
UNM Physics 262, Problem Set 2, Fall 2006

Instructor: Dr. Landahl
Issued: August 30, 2006
Due: September 6, 2006

Do all of the exercises and problems listed below. Hand in your problem set in the rolling
cart hand-in box, either before class or after class, or in the box in the Physics and As-
tronomy main o�ce by 5 p.m. Be sure to put your name or CPS number on your problem
set as well as the course number (Physics 262). Show all your work, write clearly, indicate
directions for all vectors, and be sure to include the units! Credit will be awarded for clear
explanations as much, if not more so, than numerical answers. Avoid the temptation to
simply write down an equation and move symbols around or plug in numbers. Explain what
you are doing, draw pictures, and check your results using common sense, limits, and/or
dimensional analysis.

Exercises: Young & Freedman 32.13

Problems: Young & Freedman 32.51, 33.48, 33.60, and the problem below.

Extra Credit: Young & Freedman Problems 33.52 and 33.53

I. Deriving the Poynting vector and EM �eld energy using Maxwell's equations.

In class, based on general energy conservation principles, I argued that the following equation
should hold for an electromagnetic �eld:

d

dt

∫
u d3r +

∫
~S · n̂ da = −

∫
~E · ~J d3r. (1)

Here u is the �eld's energy density, ~S is the �eld's energy �ux (the Poynting vector), ~E is

the electric part of the �eld, and ~J is the current density of moving charges.

We will follow an analysis similar to the one Poynting used to derive his famous formula
in 1884. The general strategy is to apply Maxwell's equations to the right hand side of this
equation to show that

u =
1

2

(
ε0E

2 +
1

µ0

B2

)
(2)

~S =
1

µ0

~E× ~B. (3)

Our tactics for implementing this strategy will be to consider a series of in�nitesimal loops,
surfaces, and volumes, much as we did in the derivation of plane wave solutions of Maxwell's
equations. By using these tactics, we will be able to express ~J solely in terms of ~E and ~B
�elds, enabling Eqs. (2) and (3) to follow with just a little extra math.
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To make this problem more manageable, it has been broken into many smaller steps.
This is the way most practicing physicists tackle tough research problems: they devise a
general strategy, assemble a set of problem tactics that will implement that strategy, and
then divide each tactic into small pieces that can be solved using straightforward methods.

To begin, let's set up a coordinate system. The coordinate system we will use will have
ẑ pointing upwards, ŷ pointing to the right, and x̂ pointing out of the page. Let dV be an
in�nitesimal cube in the positive octant of this coordinate system having sides of lengths dx,
dy, and dz in the x̂, ŷ, and ẑ directions respectively.

a) Draw this in�nitesimal cube, labeling coordinate axes and side lengths along all three
dimensions.

Inside this volume dV , we suppose that there is an electric �eld, a magnetic �eld, and a
current density, each of which can be generally and respectively expressed as

~E = Ex(x, y, z, t)x̂ + Ey(x, y, z, t)ŷ + Ez(x, y, z, t)ẑ

~B = Bx(x, y, z, t)x̂ + By(x, y, z, t)ŷ + Bz(x, y, z, t)ẑ

~J = Jx(x, y, z, t)x̂ + Jy(x, y, z, t)ŷ + Jz(x, y, z, t)ẑ.

Although ~E, ~B, and ~J may vary within the cube dV , we will assume that at the origin of
the cube the vector �elds have the known values

~E = Exx̂ + Eyŷ + Ezẑ

~B = Bxx̂ + Byŷ + Bzẑ

~J = Jxx̂ + Jyŷ + Jzẑ

In our �rst part of the analysis of what's going on in this cube, we will consider an
in�nitesimal loop going around the perimeter of the bottom face of this cube in a counter-

clockwise direction as viewed from above.

b) Draw this in�nitesimal loop, labeling coordinate axes and side lengths and showing the
orientation of the circulation considered.

As we move away from the origin where ~E, ~B and ~J are known, these vector �elds will
change. Using a �rst-order Taylor expansion (a linear extrapolation approximation), these
vector �elds at an arbitrary point (x, y, z) away from the origin will be

~E = (Ex + x∂xEx)x̂ + (Ey + y∂yEy)ŷ + (Ez + z∂zEz)ẑ

~B = (Bx + x∂xBx)x̂ + (By + y∂yBy)ŷ + (Bz + z∂zBz)ẑ

~J = (Jx + x∂xJx)x̂ + (Jy + y∂yJy)ŷ + (Jz + z∂zJz)ẑ.

