
UNM Physics 262, Problem Set 6, Fall 2006

Instructor: Dr. Landahl
Issued: October 4, 2006
Due: October 11, 2006

Do all of the exercises and problems listed below. Hand in your problem set in the
rolling cart hand-in box, either before class or after class, or in the box in the Physics and
Astronomy main o�ce by 5 p.m. Please put your box number on your assignment,

which is 952 plus your CPS number, as well as the course number (Physics 262). Show
all your work, write clearly, indicate directions for all vectors, and be sure to include the
units! Credit will be awarded for clear explanations as much, if not more so, than numerical
answers. Avoid the temptation to simply write down an equation and move symbols around
or plug in numbers. Explain what you are doing, draw pictures, and check your results using
common sense, limits, and/or dimensional analysis.

6.1 IRFs in NIRFs. In class, I discussed a hypothetical situation in which a RailRunner
train car is launched straight up into the air from the New Mexico Spaceport. Strictly
speaking, an in�nite lattice of synchronized clocks and meter sticks comoving with this train
car de�nes a non-inertial reference frame (NIRF). This is because tidal gravitational forces
generated by the Earth will cause objects (�test particles�) initially at rest in this frame
to exhibit accelerations, thereby violating Newton's First Law. Nevertheless, I argued that
this frame could serve as a decent inertial reference frame (IRF) over time and space scales
so short that such accelerations were undetectable to within some speci�ed experimental
precision. In this problem, we investigate this argument more critically.

(a) Consider two steel spheres near the surface of the Earth and originally separated
horizontally by 20 m. (They can be freely falling in the air; they don't need to be in the
RailRunner car.) Demonstrate that the spheres move closer together by approximately 1 mm
as they fall 315 m, using the following similar triangles method (or some other method).

Similar triangles method: Draw a picture depicting points for the center of the �rst sphere
(A), the center of the second sphere (B), and the center of the Earth (C). Draw the line
segments AB, AC, and BC. Label a point (D) halfway along the line segment connecting
A and B. Also draw an arc indicating where the surface of the Earth is. Now draw a line
parallel to AB that is tangent to the surface of the Earth. Drop a line perpendicular to
AB from the point B and label the point where it intersects the line tangent to the Earth's
surface (E). Finally, label the point where the line BC intersects the Earth's surface (F ).

From this picture, one can see that the length of the line segment EF is equal to half the
change in horizontal separation the spheres experience as they fall. One can also see that
BDC and BEF are similar triangles. Using this similarity property, and using the problem's
inputs (AB = 20 m, BE = 315 m), calculate this half-change and double it to show that
the full separation the spheres experience is approximately 1 mm. (N.B., The radius of the
Earth is in the front �ap of Ohanian's textbook.)

(b) Now consider two steel spheres near the surface of the Earth that are originally
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separated vertically by 20 m. If the sphere closest to the Earth is initially 315 m above the
Earth, demonstrate that the two spheres increase their separation by approximately 2 mm
before the �rst sphere hits the Earth. You may �nd the following outline useful.

Problem-solving outline: Take the gravitational acceleration at the surface of the Earth
to be g0 = 9.8 m/s2. The gravitational acceleration of an object of mass m a distance r from
the center of the Earth (mass M , radius R) is given by the expression

~g =
~F

m
= −GM

r2
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R2

R2

r2
r̂ = −g0R

2

r2
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Using ~g = −gr̂, this equation becomes

g =
g0R

2

r2
.

Take the di�erential of this equation for g to get an expression dg for how a small change
in g depends on a small change in height dr. Then take the di�erential of the equation
y = 1

2
gt2 to get an expression dy for how a small change in the vertical separation y between

the spheres depends on a small change in the local gravitational acceleration dg. Combine
these equations to express dy in terms of dr. Finally use the equation h = 1

2
gt2 and solve for

t to express the time it takes for the bottom sphere to hit the Earth in terms of of its original
height h. (The actual time is slightly di�erent because gravity is not uniform vertically, but
the di�erence is unimportant for this analysis.) Substitute in the numbers from the problem
and you should �nd the 2 mm separation quoted.

(c) As a concluding part of this analysis, consider two steel spheres that are separated
by 20 m, far from any gravitational in�uences such as that of the Earth. Because they
are massive, they will generate a gravitational acceleration towards one another that will
appear as a violation of Newton's First Law. (Their utility as �test particles� is limited.)
Using the time found in part (b) for a sphere to hit the Earth when dropped from 315 m,
what is the largest radius that each of these two identical steel spheres can have such that
their separation changes by less than 1 mm in this amount of time due to their mutual
gravitational attraction? The density of steel is approximately 8000 kg/m3.

6.2 The Principle of Relativity. (a) Two overlapping IRFs are in uniform relative motion.
According to the Principle of Relativity, which of the following quantities must necessarily

be the same as measured in the two frames? Explain your answers for each of the �ve cases.

1. The speed of an electron.

2. The charge of an electron.

3. The mass of an electron.

4. The kinetic energy of an electron.

5. The electric �eld of an electron.
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(b) The work-energy theorem states that the change in kinetic energy of an object is equal
to the work done on it, which is measured by the dot product of the force on the object with
the vector distance through which it was displaced. In coordinates, Alice expresses this law
of physics in her IRF as:

∆KE − ~F ·∆~x = 0.

