensional quantum system .S whose
dynamics are described by a Hamiltonian H. Con-
sider a two-level system @ coupled to S via a fixed
Hamiltonian interaction A® o, where A is an Hermi-
tian operator on S and o, is the z Pauli matrix with
eigenvectors | + 1) corresponding to eigenvalue —+1
and | — 1) corresponding to eigenvalue —1. Assume
that we can both make measurements on @ in this
basis, and apply Hamiltonians yo to @), where o is an
arbitrary Pauli matrix and « is a real control param-
eter. That is, taken on its own, @) is controllable and
observable (the ability to measure with respect to
one basis combined with the ability to perform arbi-
trary rotations translates into the ability to measure
with respect to any basis).

It can immediately be shown that in the absence of
environmental interactions the system is generically
coherently controllable. As long as H and A are not
related by some symmetry, the algebra generated by
{H+ A®o0,,vo} is the whole algebra of Hermitian
matrices for S and @ taken together. As a result, by
the usual constructions of geometric control theory
[1], one can perform arbitrary Hamiltonian transfor-
mations of the system and qubit by turning on and
off various os. One such Hamiltonian transforma-
tion is an arbitrary Hamiltonian transformation on
the system on its own, so the system is coherently
controllable.

Now turn to observability. Since by controlling the
qubit on its own we can engineer any desired Hamil-
tonian transformation of the system and qubit to-
gether, we can apply any evolution of the form
e~ 68t wwhere G is an arbitrary Hermitian oper-
ator on S and o, is the z-Pauli matrix on Q). Pre-
pare the interface in the state |[4+1) (e.g., by mea-
suring the qubit and rotating it to |+1)), apply
this evolution, and measure @ in the {|+1),]—1)}
basis. As a result of this preparation, evolution,
and measurement, the system state evolves from
ps(0) into either p& = cos(ytG)ps(0) cos(1tG) or
pg = sin(ytG)ps(0)sin(ytG), with probabilities
py = trcos?(vtG)ps(0) and p_ = trsin?(vtG)ps(0)
respectively. In other words, this procedure effects
the generalized “Yes-No” measurement on S having
Hermitian Kraus operators cos(vtG), sin(ytG). This
is the form of the most general minimally-disturbing
two-outcome measurement on S [9]. In [5], it is
shown how one can perform any desired general-
ized measurement corresponding to Kraus operators
{Aj} by making a series of such two-outcome mea-
surements. So by the construction outlined above,
where the results of the two-outcome measurements
are copied to classical memory, @ can effect an arbi-
trary generalized measurement on S and is therefore
a full semiclassical observer for S [2].
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Figure 1: A universal quantum interface attaches it-
self to a system with Hamiltonian H via an
interaction A®o .. By measuring and manip-
ulating the single qubit of the interface, one
can control and observe the quantum system
in any desired way.

Generalized measurements and generalized open-
system transformations are closely related. By mak-
ing a generalized measurement and ignoring the out-
comes one effects the open-system transformation
ps(0) — >, AkpS(O)AL. So our universal quantum
interface @ is not only a full semiclassical observer
for S, but also a universal controller capable of per-
forming any desired completely positive linear trace-
preserving map on S [10] (see Fig. 1).

True to its name, the universal quantum interface
can also act as a quantum communication channel
between two quantum systems, S and S’. Let Q
be coupled to S with a coupling A ® ¢, and to S’
with a coupling A’ ® o,. As long as the algebras
generated by {H, A} and by {H’, A’} close only on
the full algebras for the two systems on their own,
then the algebra generated by {H + H' + A® o, +
A’ ® o,, yo} closes on the full algebra for the two
systems together with (). Consequently, (Q can be
used to shuttle quantum information from S to S’
and vice versa (see Fig. 2).

The ability of quantum interfaces to perform com-
munication tasks as well as coherent quantum infor-
mation manipulation and measurement allows one
to envisage a quantum control system, including sen-
sors, controllers, and actuators, constructed of quan-
tum systems linked via quantum interfaces, or even
constructed entirely of quantum interfaces in series
and parallel. Such quantum control systems could ef-
fect either coherent or incoherent quantum feedback
(2, 4].

The universal quantum interface can control a quan-
tum system, observe it, and shuttle quantum in-
formation between systems. How efficiently can it
perform these tasks? Here we can use an argu-
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Figure 2: A universal quantum interface that interacts
with two systems can serve as a quantum
communication channel, mediating the flow
of information between the two systems.

ment based on the Solovay-Kitaev theorem [11]. The
transformations on the system and interface corre-
spond to a time-dependent Hamiltonian H + A ®
o, +(t)o(t). Arbitrary unitary transformations on
system and interface can be built up this way. Let
7 be the characteristic time that it takes to build
up two unitary transformations U, U’ that differ sig-
nificantly from each other (i.e., tr UTU’ < d). As-
suming that the unitary transformations that can be
built up over times much greater than 7 are dis-
tributed essentially uniformly over the space of all
unitary transformations, one sees that in time ¢ one
can perform an arbitrary control or observation on a
d-dimensional quantum system to an accuracy pro-
portional to e~/ 7d*  To obtain exponential accuracy
requires time of O(d?).

Of course, some control tasks and observations can
be performed in less time. In the case of quantum
computing, we are interested in transformations of
n qubits, so that the dimension of the Hilbert space
is d = 2". A generic transformation can be built
up out of O(2?") quantum logic gates. But some
computations (Shor’s algorithm [12], and quantum
simulation [13], for example) can be performed in
time polynomial in n, i.e., polylogarithmic in d.

