
UNM Physics 262, Problem Set 12, Fall 2006

Instructor: Dr. Landahl
Issued: November 22, 2006
Due: Nov 29, 2006

Do all of the exercises and problems listed below. Hand in your problem set in the
rolling cart hand-in box, either before class or after class, or in the box in the Physics and
Astronomy main o�ce by 5 p.m. Please put your box number on your assignment,

which is 952 plus your CPS number, as well as the course number (Physics 262). Show
all your work, write clearly, indicate directions for all vectors, and be sure to include the
units! Credit will be awarded for clear explanations as much, if not more so, than numerical
answers. Avoid the temptation to simply write down an equation and move symbols around
or plug in numbers. Explain what you are doing, draw pictures, and check your results using
common sense, limits, and/or dimensional analysis.

12.1 Let's hear it for de Broglie

(a) Show that the de Broglie wavelength of a particle of charge e and rest mass m moving
at a relativistic speed is given as a function of the accelerating potential V as

λ =
h√

2meV

(
1 +

eV

2mc2

)−1/2

. (1)

(Hint: p = γmv in special relativity.)

(b) Show that Eq. (1) agrees with λ = h/p in the nonrelativistic limit. (Hint: Use the
binomial expansion.)

(c) At what energy, in electron volts, will the nonrelativistic expression for the de Broglie
wavelength be in error by 1% for (i) an electron? (ii) a neutron?

12.2 Building better microscopes

The resolving power of a microscope is limited only by the wavelength used; that is, the
smallest detail that can be seen is about equal to the wavelength. Consider the following
objects one might investigate with a microscope:

• A virus of diameter 10 nm.

• An atom of diameter 0.1 nm.

• A proton of diameter 1.0 fm.

(a) If an electron microscope is used, to what voltages must the electrons be accelerated
to resolve each of the three objects? Answer for each object separately.
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(b) If a photon microscope is used, what photon energy, in electron volts, is needed to
resolve each of the three objects? Answer for each object separately.

(c) Which microscope seems most practical for each of the objects and why?

12.3 Heisenberg uncertainty for nuclear physics

(a) The J/ψ particle described in problem set 11 is unstable. (It is the n = 2 excitation,
recall). It has a rest mass of 3.097 GeV/c2 and a (proper) lifetime of 7.6× 10−21 s. What is
the uncertainty in the rest mass of the J/ψ particle as a percentage of its rest mass?

(b) The neutron is an electrically neutral particle with a mass approximately equal to
the proton mass. An early model of the neutron was that of electron con�ned inside the
proton. Using a proton radius of r = 10 fm, (i) estimate the electron's kinetic energy
due to Heisenberg uncertainty and (ii) compare it to the neutron rest mass. What is your
assessment of this model? (Think: do you need to use relativity for this problem?)

(c) A proton or neutron can sometimes �violate� energy conservation by emitting and then
reabsorbing a pi meson, or pion, which has a mass of mπ = 135 MeV/c2. This is possible as
long as the pion is reabsorbed within a short enough time ∆t consistent with the Heisenberg
uncertainty principle. (i) For how long can such a �virtual� pion exist? (Ignore kinetic
energies.) (ii) Assuming the pion travels at very nearly the speed of light, how far from
the proton or neutron can it go? (This gives an estimate of the range of the nuclear force,
because we believe protons and neutrons are held together in the nucleus by the exchange
of pions.)

12.4 Zero point energy of the hydrogen atom

For some quantum systems, the lowest energy con�guration predicted by quantum me-
chanics di�ers from the one predicted by classical mechanics because of the Heisenberg un-
certainty principle. For example, one way to theoretically estimate the size of the hydrogen
atom is to calculate how large a radius the atom can have in its lowest quantum mechanical
energy con�guration. In this problem, we go through this calculation.

(a) Write down the classical expression for the total energy of the hydrogen atom with
an electron of momentum p in a circular orbit of radius r. Keep the kinetic and potential
energy terms separate at this point.

(b) Now use Newton's second law and the Coulomb force to rewrite the classical energy
of the hydrogen atom entirely in terms of its radius. What radius corresponds to the lowest
possible energy?

(c) In the lowest energy quantum mechanical con�guration of the hydrogen atom, the
momentum of the electron (which is entirely azimuthal) and its location along the circum-
ference of its orbit (the conjugate variable to this momentum) have approximately the same
magnitudes as their respective uncertainties, the product of which is lower bounded by the
Heisenberg uncertainty principle. For this lowest-energy state, express the total energy of
the hydrogen atom entirely in terms of its radius.

(d) Take the derivative of this energy with respect to the radius and set it to zero to
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�nd the radius that minimizes the total energy. How does this quantity compare to the
expression for the Bohr radius of the hydrogen atom?

12.5 Gaussian wave functions

A particle of mass m has the quantum wave function

Ψ(x, t) = Ae−a[(mx2/~)+it], (2)

where A and a are positive real constants. Such a wave function is called a Gaussian wave
function because the spatial part of the wave function looks like a �Bell curve,� also known
as a Gaussian function in mathematics.

(a) Because P (x, t) = |Ψ(x, t)|2 is a probability distribution, its integral over all space
must equal one for all times. Use this fact to determine the constant A.*

(b) For what potential energy V (x) does Ψ satisfy the Schrödinger equation?

(c) Again, because P (x, t) is a probability distribution, the expected value of a function
f(x) is given by

〈f(x)〉 =

∫ ∞

−∞
f(x)P (x)dx.

Compute (i) 〈x〉, (ii) 〈x2〉, and (iii) ∆x =
√
〈x2〉 − 〈x〉2 using this wave function.*

* For parts (a) and (c), you may �nd the following integral and identity helpful:

I =

∫ ∞

−∞
e−αx2

dx =

√
π

α

∫ ∞

−∞
(−x2)ne−αx2

dx =
dnI

dαn
.

(Hint: The integral of an odd function over all space is zero.)
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