Bob is in an IRF moving with a velocity ~vrel in Alice's positive x-direction. In Bob's
IRF, he writes down the corresponding expression for the left hand side of the work-energy
theorem in his (primed) coordinates as:

∆KE ′ − ~F′ ·∆~x′.

Use the Galilean transformation to rewrite this expression totally in terms of Alice's co-
ordinate variables. (Careful: the theorem uses vectors.) Show that the expression necessarily
vanishes, thereby upholding the Principle of Relativity for this law of physics.

6.3 Relativity of wind. (a) Southwest Airlines (SWA) has a �eet of identical airplanes
that all have the same air speed c (which is not the speed of light!). One day, as you are �ying
from Albuquerque (A) to Boston (B) on SWA, there is a sti� wind of speed v blowing from
B toward A for the entire �ight. On the return SWA trip, the exact same wind is blowing.
(i) Show that the time for the round trip from A to B and back under these circumstances is
greater by a factor 1/(1− v2/c2) than the corresponding round trip in still air. (ii) There's
a seeming paradox here: The wind helps on one leg of the �ight as well as hinders on the
other. Why, therefore, is the round-trip time not the same in the presence of wind as in
still air? Give a simple physical reason for this di�erence. It may be helpful to consider the
following limiting case: What happens when the wind speed is nearly equal to the speed of
the airplane?

(b) On a later SWA �ight to Calgary (C) from Albuquerque, the same wind is blowing
from B to A, but this time the wind is perfectly perpendicular to the path of the airplane.
Again, on the return SWA trip, the same wind is blowing. Show that the time for the round
trip from A to C and back under these circumstances is greater by a factor 1/

√
1− v2/c2

than the corresponding round trip in still air.

(c) Two SWA airplanes leave from A at the same time. One travels from A to B and back
to A, �ying �rst against and then with the wind (wind speed v) The other travels from A to
C and back to A, �ying across the wind. Assume the distances between A and B and A and
C are the same. (i) Which one will arrive home �rst and what will be the di�erence between
their arrival times? (ii) Using the �rst two terms of the binomial theorem (or equivalently
the �rst two terms of the Taylor expansion),

(1 + x)n ≈ 1 + nx for |x| � 1,

show that if v � c, then the approximate expression for this time di�erence is ∆t ≈
(L/2c)(v/c)2, where L is the round-trip distance between A and B (and between A and
C).
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(d) A track-and-�eld runner experiences the same phenomenon when he or she runs round
trips on a track on a windy day. The world record holder for the 400 m race (on a 400 m
oval track) is 43.18 s by Michael Johnson of the US (1999). Estimate how much slower he
is on a day with 2 mph winds than on a day without. (Approximate the oval track as a
square with 100 m sides with the wind blowing along one of them if you wish.) The top two
all-time records for the men's 800 m race are 1:41.11 by Wilson Kipketer of Denmark (1997)
and 1:41.73 by Sebastian Coe of the UK (1981). Could Coe have had a better record than
Kipketer if Kipketer had run on a day with 2 mph winds when Coe had not? (Correction:
Actually, this wind analysis for the runners is incorrect because the medium they move
relative to is the ground, not the air. A more correct analogy would be to consider the
consequences of the ground moving like a treadmill at 2 mph, with each leg of the �square
oval� having treadmills moving in the same direction, say West to East. Nevertheless, for
the purposes of this problem, pretend that the runners are like airplanes and moving relative
to the air instead. Some say that these Olympic athletes are ��ying� anyway.)

Extra Credit Problems

6.4 IRFs in NIRFs, continued. Consider a physics demo performed in Regener Hall
103. (a) Use what you learned in problem 6.1 to estimate the precision (in both time and
space) with which this demo can be well-described by an IRF completely contained within
the room. (b) Estimate the maximum masses the objects in this demo can have such that
they can be well-described by this IRF. Full credit for either part will only be awarded for
estimates that agree with mine to within a factor of 100. (100 times larger or 100 times
smaller.)

6.5 Principle of Relativity, continued. The Principle of Relativity states that the laws
of physics are the same in all IRFs. IRFs can di�er not just by relative velocities but by
rotations and translations too. The rotation transformation between IRF coordinates is


t′

x′

y′

z′

 =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




t
x
y
z


for a rotation of the primed coordinates by the angle θ about the z axis relative to the
unprimed coordinates. For de�niteness in this problem, suppose Alice and Bob share over-
lapping IRFs, but Bob's coordinates are rotated by an angle θ about the z axis relative to
Alice's.

(a) Use the rotation transformation to express the components of the velocity of an object
in Bob's IRF in terms of the components of the velocity of the object as measured in Alice's
IRF. (Hint: Use the chain rule from calculus.)

(b) Use the rotation transformation to express the components of the acceleration of an
object in Bob's IRF in terms of the components of the acceleration of the object as measured
in Alice's IRF.
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(c) Use the rotation transformation to express the unit vector directions in Bob's IRF in
terms of the unit vector directions as measured in Alice's IRF.

(d) Combine the results of parts (a)�(c) of this problem to show that m~a = m~a′, i.e.,
Bob measures the same force on the object as Alice does.
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