
UNM Physics 262, Problem Set 1, Fall 2006

Instructor: Dr. Landahl
Issued: August 23, 2006
Due: August 30, 2006

Do all of the exercises and problems listed below. Hand in your problem set in the rolling
cart hand-in box, either before class or after class, or in the box in the Physics and As-
tronomy main o�ce by 5 p.m. Be sure to put your name or CPS number on your problem
set as well as the course number (Physics 262). Show all your work, write clearly, indicate
directions for all vectors, and be sure to include the units! Credit will be awarded for clear
explanations as much, if not more so, than numerical answers. Avoid the temptation to
simply write down an equation and move symbols around or plug in numbers. Explain what
you are doing, draw pictures, and check your results using common sense, limits, and/or
dimensional analysis.

Exercises: Young & Freedman 29.3, 29.17 (Explain why!), 29.24
Problems: Young & Freedman 29.47, 29.49, and the two problems below.
Extra Credit: Young & Freedman Challenge Problem 29.76

I. High frequency capacitors. In Physics 161, using Gauss' Law for electrostatics, you
showed that the electric �eld between two circular parallel plates a distance d apart that
carried surface charge densities σ and −σ was

E =
σ

ε0

from the positively charged side to the negatively charged side, neglecting edge e�ects. (See
Example 22.8 in Young & Freedman.) This charge separation can be generated, e.g., by
a DC power source connecting the two plates. In this problem, we examine what happens
when the plates are connected by an AC power source.

Suppose the plates were driven such that the voltage di�erence between the top plate
and the bottom plate (Vtop − Vbottom) was

V = V0 sin ωt.

a) What is the electric �eld between the plates, E1, to �rst approximation? (Remember, E1

is a vector�specify its direction!)

b) This electric �eld is changing in time. Using the Maxwell-Ampere Law, develop an ex-
pression for the magnetic �eld, B1, between the plates. (Hint: Draw pictures! B1 is a vector!)

c) But wait, this magnetic �eld is also changing in time! Use Faraday's Law to �nd the
electric �eld, E2, generated by this �eld B1. (Be sure to draw a picture of your Faraday
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surface. Hint: along the axis of symmetry of the plates, there is no E �eld correction.)

d) Using the principle of superposition, the electric �eld is now the sum of the expressions
E1 and E2 found in parts a and c. This is a good approximation for low frequencies, but we
want to know what happens when we ramp up the frequencies even higher. The correction
E2 �eld found in part c is also changing in time. Use the Maxwell-Ampere Law on E2 to
�nd the next correction, B2 to the magnetic �eld.

e) But wait! B2 is changing in time, which generates a correction to the electric �eld. Cal-
culate this correction, E3.

f) Obviously this game goes on ad in�nitum. Write down the in�nite series for the electric
�eld between the plates. (Work out a few more terms if you need help seeing the pattern.)

g) Use your favorite reference to look up what �Bessel functions� are. (Wikipedia, Planet-
Math, Abramowitz & Stegun's text, etc. are examples of where to �nd this.) Which Bessel
function does the series in part f represent? Draw a plot of this function. Bessel functions
arise frequently in physics problems involving cylindrical symmetry. They are to cylindrical
waves what cosine functions are to waves on a line. Don't be surprised if they show up again
in wave optics problems having cylindrical symmetry.

II. The jumping ring demo. In class I presented the �jumping ring� demonstration and
told you that the magnetic �eld in the ring opposed the magnetic �eld generated by the elec-
tromagnet, causing the ring to jump in the air. That explanation isn't the full story because
antiparallel magnetic �elds cause torques, not net forces; see Fig. 27.29 in Young & Freedman
and the accompanying discussion for details. A more correct explanation necessarily takes
into account the radial part of the �eld arising because the solenoid is only �nitely long.
Understanding this explanation will take us on a tour of the principles of electromagnetism.

The current in the coil winding around the solenoid is

I = I0 sin(ωt− θ(z)),

where ω is the frequency of the AC current and θ(z) is the current's phase variation as a
function of z, the vertical direction along the solenoid.

a) Use Ampere's Law to calculate the B �eld inside the solenoid, approximating the solenoid
as being very long relative to its radius. Express your answer in cylindrical coordinates as
B = Bzẑ + Brr̂ + Bϕϕ̂.

b) Because the solenoid isn't in�nitely long, there is a radial component of the magnetic �eld.
Use Gauss' Law for magnetism on a Gaussian cylindrical surface of height dz that is coaxial
with the solenoid to relate the radial component of the magnetic �eld outside the solenoid,
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Br to an appropriate (di�erential) function of the vertical component of the magnetic �eld
Bz inside the solenoid. Substitute your expression for Bz from part a into this formula and
calculate any derivatives.

c) When the (aluminum) ring was placed coaxially with the solenoid in the class demonstra-
tion, it acquired an emf from the changing �ux of the solenoid's magnetic �eld. Approxi-
mating the solenoid as very long relative to its radius, use Faraday's Law to calculate the
emf Er generated in the ring.

d) The emf in the ring generates a current via Kircho�'s voltage law. Use this law to express
the current Ir in the ring in terms of the emf Er and the ring's resistance R. (Hint: In this
special case, Kircho�'s law is so simple it also goes by another name.) (Note: This part of
the analysis is a bit of a fudge�there is a generalization to Kircho�'s voltage law that we
haven't discussed yet that incorporates other voltage drops occurring in the ring, but we will
ignore them for this problem.)

e) Calculate the Lorentz force the ring experiences as a result of the current Ir and the radial
part of the magnetic �eld B = Brr̂.

f) Integrate the Lorentz force from part e over a cycle to get an expression for the average
force experienced by the ring. You should �nd that it is nonzero and pointing upwards. If
you didn't obtain this, go back to the beginning and retrace your steps. Notice how impor-
tant the phase θ(z) is to this force. It can be calculated from �rst principles, but it would
mean correcting the fudge made in part d, which we're not ready for yet.

At this point, one could apply Newton's second law to this force and gravity using a free
body diagram and follow up with some kinematics to derive the height that the ring will
jump. I could have asked you to work through all that in this problem, but I won't. :)
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