A universal quantum interface can effect any de-
sired transformation on the system to which it is
connected, including quantum logic transformations.
But if the system to which it is connected is high-
dimensional, e.g., d = 2", the interface cannot nec-
essarily effect those transformations efficiently. In
particular, a desired quantum logic operation could
take time O(2%") to effect. The general condition on
H and A under which it is possible to perform quan-
tum computation efficiently on a d = 2™ dimensional
system is an open question.

If one uses quantum interfaces to control and con-
nect a number of quantum systems, however, one
can in general perform efficient universal quantum
computation. A specific architecture in which uni-
versal quantum interfaces can be used to perform

Figure 3: A set of quantum interfaces connecting low-
dimensional systems makes up a quantum
computer, capable of performing quantum
logic operations and shuttling information
between any two subsystems.

universal quantum computation is one in which n
small-dimensional systems are coupled together via
quantum interfaces as described above (see Fig. 3).
Any set of pairwise couplings between systems that
forms a connected graph now allows efficient univer-
sal quantum computation as follows.

First, consider the problem of performing coherent
quantum logic operations on the coupled systems.
Prepare the interfaces in the state | + 1) by mea-
suring them. Each interface is now in an eigenstate
of the Hamiltonians H; + A; ® o, that couples it
to its connecting systems. As a result, the systems
are all effectively uncoupled and evolve by renormal-
ized versions of their respective Hamiltonians: the
jth system evolves via the Hamiltonian H; + A;. By
coherently controlling the interface between the jth
and kth system, one can effect an arbitrary coherent
transformation of these two systems together, return-
ing the interface to the state |+ 1). That is, one can
perform any desired quantum logic transformation
on any two systems that are connected by an inter-
face. While this quantum logic transformation takes
place, the other systems evolve in an uncoupled fash-
ion via known Hamiltonians.

Since the graph that describes the interfaces is fully
connected, quantum information can be moved at
will throughout the set of coupled systems by se-
quential pairwise couplings intermediated by the in-
terfaces. The maximum number of pairwise opera-
tions required to bring any two qubits into adjacent
systems is O(n). Arbitrary quantum logic transfor-
mations can be performed on systems in a pairwise
fashion. As a result, any desired quantum logic cir-
cuit of N logic gates can be built up using no more
than O(d?nN) pairwise operations, where d is the
typical dimension of a subsystem. If the systems are
qubits then the quantum logic circuit can be built up
in O(nN) operations. For example, the coupled sys-
tems could themselves be quantum interfaces, so that
an entire quantum computer could be constructed
from interfaces alone.

State preparation and measurement can be accom-



plished in a similar fashion. By manipulating and
measuring a given interface, while keeping the other
interfaces ‘turned off’ via the decoupling procedure
given above, one can perform any desired general-
ized measurement on the systems to which that in-
terface is coupled. This procedure allows one both to
prepare and to measure the state of those systems.
Since state preparation, coherent quantum logic op-
erations, and measurement can all be accomplished
efficiently, the set of systems coupled by universal
interfaces can perform universal quantum computa-
tion.

Universal quantum interfaces are simple sys-
tems that can be wused to perform arbitrary
quantum operations—control, observation, and
computation—on quantum systems. Note that the
derivations above depend on the fact that the sys-
tems to be controlled or observed are closed apart
from the interactions with their interfaces. If the
systems to be controlled or observed are open to the
environment, as all systems are to a greater or lesser
degree (‘no quantum system is an island entire unto
itself’), then only those operations which can be per-
formed efficiently within the system’s decoherence
time can actually be effected. An interesting open
question for further research is the degree to which
quantum interfaces can be used to protect quantum
systems and effectively decouple them from their en-
vironment via the use of symmetries [14], bang-bang
techniques [15], or analogs of quantum error correct-
ing codes [6].

The straightforward requirements for universality al-
low many candidates for quantum interfaces. Many
systems that are frequently used to couple to quan-
tum systems are universal quantum interfaces. For
example, a mode of the electromagnetic field that
couples to an optical cavity can be used to control
and observe the contents of the cavity, as in quan-
tum computing using cavity quantum electrodynam-
ics [16]. In an ion trap, the internal and vibrational
states of the ions could be controlled and observed
using just one ion in the trap (for example, an ion of a
different species from the other ions in the trap [17]).
In general, a single optically active site on a molecule,
e.g., one held in optical tweezers to minimize cou-
pling to the environment, could be used to control
and observe the quantum states of the molecule. If
the electronic and hyperfine states of the atoms in
the molecule can be addressed either individually or
in parallel, such a molecule addressed via an opti-
cal quantum interface is a good model for quantum
computation. In liquid state NMR, it is possible to
control and observe the state of the nuclear spins
in a molecule by observing just one nuclear spin on
the molecule while using coherent control to shuttle

quantum information from the spins to be observed
to the observed spin [18]. In coherent superconduct-
ing circuits, for example ones made up of several
coupled charge or flux qubits, the state of the en-
tire circuit can in general be coherently controlled
and observed simply by controlling and observing a
single qubit, which could be specially designed for
this purpose [19].

Universal quantum interfaces are devices that can be
used to control and observe a quantum system in any
desired fashion. Because of their simple nature, uni-
versal quantum interfaces are considerably easier to
exhibit experimentally than is a universal quantum
computer. Indeed, existing interfaces with cavity
QED, ion-trap, and NMR systems are already uni-
versal. Networks of quantum interfaces can be used
to perform arbitrarily difficult quantum control tasks
in principle, including full-blown quantum computa-
tion. In practice, complicated quantum information
processing tasks involving many quantum interfaces
are of the same order of difficulty to perform as quan-
tum computation. Open questions include problems
of efficiency, convergence [20], networkability, and in-
terfaces with quantum systems that interact strongly
with their environment.
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