Physics 262 Fall 2006: Review of topics

Part I: Optics

- E & M Waves
 - Faraday’s Law (flux, emf, Lenz’ Law, magnetic energy)
 - Maxwell-Ampere Law (displacement current)
 - EM wave equation ($\vec{E} \perp \vec{B} \perp \hat{k}$, Maxwell’s equations)
 - EM wave energy & momentum (Poynting, P_{rad}, intensity)
 - Polarization (Brewster angle, Malus’ Law)

- Geometric Optics
 - Reflection & Refraction (Snell’s Law, total internal reflection)
 - Images (real, virtual, multiple)
 - Spherical mirrors (imaging equation, lateral magnification)
 - Spherical refractors (imaging equation, lateral magnification)
 - Thin lenses (imaging equation, Lensmaker’s equation)
 - Sign Rules!!!

- Wave Optics
 - Chromatic dispersion
 - Interference basics (constructive, destructive)
 - Reflection, transmission coefficients (intensity, amplitude)
 - Phase change physics (distance, n, hard reflection)
 - Phasor math
 - Thin films
 - Young’s slits (1, 2, n slits)
 - Michelson interferometer
 - Coherence length/time (transverse, longitudinal)
 - Resolvability, diffraction limit (James Bond stuff)
Part II: Relativity

• Coordinates
 – Events, reference frames (IRFs, NIRFs)
 – Principles of Relativity, Equivalence

• Geometry
 – Galilean/Lorentz invariants (spacetime interval)
 – Spacetime diagrams (axes, scales, worldlines)
 – Euclidean/Minkowski 4-vectors (dot product)
 – Galilean/Lorentz transformations (inverses too)
 – Timelike, spacelike, lightlike (Principle of Causality, light cone)
 – Relativity of Simultaneity (time dilation, length contraction, proper time)

• Kinematics
 – Doppler effect (longitudinal, transverse, redshift)
 – Velocity transformation (Galilean, Lorentzian)
 – Twin paradox
 – 4-velocity

• Dynamics
 – Einstein postulates
 – Newton’s laws in special relativity \((p = \gamma mv)\)
 – Energy, momentum kinetic energy \((E^2 = p^2c^2 + m^2c^4)\)
 – 4-momentum (length, transformation)
Part III: Quantum Mechanics

- Light-matter interactions (Old Quantum Theory)
 - Blackbody Radiation (Planck, Wien, Rayleigh-Jeans, Stefan-Boltzmann)
 - Photoelectric effect
 - Bremsstrahlung
 - Thermionic emission
 - Moseley’s Law
 - Compton effect
 - Quantum hypotheses (Planck, Einstein, Bohr, de Broglie)

- Atomic structure (Old Quantum Theory)
 - Line spectra (Balmer, etc. formulas)
 - Thomson vs. Rutherford atom
 - Bohr model (Derivation, E_n, r_n, reduced mass, line spectra)

- Probabilistic/wave nature of light & matter (Quantum Mechanics)
 - Single photon, e^- diffraction
 - de Broglie wavelength
 - Heisenberg uncertainty relations ($\Delta E \Delta t$, $\Delta x \Delta p$)
 - Born interpretation ($\langle f(x) \rangle$, $\int |\psi|^2 = 1$)
 - Schrödinger equation (\mathbb{C}, time independent, dependent versions)
 - Solving Schrödinger’s equation (Boundary conditions)
 - Potential wells and barriers (infinite well ψ_n, E_n; tunneling)