Here we have used the abbreviated notation ∂x ≡ ∂/∂x, etc.

Consider the line integral
∮

~B · d~̀ around the loop depicted in part b. Using the extrap-
olations above, this line integral to lowest nontrivial order (that is, ignoring terms that have
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a product of more than two di�erentials in them) is∮
~B · d~̀ = Bxdx + (By + ∂xBydx)dy − (Bx + ∂yBxdy)dx−Bydy

= (∂xBy − ∂yBx)dxdy.

The �ux of ~J through the surface bounded by this loop is∫
~J · n̂ da = Jzdxdy

and the �ux of the time derivative of ~E through this surface is∫
∂t

~E · n̂ da = ∂tEzdxdy

c) Write down the Amperé-Maxwell law and apply it to the line and surface integrals above.
Use what you �nd to express Jz in terms of Bx, By, Ez, and their derivatives.

Now consider the line integral
∮

~E · d~̀ around the same loop. By analogy, to lowest order
this evaluates to ∮

~E · d~̀ = (∂xEy − ∂yEx)dxdy.

The �ux of ~B through the surface bounded by this loop is∫
~B · n̂ da = Bzdxdy.

d) Write down Faraday's law and apply it to the line and surface integrals above. Use what
you �nd to express (∂xEy − ∂yEx) in terms of ∂tBz.

We've �nished looking at this loop for a while. Now consider an in�nitesimal loop going
around the perimeter of the left face of this cube in a counterclockwise direction as viewed
from the right.

e) Draw this in�nitesimal loop, labeling coordinate axes and side lengths and showing the
orientation of the circulation considered.

f) In analogy with the analysis done for the loop depicted in part b, write down expressions

for
∮

~B · d~̀,
∫

~J · n̂ da,
∫

∂t
~E · n̂ da,

∮
~E · d~̀, and

∫
~B · n̂ da for this loop and the surface

it bounds. You may �nd it helpful to rotate the �gure you drew in part b and compare it to
the �gure you drew in part e.

g) Write down the Amperé-Maxwell law and apply it to the line and surface integrals from
part f . Use what you �nd to express Jy in terms of Bx, Bz, Ey, and their derivatives.
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h) Write down Faraday's law and apply it to the line and surface integrals from part f . Use
what you �nd to express (∂xEz − ∂zEx) in terms of ∂tBy.

i) Repeat the same analysis from parts e through h for an in�nitesimal loop going around
the perimeter of the back face of this cube in a counterclockwise direction as viewed from
the front.

We now have solved for ~J in terms of ~E, ~B and their derivatives. To get this in a more
suitable form, we must do a little basic calculus.

j) Use the product rule from calculus to express Ex∂tEx in terms of ∂t(ExEx). (Hint: You
should get a factor of 2 somewhere.)

k) Use the product rule from calculus to express Ex∂yBz in terms of ∂y(ExBz) and Bz∂yEx.

Using the product rule as in parts j and k, we can move derivatives around at will to
suit our purposes. We are now ready to tackle the term ~E · ~J.
`) Expand ~E · ~J in the components of the coordinate system we are using and plug in the
expressions found for Jx, Jy, and Jz found in parts c, g, and i. Use the product rule to
express all spatial derivatives so that they act either on terms that are products of E and
B �elds or terms that are just E �elds. (The derivatives can still multiply other variables;
we're just requiring that the objects that the derivatives act on have one of these two forms.)

m) Gather the terms in part ` that are spatial derivatives of E �elds so that you can
substitute in the expressions found for (∂xEy − ∂yEx), etc. in parts d, h, and i into this
equation. Perform this substitution. Re-express all terms like Bx∂tBx as ∂tBxBx with the
appropriate factor found in the product rule analysis in part j.

We're almost there! With the term ~E · ~J in hand, we can calculate (minus) its integral
over the volume dV , which is our objective.

n) Using the fundamental theorem of calculus and the results of part m, show that this
integral can be expressed as

−
∫

~E · ~J d3r = −
∫

~E · ~J dxdydz

=

∫
1

2

(
ε0E

2 +
1

µ0

B2

)
dxdydz

+
1

µ0

∫
(EzBy − EyBz)dydz|dx

x=0

+
1

µ0

∫
(ExBz − EzBx)dxdz|dy

y=0

+
1

µ0

∫
(ExBy − EyBx)dxdy|dz

z=0.

The �rst integral demonstrates that Eq. (2) is correct and the second integral, upon

careful inspection, reveals that ~S = 1
µ0

~E× ~B as in Eq. (3). So we have proved what we set
out to prove. Whew!
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